
An architecture for the implementation
of Mesh Networks in OMNeT++

A. Ariza-Quintana E. Casilari A. Triviño Cabrera
Dpto. Tecnología Electrónica, University of Málaga

Campus de Teatinos, 29071 Málaga (Spain),
Tfno.: 34-952132755; FAX 34-952131447

aarizaq@uma.es ecasilari@uma.es atc@uma.es

ABSTRACT
This paper describes the implementation in OMNeT++ of a
versatile protocol architecture for the simulation of 802.11
Wireless Mesh Networks (WMNs). The developed modules
enable the routing at the 802.11 MAC layer as well as a packet
forwarding technique based on label paths. The performance of
the new architecture is compared with that of a typical IP OLSR
ad hoc network proving that link layer routing (IP) can be
completely substituted by the developed modules.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model development

C.2.1 [Computer Communication Networks]: Network
architecture and design

General Terms
Performance, Design

Keywords
OMNeT++, mesh networks, MAC, routing.

1. INTRODUCTION
During last years Wireless Mesh Networks (WMN) have become
an appealing research topic in the field of networking. Industry
has also paid attention to WMN and successful ‘mesh companies’
have appeared to offer different mesh networking products to
customers.
As in the case of ad hoc networks, mesh architectures allow the
association of peer wireless nodes to conform a network in an
adaptive, infrastructureless and self-organizing way. For this
purpose, all the nodes in the network must work cooperatively
and perform routing functionalities (if necessary) to define multi-
hop routes that permit the interconnection of terminals that cannot
communicate directly. Moreover, through multi-hop connections,

coverage area of the network can be expanded with much lower
transmission power (and consequently with a lower power
consumption in the mesh nodes).
Although there is not a clear border between the concepts of ad
hoc and mesh networks, we can emphasize certain differences. In
contrast with the typical (and ‘academic’) conception of Mobile
Ad Hoc Networks (or MANETs), mesh networks are mainly
intended for static radio nodes (normally Internet Access Points)
with very reduced or no mobility. Similarly, the classical notion
of an ad hoc network. assumes that routing is executed at network
layer (in essence IP) while mesh networks mainly base routing on
the information at MAC (link) layer [1]. This last feature reduces
the economical and computational cost of mesh network
deployment as it simplifies the hardware and software of the mesh
routers (which are not obliged to implement IP layer).
IEEE 802.11s [2] draft has been proposed as an amendment to
802.11 standard to enable the formation of WMNs with 802.11
capable-nodes. In this sense, IEEE 802.11s extends 802.11 to
support both broadcast/multicast and unicast communications
through multi-hop self-configuring topologies. IEEE 802.15,
IEEE 802.16 and IEEE 802.20 working groups have also made
efforts to develop new protocols for WMNs.
This work describes and proposes a simple protocol architecture
for MWNs. The architecture, which has implemented and
simulated in OMNeT++ [3], permits to perform routing and label
based packet forwarding just employing the 802.11 MAC layer.
The implementation does not follow any specific standard or
draft. Its main goal is to offer an open platform to emulate mesh
networks and to evaluate the performance of future functionalities
and proposals for this type of communication systems.
When compared with of 802.11s, our label-based switching
architecture presents the following advantages:
-The label based switching process is simpler and faster than
routing based on addresses (MAC or IP).
-Our implementation of label based switching enables source
routing while 802.11s only permits to employ distributed (hop-by-
hop) routing. Source routing eases the implementation of QoS
policies.
-As our architecture defines a special header between layers 2 and
3, it is basically independent of 802.11 and can be easily utilised
with other MAC layers (such as 802.15 or 802.16 layers). Label
switching enables to route the same packet through interfaces
with different link layers.
-The main inconvenience of the label bases switching is the need
of creating the label paths. If the mobility of the terminals is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
OMNeT++, 2009, Rome, Italy.
Copyright 2009 ICST, ISBN 978-963-9799-45-5.

reduced, this is not a problem as paths will be stable.
Consequently, the use of label based routes will be more efficient
than address based routing in static networks.
Paper is structured as follows. Section 2 comments the general
structure of the architecture and details the functionalities
implemented through different fields in a special packet header.
Section 3 and 4 describe the techniques that have been
implemented for the forwarding and routing of packets,
respectively. Section 5 shows some simulation results proving the
correctness of the implementation. Section 6 discusses the
benefits of the proposal while section 7 summarizes the main
conclusions.

