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ABSTRACT
This paper describes MOMOSE, a highly flexible and easily ex-
tensible environment for the simulation of mobility models.
MOMOSE not only allows a programmer to easily integrate a
new mobility model into the set of models already included
in its distribution, but it also allows the user to let the nodes
of the MANET move in different ways by associating any
mobility model to any subset of the nodes themselves. More-
over, MOMOSE can be easily adapted in order to record, during
the simulation time, all the data necessary for the evaluation
of the performance of any communication protocol or of any
MANET-based application.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation Support
Systems—environments; C.2.1 [Computer-Communication
Networks]: Network Architecture and Design—wireless com-
munication; C.2.2 [Computer-Communication Networks]:
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Network Protocols—protocol verification

General Terms
Experimentation; Measurement; Performance; Verification

Keywords
MANET, Mobility model, NS-2, simulation environment

1. INTRODUCTION
A mobile wireless ad hoc network (in short, MANET ) is a

computer network in which no pre-existing communication
infrastructure exists, communication links are wireless, and
nodes are free to move and organize themselves in an arbi-
trary fashion. These networks are expected to have several
applications because of the minimal configuration and the
quick deployment they require: natural or human-induced
disasters, inter-vehicular communication, law enforcement,
military conflicts, and emergency medical situations are just
a few examples of application areas in which MANETs are
expected to play an important role.

Since the nodes of a MANET are mobile, the network
topology may change rapidly and unpredictably over time.
It is then important, in order to evaluate the performance of
any communication protocol or of any MANET-based appli-
cation, to be able to accurately simulate the mobility traces
of the nodes that will eventually utilize the protocol or the
application. To this aim, we need a mobility model that de-
scribes the movement pattern of mobile users, and how their
location, velocity and acceleration change over time.
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We can distinguish two basic approaches in order to obtain
a mobility model. The first approach consists of construct-
ing the mobility model on the ground of accurate informa-
tion about the mobility traces of users: however, obtaining
real mobility traces is usually a great challenge. For this
reason, various researchers proposed different kinds of mo-
bility models that are not trace-driven and that are called
synthetic mobility models. A great variety of such mobility
models have been proposed in the literature, which differ
according to at least one of the following criteria [11]: the
geographic constraints that a mobile node has to deal with,
the scale the model is designed to work for, and the indi-
viduality which is determined by the node aggregation level
of the model. Some examples of mobility models that have
been proposed in the past are1 the random walk model [15,
18, 27, 28], the random waypoint model and its many varia-
tions [20], the random direction model and its many vari-
ations [6, 29], the boundless simulation area model [10],
the Gauss-Markov model [10], the city section model [10],
the exponential correlated random model [17], the column
model [30], the nomadic community model [30], the pursue
model [30], the reference point group model [17], and, more
recently, the real-world environment model [19], the virtual
track group model [36], the ripple model [12], the clustered
model [22], the social model [24], and the TCP-based worm
spread model [1].

In this paper we describe the MOMOSE tool, which is a highly
flexible and easily extensible environment for the simulation
of mobility models. Indeed, MOMOSE not only allows a pro-
grammer to easily integrate a new mobility model into the
set of models already included in its distribution, but it also
allows the user to let the nodes of the MANET move in dif-
ferent ways by associating any mobility model to any subset
of the nodes themselves. Moreover, MOMOSE can be easily
adapted in order to record, during the simulation time, all
the data necessary for the evaluation of the performance of
any communication protocol or of any MANET-based ap-
plication.

The paper is structured as follows. In the rest of this sec-
tion we briefly describe of our simulation tool. In Section 2,
we introduce the software architecture of MOMOSE, while in
Section 3 we describe the experiments that we have executed
in order to evaluate the performance differences between the
two simulation engines included in MOMOSE. In Section 4 we
briefly explain how a programmer can use MOMOSE in order to
develop a new mobility model and/or a new data recorder.
Finally, in Section 5 we summarize the tools that, according
to our opinion, are the most related to our application.

