
Intrusion Detection with OMNeT++

Bazara I. A. Barry
University of Khartoum

Faculty of Mathematical Sciences
Information Technology Research &

Development Center
Network and Information Security

Group

bazara.barry@gmail.com

ABSTRACT
Network simulators serve a variety of purposes. Compared to the
cost, time, and effort involved in setting up an entire test bed
containing different types of network devices, network simulators
are relatively fast and inexpensive. Computer intrusions are
occurring almost routinely and have become a major issue in our
networked society. Every organization is faced by the big
challenge of selecting an intrusion detection system and testing its
abilities. Therefore, it is worthwhile to investigate the possibility
of implementing and thoroughly testing intrusion detection
systems using network simulators. In this paper, we report our
experience with implementing and testing intrusion detection
systems using OMNeT++ simulator. We highlight how
OMNeT++ is harnessed to test and evaluate the intrusion
detection system in terms of detection accuracy and performance.

Categories and Subject Descriptors
B.4.4 [Performance Analysis and Design Aids]: Simulation

General Terms
Design, Security

Keywords
intrusion detection, intrusion simulation, OMNeT++, performance
evaluation.

1. INTRODUCTION
Primarily, an Intrusion Detection System (IDS) is concerned with
the detection of hostile actions. IDSs are classified based on the
detection approach to signature-based, anomaly-based, and
specification-based systems.

Signature-based systems, using stored behavior patterns to
identify and detect attacks, can detect known attacks accurately
but are ineffective against previously unseen ones. Anomaly-
based systems create a normal behavior model for a system using
previously seen behaviors in the absence of attacks to classify any
activities that violate the model as potential attacks. They can

detect unknown attacks yet produce false alarms for legitimate but
previously unseen behaviors. Specification-based intrusion
detection, where manually specified program behavioral
specifications are used as a basis to detect attacks, has been
proposed as a promising alternative that combines the strengths of
signature-based detection (accurate detection of known attacks)
and anomaly-based detection (ability to detect unknown attacks).

Testing of Intrusion Detection Systems proves to be a challenging
task due to the various considerations and players involved in the
process. For instance, network administrators and security officers
need to perform thorough tests on the products to compare their
performance against other products. They also need to make sure
that IDSs live up to the claims of vendors and expectations of
customers. Studying and testing a new intrusion detection
architecture against a variety of intrusive activities under realistic
background traffic is an interesting and difficult problem. Such
studies can be performed either in a real or simulated
environment.

When simulating in real environments, many real users produce
significant background traffic by using a variety of network
services. This background traffic is collected and recorded, and
intrusive activities can be emulated by running exploit scripts. In
this approach, the traffic is sufficiently realistic, which eliminates
the need to analyze and simulate normal user activities. However,
the testing environment may be exposed to unexpected attacks
which affect the accuracy of the results negatively. Due to the
high risk of performing tests in a real environment, researchers
have been tending to perform tests in simulated environments
[18]. In this approach, realistic background traffic is generated
using simulation tools, and attacks are injected accordingly.

A network simulator is a program that models the behavior of a
network either by calculating the interaction between the different
network entities using mathematical formulas, or actually
capturing and playing back observations from a production
network. The behavior of the network and the various
applications and services it supports can then be observed in a test
lab; various attributes of the environment can also be modified in
a controlled manner to assess how the network would behave
under different conditions.

In this paper, we report our experience with OMNeT++ simulator
in testing a hybrid intrusion detection system that combines
specification-based and signature-based approaches for attack
detection and targets Voice over Internet Protocol (VoIP)
environments. We start off by stating the hurdles that face testing
of intrusion detection systems in real environments. Next, we
introduce the main simulation concepts adopted by OMNeT++

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTools 2009, March 2–6, 2009, Rome, Italy.
Copyright 2009 ICST, ISBN 978-963-9799-45-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5593
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5593

and how they can be used to overcome the hurdles. A comparison
against other simulators will be shown. We then discuss in some
detail the components of the proposed hybrid IDS focusing on its
features and advantages over other similar IDSs. Then we shed
some light on how OMNeT++ is used to implement and test the
IDS. Finally, we explore the features provided by the simulator to
evaluate intrusion detection systems quantitatively before
concluding the paper.