2. ARCHITECTURE IMPLEMENTATION
2.1 Block diagram
The protocol architecture for the simulation of 802.11 mesh
network essentially requires the definition of specific modules
that implement the routing functionalities at the MAC layer.
Additionally we also considered of interest to include in our
implementation a specific packet forwarding mechanism. In this
sense, a policy based on label paths such as MultiProtocol Label
Switching (MPLS) [4] can offer a very flexible tool for traffic
engineering. With a MPLS-like strategy, packet forwarding is not
based on the destination address but on a pre-defined path. The
path is identified in every packet by incorporating a special
header with a simple label. This label (and not the MAC or IP
addresses) are analysed and switched in the nodes along the route.
Figure 1 shows the diagram of the modules used for the
implementation. The figure also represents the links with the rest
of the components of the INET implementation of 802.11
standard.

Figure 1. Block diagram of the proposed architecture

As it can be observed from the figure, the developed block
(802.11 Mesh) consists of two intercommunicated sub-blocks: the
module of Control and Forwarding is in charge of managing and
creating the paths. This sub-block is also responsible for sending
the packets from any node (to the following node in the route) in a
transparent and seamless way to the upper layers. The goal of the
second part of the architecture (the Routing Protocol) is to find a
path to a final destination node when necessary. Next sections
briefly summarise the structure and functionality of these two
sub-blocks.

2.2 Packet header
802.11s draft proposes to perform routing decisions employing
the information contained in the typical packet header of 802.11
protocol. However, to enable an alternative label based
forwarding, a specific packet label header has been added in our
architecture for WMNs. The format of this new header is
presented in the Figure 1 according to the packet definition
language of OMNeT++ simulator.
The header incorporates the following fields aimed at providing a
MPLS-like packet forwarding:
-The label field includes the label that identifies the path that is
being used by the message. The label for the return path is defined
in the labelReturn Path.

-The type field defines the functionality of the message that is
being transported. 11 different types of messages have been
defined to support forwarding through label paths:

1. WMPLS_BEGIN. By this message, a node announces
to the following hop in the path that a label based path
is being created. The header includes the label that the
next hop must employ to forward packets to the path
source. When the WMPLS_BEGIN is received, the
node responds with a WMPLS_ACK message
informing about the label to employ in the contrary
sense.

2. WMPLS_BEGIN_W_ROUTE. It is a special case of
WMPLS_BEGIN as it also enables source routing (the
origin node includes in the message the addresses of all

802.11 Mesh

Control and
forwarding

Routing Protocol

ChannelControl

802.11 Mac

802.11 Radio model

802.11 Nic

Upper layers

packet LWMPLSPacket

{

 fields:

int label;

int labelReturn;

int type;

bool nextHeader;

unsigned int counter;

int byteLength;

MACAddress source;

MACAddress dest;

MACAddress vectorAddress[];

};

Figure 2. Message header

the nodes in the path).
3. WMPLS_NORMAL. This header indicates that the

routing decision must be based on the transported label
(a label based route must have been created previously).

4. WMPLS_REFRESH. This message is sent to keep
active paths that are not in use currently. In normal
conditions, a path that is not supporting traffic is
considered to be obsolete after a certain time out.

5. WMPLS_END. This message permits to break a path
explicitly (the path is also removed if it is not updated).

6. WMPLS_BREAK. This message informs that the
connectivity in a hop is lost so that the corresponding
path is not available

7. WMPLS_NOTFOUND. This message informs that a
received label is unknown (the packet that contains it
cannot be forwarded as no entry is found in the
forwarding table for the label).

8. WMPLS_ACK. It is used during the path creation when
a node informs to the previous node about the label to
utilise when sending packets through the path. This
message must be sent as an answer when a
WMPLS_BEGIN message is received.

9. WMPLS_SEND. It is employed to send packets when
MPLS-like paths are not created. As for 802.11s, every
node in the route decides the following hop depending
on the destination MAC address.