1.1 A brief description of MOMOSE
MOMOSE is a mobility model simulation tool for MANETs.

MOMOSE main characteristics are its easy extendibility and
its high adaptability to the information needed in order to
evaluate a specific protocol. Within the MOMOSE framework,
indeed, a programmer can easily implement new mobility
models and successively simulate the movement of a set of
nodes by using any combination of the mobility models in-
cluded in the MOMOSE distribution and of the newly imple-

1This list is certainly not exhaustive: our goal, however, is
just to give a flavor of the huge quantity of mobility models
that have been proposed in the literature and of how im-
portant the mobility simulation topic is within the MANET
research area.

mented mobility models. Moreover, the user can define ap-
propriate data recorders, that is, sets of data structures and
methods, in order to collect, during the simulation, the data
necessary for the evaluation of a specific protocol.

During each simulation, the set of the nodes of the net-
works is partitioned into an arbitrary number of subsets,
each one corresponding to the specific mobility model gov-
erning the movement of the nodes in the subset: however,
since each node has an own logic unit which is independent
from the other nodes, different nodes in the same subset
are allowed to play different roles within the same mobility
model (for example, in the PursueModel [17] it is necessary
to allow one node to act as the leader of the subset).
MOMOSE also allows the user to simulate the movement of

the nodes within a “realistic” environment, where obstacles
(such as buildings and barriers) are present: these obstacles
not only limit the movement of the nodes, but they also at-
tenuate the transmission signals sent by the communication
units. The definition of a scenario is flexible enough to allow
the user to define significantly different situations, ranging
from people moving within a building or a campus to robots
moving within a disaster recovery environment or to vehicles
moving within an urban environment (such as in a VANET).

During a simulation, one or more data recorders can be
used, which allows the user to collect the interesting data:
for example, a data recorder could compute the distribu-
tion of the nodes during the simulation time in a given area,
while another data recorder could compute the degree of
each node (that is, the number of active connections for
each node): both data recorders could store these informa-
tion into the same output file, which could be subsequently
used in order to produce statistics or reports. The current
distribution of MOMOSE includes a data recorder that pro-
duces trace files compatible with the NS-2 network simula-
tion environment [14], which is one of the most popular
network simulator within the research community. As far as
we know, the mobility modules produced for this simulator
include only very simple mobility models, such as the ran-
dom waypoint model [21] and the random walk model [26]:
MOMOSE can hence be used in order to produce more realistic
mobility patterns, which can be subsequently used by NS-2

while simulating and evaluating any network protocol.
The behavior of a mobility model is typically determined

by the value of some model-specific parameters: for exam-
ple, in the case of the Gauss-Markov mobility model [31] the
parameter α which determines the randomness degree of the
model has to be specified, while in several other models typ-
ical parameters are the acceleration value or the angular
velocity value [7]. In general, a unique set of parameters
which can be used for any mobility model does not exist:
for this reason, MOMOSE allows the user to define and to sub-
sequently use configuration windows whose content depends
on the mobility model. In this way, it is very easy to tune
all the parameters of a specific model: moreover, this pa-
rameter tuning can be saved in appropriate files, which can
be successively reloaded. A similar approach can be also fol-
lowed in the case of data recorders whose behavior depends
on the value of specific parameters: even in this case the
user can define specific configuration windows.

The graphical user interface (in short, GUI) of MOMOSE is
based on the Java Swing classes and on the OpenGL stan-
dard [33]. The simulation engine, instead, has been devel-
oped both in Java and in C++: the former one is deeply



Figure 1: The configuration and the simulation windows

integrated with the GUI and allows the user to interactively
control the simulation and its visualization, while the lat-
ter is optimized from a performance point of view and is
accessible only by means of command lines. The reason
why we decided to include two different simulation engines is
strictly connected to the main characteristics of the two pro-
gramming languages. Java is highly portable and the Swing
classes behave essentially in the same way, independently
from the used processor/operating system platform: on the
contrary, several different graphical libraries have been de-
veloped in C++, and it does not seem that any of them can
be considered as the standard one. Hence, the Java version
of the simulation engine is particularly appropriate during
the development phase of a mobility model and/or of a data
recorder: in this case, indeed, the GUI allows the user to
easily configure the simulation parameters and to observe
in real-time the node movement and the evolution of the
simulation itself. On the other hand, the C++ engine, which
has to be compiled for any possible platform/operating sys-
tem platform, has the advantage of being significantly faster
than the Java engine: hence, this version of the engine is
more appropriate for the execution of simulations with a
long simulation time and/or with a huge number of nodes.