10. WMPLS_BROADCAST, aimed to broadcast packets.
11. WMPLS_ADDITIONAL (not employed) intended to

extend the protocol and include new functionalities in a
future.

-The Boolean nextHeader field is activated if more than one
header exists in the message. As in the case of MPLS, our
architecture allows to accumulate several headers in the same
message.
-The counter field is utilised in the messages sent by broadcast
to all the network nodes. The field (together with the origin
address) permits to identify the message in order to guarantee that
it is retransmitted by the nodes just the first time that the message
is received (the packet is retransmitted only if the sequence
number in the field is higher than the number of the last broadcast
packet received from the same node). Every node has its own
counter so this field is incremented in a node as soon as it
originates a broadcast message. Similarly, all the nodes have to
store in a table the sequence number of the last received broadcast
packet received from each node.
-The byteLength field defines the total length (in bytes) of the
header.
-The vectorAddress fields include the addresses of all the
nodes in a route when a label path is being created with the
mechanism of source routing. This field is analysed (or not)
depending on the value of the byteLength field.

Finally the header also includes the MAC address of the source
and destination nodes in the link (MACAddress source and
MACAddress dest fields). Although these values are present
in the 802.11 header of the packets, they have been included to
simplify the processing of the C++ code.

3. CONTROL AND FORWARDING
SYSTEM

The goal of this sub-block is to create and keep the virtual paths
generated by labels. The module also manages the data
forwarding and the communication with the higher layer and the
802.11 MAC layer.

3.1 Creation of label based paths
The actual MPLS protocol defines a specific additional
mechanism [5][6] for the path creation, the resource reservation
and the label assignation in the nodes along the path. Conversely,
in our proposed architecture, the signalling information to create,
maintain and destroy the label paths can be easily included in the
message headers. Consequently, the path can be created as the
first packet between the origin and destination nodes progresses
through the network. For this purpose, this first packet must
include the header WMPLS_BEGIN which indicates the next
hope that a virtual label path is being defined. The message
simultaneously defines the label to utilise for the return path by
the receiving node (as an underlying 802.11 physical layer is
assumed, links are considered to be bidirectional). Thus as the
WMPLS_BEGIN evolves, the label path is configured in both
senses without requiring to repeat the operation for the return
path. This clearly minimises the time and the bandwidth
demanded by the setup phase of the connection (which in most
practical cases will require a bidirectional communication of
packets). The node receiving the WMPLS_BEGIN message
responds with an acknowledgment (WMPLS_ACK) assigning the
label that the emitting node will have to use to send packets
through the new path. While the acknowledgment is not received,
the following packets will also be sent with a WMPLS_BEGIN
header. Conversely after the reception of the acknowledgment
subsequent outgoing packets will be transmitted with a
MPLS_NORMAL header and the corresponding forwarding label.
The implementation also contemplates the possibility that a node
receives packets with a MPLS_NORMAL header while the path
in the following hop is not still created. In that case, the
retransmitted packet will change the MPLS_NORMAL header by
a WMPLS_BEGIN header. The opposite operation is also
possible.
The example of a path with 3 hops depicted in Figure 2 illustrates
this exchange of messages during the label path setup.

Figure 3. Information Exchange between nodes for the
creation of a label path

WMPLS_BEGI
N

Return Label 8

WMPLS_BEGI
N

Return Label 1

WMPLS_BEGI
N

Return Label 3

WMPLS_ACK

Label 7

WMPLS_ACK

Label 5
WMPLS_ACK

Label 1

Labels are selected from a pool of available labels. This selection
is performed basing on the following criteria: the first found label
that has not been in use during a certain interval is selected. If all
the available labels were selected during that interval, the
algorithm chooses the label that was least recently used. Making
so, we minimise the probability of selecting a label that has not
been released by the following hop (the node receiving the label)
without exchanging any special release message. Here, we must
remember that path labels are automatically released (and
removed from the forwarding table) after a time-out without been
utilised. Thus, if the age of a label (the time without being
utilised) exceeds that time-out, we guarantee that it has been
released by the corresponding node in the link.
The implemented architecture also allows source routing, that is
to say, the definition of the whole label path from the source
node. In this case the initial message creating the label path
incorporates the addresses of all the nodes that compose the route.
As when the route is set up hop by hop, once the path is
configured, the message with data packets just include the
corresponding label. Obviously source routing can be executed
only if the routing protocol (OLSR in our case) permits the node
to know the whole network topology so that a route to the
destination can be directly defined from the source.