By means of the MOMOSE GUI, the user can control any as-
pect of a simulation, both before its beginning by interacting
with its configuration window and during its execution by
interacting with the simulation window. The configuration
window allows the user to set up the simulation time and the
simulation scenario (which can range from an empty area to
any environment specified in an appropriate file). It also
allows the user to select and configure the mobility mod-
els and the data recorders to be used during the simulation:
each mobility model and each data recorder can also be con-
figured by interacting with its configuration window which
allows the user to tune the mobility model parameters and
to set up the data recorder parameters (see the left part of
Figure 1). By means of the mobility model configuration
window, it is possible to tune both parameters common to
all mobility models (such as the number of nodes moving
according to the model or the maximum node transmission
range) and parameters which are meaningful for that spe-
cific model only (such as the attraction degree in the case of

the nomadic model [31]). The data recorder configuration
window allows the user to set up parameters such as the
name of the file into which the collected data will be written.
The user can define and implement new mobility model and
data recorder configuration windows, which will be automat-
ically integrated into the MOMOSE framework. Starting from
the simulation configuration window, the user can directly
start the simulation itself or can save the current configu-
ration into an appropriate file, which can be subsequently
used by one of the two engines previously described in or-
der to execute the simulation and collect the required data
(clearly, a configuration file can be reloaded and modified at
any subsequent moment).

The simulation window (see the right part of Figure 1)
allows the user to manage and control the execution of a
simulation: in particular, at any moment the user can pause
and restart the execution, can stop it, can see log messages
produced by the simulation engine, and can activate a graph-
ical window which shows, in real-time, the movement of all
the nodes within the specified scenario (along with other in-
formations related to the simulation). A scenario is defined
by means of an XML file which contains the list of obsta-
cles that are present in the simulation area. Each obstacle
is formed by one or more polygons (in particular, squares,
rectangles and/or circles): for each polygon, the XML code
specifies its position, its rotation angle, its color, its name
and its attenuation factor (which is a number between 0
and 1). A scenario can also contains a set of hot-spots, that
is, specific points of the simulation area which are of partic-
ular interest for the nodes: by means of this feature, it is
possible to define within the scenario a graph, which can be
used by a mobility model while deciding the movement of a
node (such as in the case of the pathway model [32]). The
XML standard allows the user to easily define new scenar-
ios: however, MOMOSE includes the possibility of generating a
scenario starting from a Scalable Vector Graphics (in short,
SVG) file. Hence, the user can create the scenario by using
any drawing program, in order to subsequently export it in
the SVG format and, hence, to translate it into the XML
code required by the MOMOSE simulation engine.
MOMOSE includes an OpenGL player which allows the user

to visualize and graphically analyze the evolution of a simu-



Figure 2: The OpenGL player without and with the drawing of the transmission ranges

lation, which was previously saved into appropriate files by
a default data recorder included in the MOMOSE distribution.
Within the main drawing area of the player, the simulation
scenario and the movement of the nodes are shown (see the
left part of Figure 2): on the left of this area, some basic
information about the scenario and the simulation time is
given and some tools for controlling the simulation itself are
given (as with any other player, the user is also allowed to
pause and restart the simulation and to fast advance it both
forward and backward). During the simulation, some ad-
ditional information can be visualized within the drawing
area, such as the node IDs, the node transmission ranges,
the hot-spot graph and the communication graph. In this
latter graph, the color of the edges indicates the power of the
transmission signal between any pair of nodes: in particular,
a green color indicates that no attenuation is present, while
different red gradations indicate different levels of transmis-
sion power. Since long simulations with a large number of
nodes might produce huge trace files, MOMOSE allows the user
to save these files in a compressed form (in particular, by
using the gzip standard): these compressed files can be di-
rectly loaded and visualized by the player.

Finally, it is worth noting that, since the simulation config-
uration files, the scenario definition files and the player trace
files are written by using the XML technology and they are
all independent from each other, they can be immediately
ported on different processor/operating system platforms,
provided that an instance of MOMOSE has been installed.

2. SOFTWARE ARCHITECTURE
Apart from the GUI, the main software components of

MOMOSE are the simulation engine,2 the models, the nodes
and the data recorders. Each of the latter three components
is represented by means of an abstract Java class. The MO-

MOSE distribution includes several template classes that can
be extended by the programmer in order to develop person-

2From a functional point of view, the Java and the C++ sim-
ulation engines are equivalent: all the classes that represent
the different simulator components have the same interface
and do the same task. In this way, the programmer can
switch from one engine to the other without having to mod-
ify a single line of the code.

alized mobility models and data recorders (see also the next
section).

The simulation engine contains several components man-
aging the following different aspects of a simulation.

• The mobility model manager is in charge of the nodes
and of the mobility models during the simulation.

• The physical engine manager computes the collisions
between the nodes and the obstacles which are present
into the scenario and, hence, moves the nodes within
the simulation area.

• The scenario manager is in charge of the logical repre-
sentation of the simulated environment and of all the
objects which are contained in the environment itself.

• The data recorder manager allows the data recorders
to store the data collected during the simulation.

• The time manager is in charge of the advance of the
simulation clock.

A simulation execution is divided into three phases: the
simulation setup phase, the simulation cycle phase, and the
simulation end phase (see the left part of Figure 3).

During the setup phase all the data structures necessary
for the simulation execution are initiliazed: the behavior
of this phase is determined by the information read from
the simulation configuration file, produced by means of the
GUI or directly written by the user. The different compo-
nents of the simulation engine are initialized one after the
other starting from the time manager data structures and,
subsequently, the scenario and all the objects that are con-
tained within it. Successively, the mobility models and the
node generation are initialized: during this step, each model
can setup its own data structures and create the nodes that
will move into the simulation area. The nodes have some
common properties (such as the ID, the transmission range,
and the velocity vector); moreover, each node can be de-
fined as a physical object, so that it can collide with other
nodes. During their generation, the nodes are also assigned
an initial position: to this aim, the mobility model can an-
alyze the scenario, if necessary (for example, in order to



Figure 3: The simulation and MOMOSE flow diagrams

position a node onto an hot-spot or to avoid to position a
node onto a wall). At the end of this step, all the infor-
mation concerning the models and the nodes are passed to
the initialization step of the mobility model manager and
of the physical engine manager. The last step of the setup
phase consists of the initialization of the data recorders and
of their manager: similarly to the mobility model initializa-
tion, each data recorder setup its own data structures (such
as the output file or counter variables).

Once the setup phase is done, the simulation cycle starts.
At each cycle, the time manager updates the internal clock
of the simulator and checks for the ending conditions. If
the simulation is not ended up, the mobility model manager
makes each node and model choose the next operation to
be performed. Both models and nodes may perform any
required operation: for instance, a model may generate a
new target for its nodes, may change the role of some or
of all its nodes and may interact with other models, while
a node may switch on or off its own transmission device,
may change its own role, may change its speed and direc-
tion, and may modify its transmission range (notice that, by
modifying the transmission range, energy saving arguments
can be also taken into account). While such operations are
performed, the simulator keeps models and nodes informed
about the simulation time, the scenario and the states of
the other nodes in order to let them take the correct de-
cisions. For instance, a node may need information about
the scenario in order to determine whether collisions may
occur while moving at a given speed and direction, or it
may need information about the hot-spot list in order to
choose its next target destination. After the mobility model
manager step, the physical engine manager gets the simu-
lation control and computes the new node positions, taking
into consideration the collisions between nodes and scenario
objects and among nodes. In order to speed up these op-
erations, the physical engine manager represents the simu-
lation area by a BSP tree:3 such a tree is built during the

3The Binary Space Partitioning [16] technique is a recursive
partitioning of the space into convex sub-spaces, which is
described by means of a binary tree (called BSP tree).

setup phase and it allows the physical engine manager to
save computational time, since only the collisions between
a node and its surrounding physical objects are considered.
At the end of any simulation cycle, each data recorder col-
lects the required data and records system informations at
current time. Data recorders may access all simulation data
(such as time, scenario, and system state) and may access
all the information about models and nodes involved in the
simulation: for instance, one data recorder might compute
the communication graph and draw its diameter, the node
degrees, and the number of connected components, while
another data recorder might write the logs of node positions
and states at the current simulation cycle.

The last phase of a simulation is the simulation end, dur-
ing which a procedure is invoked for any data recorder that
allows it to execute some final tasks. For example it is pos-
sible to close the open files, to evaluate some performance
values by using the collected data, or to create reports and
the similar. During this phase, the simulation engine erases
all temporary data structures. Finally, the simulation ends
and the output files created by the data recorders can be
used for the analysis or can be exploited by other tools (see
the right part of Figure 3).