3.2 Operating modes
The architecture permits three operating modes for the exchange
of information between nodes: label based forwarding mode, the
hop-by-hop mode and the broadcast mode.
The label based (MPLS) forwarding mode creates label based
paths between the source and destination nodes. Once the path has
been created and the labels are assigned to the different links,
routing decisions are purely based on these (active) labels. Thus,
when a packet arrives to an intermediate node in a path, the
control module searches in the forwarding table the label of this
incoming packet. In the table this label is associated to three
values: the return label, the MAC address of the following node in
the route and the outgoing label (these two last values will be
inserted in the packet to be retransmitted). Every active label has
also a lifetime counter. If this counter exceeds a certain timeout
the path is considered to be finished. In that case the label and its
associated parameters are removed from the table. So, the label is
considered to be available to create another path. On the other
hand, whenever an active label is utilised, the label lifetime
counter is set to zero. If an incoming packet transports an
available label, an error message is transmitted to the emitting
node (WMPLS_NOTFOUND). This message will erase the entry
in the forwarding table corresponding to the missing label.
If the MAC layer detects that a packet cannot be delivered to the
following node successfully, the link is considered to be broken.
In this situation, the labels reserved for this link will be removed
from the table and a special error message (WMPLS_BREAK)
will be generated and transmitted to the rest of nodes in the
contrary sense of the paths that use this link. The reception of this
error message also implies the release of the labels reserved for
the broken path. As part of a path can be active during a certain
interval after a certain link falls, the labels that are removed from
the routing table because of this reason are kept unavailable for a
time interval. This prevents new paths to employ those labels that
were assigned to paths that may be still in use with broken links.

In the ‘hop by hop’ operating mode, no label paths are created so
the packet forwarding and routing is autonomously performed in
every node along the path (in a similar way to typical IP or
802.11s routing). Under this mode, when a node receives a packet
with a destination MAC address (set in the MACAddress dest
fields) different from its own, it searches the corresponding entry
in the routing tables (generated by the routing protocol) to
determine the MAC address of the following hop (the node to
which the incoming packet will be retransmitted). Under this
operating mode, no label paths are created, so the
routing/forwarding operation is similar to the procedure of the
802.11s draft.
The third operating mode is the packet broadcast (or packet
flooding). This mode is conceived to send the packet to all the
network nodes. To reach the whole network, all the nodes have to
rebroadcast any incoming broadcast packet the first time that they
receive it. To prevent the retransmission of duplicated packets, a
sequence number is included in the counter field of the label
headers of all the broadcast messages.

4. ROUTING PROTOCOLS
For the deployed architecture the routing functionality is executed
at the link layer, as in the proposal of 802.11s standard. In
particular, the routing protocol is a sub-process of the control
system.
As routing algorithm, we decided to employ an existing
mechanism for ad hoc networks. Several ad hoc routing protocols
(including reactive strategies such as AODV, DYMO and
proactive policies such as OLSR) have already been implemented
for Inet in OMNeT++ [7]. These protocols were initially
conceived to work with IP addresses. However, OLSR also
enables to base the routing decision and the path search on the
MAC addresses [8]. Consequently OLSR was chosen for our
architecture of mesh network. In any case, other future or present
routing strategies can be easily integrated in our implementation.
In order to habilitate OLSR to work at both layers (link and
network) a special container class (Uint128) was specifically
created. The class, aimed at managing the node addresses, can
store 128-bit IPv6, 32-bit IPv4 and 40-bit MAC addresses. The
class has overloaded operators that return the container classes of
the corresponding INET address for the different types. Thus, the
same code of OLSR (intended for routing at IP layer) can be
utilised at the link layer.
Apart from the different addresses utilised for routing (MAC and
IP addresses), the main divergence between the implementations
of the routing procedures at link and network (IP) layer resides in
the routing table. IP routing employs tables stored in the
RoutingTable class. Conversely, our link layer implementation
makes use of the internal tables of OLSR protocol. Thus, the
control system directly accesses the content of these tables by
executing the getRouteMac method which returns the complete
route (a sequence of MAC addresses) to the destination node. The
developed code is capable of discriminating if routing is
performed at link or network layer. Consequently routing will be
based on MAC or IP addresses.

5. SIMULATIONS AND RESULTS
In order to validate the implemented architecture a set of
simulations were carried out. The main goal of the simulations

was to check the performance of the proposed layer-2 routing
scheme when compared with the typical network layer (IP)
routing of a MANET. Under both schemes OLSR was utilised to
define the routes.
We have simulated networks with 45 and 50 nodes. The nodes
were randomly distributed (according to an uniform random
distribution) in a simulation area of 1500x1500 m. In the scenario
of 45 nodes, 5 nodes implemented the complete protocol stack
and assume the role of sources and/or destinations of the
generated traffic. The other 40 nodes just implement up to the link
(or network) layer and can only act as traffic routers. Source
nodes are programmed to emit CBR (Constant Bit Rate) traffic at
a rate of 5 packets/second through UDP connections. Packet size
was set to 512 bytes. The duration of each simulation was 3000 s.
Two cases for this scenario were considered: in the first one, the
destination of all the flows is the same (predefined) node. In the
second case, the destination for each packet is randomly chosen.
In the scenario of 50 nodes, 20 nodes implement the complete
stack and may perform as sources and/or traffic destinations. In
this scenario sources generate CBR traffic at a rate of 10
packets/second. The destination for each packet is randomly
chosen. The rest of parameters are the same that the previous
scenario. In all the experiments a packets is considered to be lost
when it does not reach the destination node or when it arrives
with a delay bigger than 1 second.
The simulations were repeated for the two compared policies (IP
routing and layer-2 routing) using the same node distribution and
the same traffic pattern (the origin and destination node of each
packet was identical for both cases).
Tables 1, 2, 3 & 4 show that the proposed architecture with layer
2 routing achieves very similar results (in terms of packet delivery
ratio and packet delay) to those obtained with classical IP routing.

Destination node: Predefined Randomly
chosen

Layer 3 Routing 1 1
Layer 2 Routing 1 1

Table 1. Mean Packet delivery ratio. 5 sources

Destination node: Predefined Randomly

chosen
Layer 3 Routing 0.49 ms 0.69 ms
Layer 2 Routing 0.52 ms 0.70 ms

Table 2. Mean Packet delay. 5 sources

The simulator does not model the processing delay at every layer.
Consequently in an actual scenario (with real routers) the lookup
process at the IP tables would introduce an additional component
in the delay of IP routing, which is not reflected in the shown
results. This reduction of the packet processing also impacts on
the simulation time. Table 5 describes the mean number of
simulated seconds per second for both policies. Table shows that
layer 2 routing clearly reduces the duration of the simulation.

In any case, the comparison permits to assume that the developed
modules have been implemented properly.

Destination node: Randomly chosen
Layer 3 Routing 0.999
Layer 2 Routing 0.999

Table 3. Mean Packet delivery ratio. 20 sources

Destination node: Predefined
Layer 3 Routing 1.35 ms
Layer 2 Routing 1.78 ms

Table 4. Mean Packet delay. 20 sources

Scenario 5 sources 20 sources
Destination node Predefined Randomly

chosen
Predefined

Layer 3 Routing 0.83 0.87 0.26
Layer 2 Routing 1.48 1.53 0.30

Table 5. Simulation speed (simulated seconds per real
simulation second)