3. PERFORMANCE COMPARISON
In this section a performance comparison is presented be-

tween the Java and the C++ simulation engines. The analy-
sis is performed by comparing the running times of the two
engines when executing on the same simulation framework
(that is, the same simulation time and the same number of
nodes). In order to evaluate the real performances, all addi-
tional I/O components have been removed. The simulations
have been executed on a Intel Pentium 4 2.4 GHz proces-
sor, with 512 MB of RAM running a Linux (kernel version
2.6.17-10) operating system.

The first comparison focuses on the number n of nodes.
Ten different values of n have been considered: for each
of them, twenty simulations have been executed and the
average execution time has been computed. In particular,
for each execution the simulation time has been set equal
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Figure 4: A comparison of the Java and the C++ engines with respect to the number of nodes: on the left the
average execution time, on the right the variance value

to 10800 seconds, while the n nodes have been partitioned
into three equally sized sets moving accordingly to the ran-
dom waypoint, the random walk, and the nomadic mobility
model, respectively. In the left part of Figure 4, the average
execution time is shown, while in the right part of the figure
the corresponding variance values are drawn. It is evident
that the C++ engine is significantly more performing than
the Java engine: it also seems that this better performance
does not depend on the number of nodes.

However, one might think that the execution time is too
short and that the initial overhead, that a Java program has
to usually pay for,4 cannot be compensated in such short ex-
ecution times. For this reason, we have performed a second
kind of comparison which focuses on the simulation time t.
Ten different values of t have been considered: for each of
them, twenty simulations have been executed and the aver-
age execution time has been computed. In particular, for
each execution 900 nodes have been simulated, partitioned
in a way similar to the previously described one. In the left
part of Figure 5, the average execution time is shown (in a
logarithmic scale), while in the right part of the figure the
corresponding variance values are drawn.

Even in this case, the better performance of the C++ en-
gine is quite evident. Even though the performance relative
difference slightly decreases while the simulation time in-
creases, it seems that asymptotically this difference tends to
a value close to 40%.

4. EXTENDING MOMOSE
As already stated in Section 1, MOMOSE allows the program-

mer to create new mobility models and new data recorders
starting from a set of template classes. In the next two sec-
tions, we show how this can be done by also describing an
example of a new mobility model and of a new data recorder.

4.1 Creating a Mobility Model
In order to develop a new mobility model, the program-

mer has to implement three classes: the ModelBuilder class,

4For instance, the Java interpreter usually performs a code
validity check, which is done only the first time a method is
invoked.

which manages the creation of the model, the Model class,
which represents the model itself, and the Node class, which
represents a node moving according to the model. Option-
ally, the programmer can implement two additional classes,
that is, the ModelConfigDlg class, which represents the model
configuration window, and the ModelParser class, whose
task is reading all the necessary information starting from
a configuration file: these two classes should allow the user
to easily manage the model parameters (MOMOSE furnishes,
however, a default version of these two classes that allows
the user to set up some parameters common to all mobility
models).

The ModelBuilder class collects the model configuration
data either from the simulation configuration window or
from a configuration file (by making use of the parser): by
using these data, the builder creates and set up the object
that actually represents the model and that will be passed
to the simulation engine. The programmer can personalize
the ModelBuilder class by rewriting three methods: cre-

ateFromDlg, which is needed for creating a model starting
from the data taken from a configuration window, create-
FromFile, which is needed for creating a model starting from
the data taken from a configuration file, and toConfigFile,
which is used in order to save the configuration data onto a
configuration file: The first two methods return an instance
of the Model class, which is then passed to the simulation
engine.

The Model class is characterized by two attributes: the
node array, which contains the nodes moving according to
the mobility model, and the Boolean flag isThinker, which
specifies whether the model is a “thinking” entity or all the
reasoning is directly performed by the nodes. The program-
mer has to implement two methods. The setup method is
invoked by the simulation engine during the model setup
step and receives as parameters an object representing the
simulation clock and a scenario: in this way, the model can
setup all the necessary data structures required by the sim-
ulation. Within the body of the setup method, the nodes
have to be created and inserted into the node array. The
think method, instead, receives as parameters only an ob-
ject representing the simulation clock and is invoked by the
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Figure 5: A comparison of the Java and the C++ engines with respect to the simulation time: on the left the
average execution time (logarithmic scale), on the right the variance value

mobility model manager if the isThinker flag is true: in this
way the model can reason about the operations that have to
be performed at the current simulation time (clearly, if no
operation has to be done by the model, then the programmer
does not need to rewrite this method).

The Node class has several attributes such as the velocity
vector, the transmission range and the node ID: moreover,
it has the two Boolean flags isPhysical, which specifies
whether the node has to be considered a physical object,
and collided, which specifies whether at the previous sim-
ulation cycle the node collided with a scenario object or with
another node. The personalization of this class simply con-
sists of rewriting the think method, which is very similar to
the homonymous method of the Model class.

In order to integrate the new mobility model into the MO-

MOSE framework, it suffices to position the above described
classes in a common package (in the case of the Java engine)
or in a subdirectory of the main path (in the case of the C++

engine), to add a reference to the new model builder class
within the SimulationManager class and to recompile the
source code.

4.2 Creating a Data Recorder
The structure of the classes that implement a data recorder

is quite similar to the one of the classes that implement a
mobility model. In particular, the programmer has to define
two classes: the DataRecorderBuilder class, which manages
the creation of the data recorder, and the DataRecorder

class, which actually implements the data recorder itself.
Optionally, the programmer can implement a configuration
window class, extending the DataRecorderConfigDlg class,
and a DataRecorderParser class, which collect the data
recorder set up information starting from a configuration
file (even in this case, MOMOSE furnishes a default implemen-
tation of these two optional classes).

The DataRecorderBuilder class is very similar to the
ModelBuilder class: even in this case, the programmer has
to rewrite the three methods createFromDlg, createFrom-
File, and toConfigFile.

The DataRecorder class is used to define the data recorders
that are used by the simulation engine and that record all

the necessary information concerning the evolution of the
system. In particular, the programmer has to rewrite the
three methods setup, record, and endSimulation. The first
method is invoked during the simulation setup phase and
initializes the recorder data structures (such as the output
file): it receives as parameters an object representing the
simulation clock, a scenario, and an array containing the
list of models used by the simulation engine: by means of
this array, the recorder can access both the models and the
nodes. The record method is invoked by the data recorder
manager during the simulation cycle, in order to record the
information concerning the state of the system, the nodes
and the models at the current simulation time: for instance,
this method could append into the output file the position
and the transmission range of every node at the current sim-
ulation time. Finally, the endSimulation method is invoked
during the end simulation phase: as we have already said, by
means of this method the recorder can close the output file,
can eliminate all the data structures or can create statistical
reports.

Similarly to the creation of a new mobility model, in order
to integrate the new data recorder into the MOMOSE frame-
work, it suffices to add a reference to the new data recorder
builder class within the SimulationManager class and to re-
compile the source code.

5. RELATED WORK
The two most popular network simulators which are used

within the wireless ad hoc network research community are
the Network Simulator-2 (in short, NS-2) [40] and the Glo-
MoSim environment [37].

NS-2 is a discrete event simulator that supports the sim-
ulation of TCP, routing, and multicast protocols over wired
and wireless networks. Indeed, NS began as a simulator of
wired networks, but due to the extension developed within
the Rice university Monarch project [39], it now allows the
user to simulate wireless networks (in particular, ad hoc
wireless networks). Within NS-2, a simulation is defined by
means of the C++ and the oTcl languages. The C++ classes
are used in order to develop the protocols that have to be
simulated, while oTcl is used as an interface between the



user and the C++ classes: in particular, the programmer cre-
ates a text file that describes the network architecture and
lists the events that must occur during the simulation.

GloMoSim is a simulation library for wired and wireless
networks, which has been developed at the Parallel comput-
ing laboratory of the University of California at Los Angeles.
GloMoSim uses Parsec [2], which is a simulation language
for sequential and parallel execution of discrete-event simu-
lation models. Within GloMoSim a simulation is described
by means of a text file which is passed to the simulator: by
means of this file, it is possible to specify the network archi-
tecture, the total simulation time, the protocols that have
to be executed by the nodes and the simulation events. The
Glomosim distribution includes the implementation of sev-
eral wireless protocols (such as 802.11, MACA, and CSMA)
and of some routing protocols for ad hoc networks (such as
DSR, Fisheye, and AODV ).