6. DISCUSSION
When compared with typical IP routing, packet forwarding and
routing at the link layer for ad hoc (and mesh) networks presents
several advantages. Firstly, as it refers to the protocol stack, the
network design is highly simplified: For the network layer all the
internal mesh nodes are only one-hop away. Similarly, the node
acting as the gateway to fixed Internet (if it exists) is not
compelled to implement two different IP routing protocols (e.g.:
OSPF [9] for communicating with any Internet node and a
MANET protocol to interact with the other mesh nodes). Routing
at MAC layers also enables an easier expansion of the mesh
network. Thus, the network coverage area can be extended by
deploying simple (and cheaper) routing nodes which are not
obliged to implement the network layer (and consequently to have
its own assigned IP address).
Figure 4 illustrates a test network with a mesh router. As it can be
appreciated, the routing capacity, which is now located at the
MAC layer, makes unnecessary the existence of upper layers in
this node. The routing protocol is OLSR although other ad hoc
routing policies could be easily incorporated if IP addressed can
be substituted by MAC addresses.
Another interesting advantage of mesh networking is that routing
at MAC layer can benefit (at least in a easier way than at the IP
layer) from the link information that is available at link and
physical layers (e.g.: received power, signal-to-noise ratio,
channel occupation, etc). The utilisation of this information in the
metrics employed to make the routing decision can clearly
improve the implementation of QoS policies in wireless self-
organising networks [10].

MAC layer routing also enables the possibility of having several
MANET routing protocols working simultaneously. So, a
proactive strategy (such as OLSR) could be employed to form the
‘backbone’ of fixed nodes of the mesh networks. In opposition, if
fixed nodes implement more than one routing algorithm, a
reactive protocol (such as DYMO), which is more appropriate for
a dynamic network, could be employed in the mobile terminals.

Figure 4. Test network with a simple layer-2 only router

7. CONCLUSIONS
This work has presented an open architecture to simulate self-
configuring 802.11 mesh networks in OMNeT++. The
architecture permits to simulate the routing at MAC layer
proposed by 802.11s standard while it also incorporates a label
based forwarding protocol that manages the creation, maintenance
and removal of label paths. The flexibility of the implemented
architecture eases its possible extension to emulate more complex
cross-layered designs of new routing and/or forwarding protocols
and it can be easily adapted to another wireless architecture like
802.15.4. . The developed code is publicly available at [11].

8. ACKNOWLEDGMENTS
This work was partially supported with public funds by the
Spanish National Project No.TEC2006-12211-C02-01 (MCyT).

9. REFERENCES
[1] Akyildiz, F., Wang, X., Wang, W. 2005. Wireless mesh

networks: a survey, Computer Networks 47, No. 4. (15
March 2005), pp. 445-487.

[2] IEEE P802.11s™/D0.01, Draft amendment to standard
IEEE, 802.11™: ESS Mesh Networking. IEEE, March 2006,
work in progress.

[3] OMNeT++, http://www.omnetpp.org
[4] Rosen, E., A. Viswanathan A., Callon R. L. 2001.

Multiprotocol Label Switching Architecture, IETF RFC
3031, January 2001.

[5] Andersson, L., Minei, I. and Thomas, B. 2007. LDP
Specification, IETF RFC 5036 (October 2007)

[6] Farrel, A., Papadimitriou, D., Vasseur, J.-P. and Ayyangar,
A.. 2006. Encoding of Attributes for multiprotocol Label
Switching (MPLS) Label Switched Path (LSP)
Establishment Using Resource ReserVation Protocol-Traffic
Engineering (RSVP-TE), IETF RFC 4420 (February 2006).

[7] Ariza, A., Casilari, E., and Triviño, A. 2008. Implementation
of MANET routing protocols on OMNET++ , OMNeT++
Workshop, (March 2008).

[8] Clausen T., Jacquet P., 2003. Optimized Link State Routing
Protocol (OLSR), IETF RFC 3626, (October 2003).

[9] Moy, J. 2008. OSPF Version 2. IETF RFC 2328, (April
1998).

[10] Campista, M.E.M., Esposito, P.M., Moraes, I.M., Costa,
L.H.M., Duarte, O.C.M., Passos, D.G.; de Albuquerque,
C.V.N., Saade, D.C.M., Rubinstein, M.G. 2008. Routing
Metrics and Protocols for Wireless Mesh Networks, IEEE
Network 22, 1 (Jan.-Feb. 2008), 6-12.

[11] Inet code with several Ah-hoc routing protocols,
http://webpersonal.uma.es/~AARIZAQ/