Both NS-2 and GloMoSim include tools for the generation
of node mobility patterns. In particular, within NS-2 the in-
formation concerning the node movements are collected into
a file, called ns2-mobility-file, which is then given as input
to the simulator. These files are generated by a tool, called
IMPORTANT [3], which currently supports the following
mobility models: random waypoint, reference point group
mobility, freeway mobility and Manhattan mobility. The
tool for the generation of mobility pattern within GloMoSim
is called MobiGen [38] and currently uses the random way-
point model only.

In our opinion, both generation tools were not designed
to be extended, so that it does not seem to be very easy to
add new mobility models to them. Moreover, only one of
the available mobility models can be used during each sim-
ulation. Finally, the currently included models can simulate
only the movement within an empty area, that is, without
any obstacle. On the contrary, it is more and more impor-
tant to simulate the behavior of protocol within a realistic
scenario and to allow the nodes to move themselves accord-
ing to different mobility patterns: it is indeed known that
using simplistic environments and mobility patterns can lead
the simulation to produce wrong performance results [35].

6. CONCLUSION
In this paper we have described MOMOSE, a new environ-

ment for the development and simulation of mobility models
for mobile wireless ad-hoc networks, whose main characteris-
tics are flexibility and extensibility. MOMOSE has already been
applied in three interesting and non trivial case studies, thus
showing how it can be used while analyzing different aspects
of MANETs.

In the first case study we have replicated the experiments
described in [5] concerning a localization algorithm based
on the estimate of the received signal power: the localiza-
tion problem is one of the most important research topic
within the field of sensor networks, and it is strictly related
to routing protocols and energy consumption. In order to
replicate these experiments, we used the random waypoint
model (which was already included in MOMOSE) and we de-
signed a new parametric data recorder, which computes,
during the simulation, the real position of a sensor, the po-
sition computed by the algorithm proposed in [5], and the
error between these two values. Our experimental results
strongly agree with the ones presented in [5], thus validat-
ing the correctness of our simulation tool and proving the

easiness of using it in order to design and realize a new set
of experiments.

The second case study concerned the development of a
new mobility model. Considering that different nodes may
move according to different mobility models and that the
mobility behavior of a node may vary during time because
of changes of its environment, we let the nodes of a network
move according to mobility models that are determined by
the roles played by the nodes themselves: these roles, in
turn, can be determined by computing colorings of the graph
induced by the communication network [9]. Observe that
prior applications of social network analysis to the develop-
ment of MANET mobility models assume that the structure
of the social network is known a priori and that this struc-
ture does not change over time [24, 25]: in the role assign-
ment based approach, instead, the social network structure
is determined by the topology of the MANET, which in turn
changes over time due to the movement of the nodes. Our
experiments (that will be reported in a forthcoming paper)
show that the combination of a role assignment algorithm
(called ecological [8]) with a simple mobility model (that is,
the random waypoint model) produce movement patterns
with significantly higher mobility metrics [34] than the orig-
inal mobility model itself. Moreover, these experiments al-
lowed us to confirm the easiness of designing and developing
new mobility models within the MOMOSE framework.

The goal of the third and last case study was to evaluate
the connectivity performance of part of the Blue pleiades
protocol proposed in [13] in order to more efficiently perform
the device discovery phase of the Bluetooth standard [23]. In
particular, during this phase each Bluetooth device attempts
at discovering other devices contained within its visibility
range and at establishing reliable communication channels
with them: however, since requiring each device to discover
all of its neighbors is too time consuming [4], the Blue
pleiades protocol forces each device to stop the device dis-
covery phase as soon as a constant number of neighbors has
been detected (typically, 7). We have then implemented this
protocol and we have evaluated its connectivity performance
when used for a MANET formed by thousands of devices
moving around the historic centre of Florence, Italy (see
Figure 6). According to our experiments, the Blue pleiades
protocol works quite well if the number of selected neighbors
is at least 5: indeed, in this case the number of connected
components do not increase too much with respect to the
case in which all the neighbors are selected.

In conclusion, the above described experiments seem to
confirm the flexibility and extensibility of MOMOSE: for this
reason, we believe that our framework can become a very
useful tool for evaluating the effects of mobility on the per-
formance of a protocol for MANETs and we hope that a
wide use of the tool itself will allow us to further improve it.
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[27] S. Pólya. Über eine Aufgabe der
Wahrscheinlichkeitstheorie betreffend die Irrfahrt im
Strassennetz, Mathematische Annalen, 84, 149–160,
1921.
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