2. HURDLES OF INTRUSION DETECTION
SYSTEM TESTING
The main aim of intrusion detection system testing is to
quantitatively evaluate hit rate and probability of false alarms. Hit
rate determines the rate of attacks detected correctly by an IDS in
a given environment during a particular time frame, whereas
probability of false alarms determines the rate of false alarms
produced by an IDS in a given environment during a particular
time frame. There are several challenges that face the testing of
intrusion detection systems. Some of these challenges are:

1. Collection of attack scripts: An important aspect of the testing
of any IDS is testing its ability to detect a wide range of
attacks. Collecting a wide range of attack scripts and codes is a
difficult task. Although many of these scripts and codes are
available on the Internet, it entails a considerable time and
effort to adapt them to the particular testing environment. Once
the script of an attack is identified, it must be reviewed,
automated, and smoothly integrated into the testing
environment. Such tasks could be very challenging due to the
fact that these scripts are developed by different people with
different technical backgrounds to work in different
environments.

2. Use of different tools to launch and detect attacks: Testing
of intrusion detection systems usually involves two main
phases. The first phase is to develop the intrusion detection
algorithms and architecture using a specific tool. The second
phase is to develop the attacks and scenarios necessary to test
the system using a different tool. This separation of tools
creates complications when it comes to integrating these tools
to work together into the specific testing environment.

3. Generation of background traffic: Most IDS testing
approaches can be classified in one of four categories with
regard to their generation of background traffic [3]. Each of
these categories has its advantages and disadvantages. In the
following we summarize the four approaches and the
challenges they pose:

x Testing using no background traffic: In such a scheme,
an IDS is set up on a host or network on which there is no
activity. Then, computer attacks are launched on this host
or network to determine whether or not the IDS can detect
the attacks. This approach is useful for verifying that an
IDS has signatures for a set of attacks and that the IDS can
properly label each attack. Furthermore, testing schemes
using this approach are often much less costly to
implement than the other approaches. However, such a
scheme can neither say anything about false alarms, nor
about the IDS ability to detect attacks at high levels of
background activity [15].

x Testing using real background traffic: This approach is
very effective for determining the hit rate of an IDS given
a particular level of background activity. Hit rate tests
using this technique may be well received because the
background activity is real and it contains all of the
anomalies and subtleties of background activity. However,
this approach could be ineffective in determining false
alarm rates. It is virtually impossible to guarantee the
identification of all of the attacks that naturally occurred
in the background activity, which hinders false alarm rate
testing. It is also difficult to publicly distribute the test
since there are privacy concerns related to the use of real
background activity [5].

x Testing using sanitized background traffic: In this
approach, real background activity is prerecorded and then
sanitized to remove any sensitive data. This sanitization is
performed to overcome the political and privacy problems
of using, analyzing, and distributing real background
activity. Then, attack data are injected within the sanitized
data stream. Attack injection can be accomplished either
by replaying the sanitized data and running attacks
concurrently or by separately creating attack data and then
inserting these data into the sanitized data. The advantage
of this approach is that the test data can be freely
distributed and the test is repeatable. However,
sanitization attempts may end up either removing much of
the content of the background activity thus creating a very
unrealistic environment, or removing information needed
to detect attacks [6].

x Testing by generating background traffic: In this
scheme, a test bed or simulated network is created with
hosts and network infrastructure that can be successfully
attacked. The simulated network includes victims of
interest with background traffic generated by complex
traffic generators that model the actual network traffic
statistics. An advantage of this approach is that the data
can be distributed freely since they do not contain any
private or sensitive information. Another advantage is that
we can guarantee that the background activity does not
contain any unknown attacks since we created the
background activity using the simulator. Therefore, false
alarm rates using this technique are well received. Lastly,
IDS tests using simulated traffic are usually repeatable
since one can either replay previously generated
background activity or have the simulator regenerate the
same background activity that was used in a previous test
[1].

3. OMNeT++ SIMULATOR
OMNeT++ is an object-oriented discrete event simulation tool
that uses a modular structure. It may be used for traffic modeling
of telecommunication networks, protocol modeling, and
evaluating performance aspects of complex software systems
among other things.

3.1 OMNeT++ Simulation and Modeling
Concepts
An OMNeT++ model consists of hierarchically nested modules,
which communicate through message passing. OMNeT++ models

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5593
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5593

are often referred to as networks. The top level module is the
system module. The system module contains sub-modules which
can also contain sub-modules themselves. The structure of models
is shown in figure 1. The depth of module nesting is not limited,
which allows the user to reflect the logical structure of the actual
system on the model structure. Modules that contain sub-modules
are termed compound modules, whereas simple modules lie at the
lowest level of the module hierarchy. Simple modules contain the
algorithms in the model.

System Module

Compound Module

Simple Module Simple Module Simple Module

Figure 1. OMNeT++ Model Structure.

As previously mentioned, Modules communicate by exchanging
messages. In an actual simulation, messages can represent frames
or packets in a computer network and can contain arbitrarily
complex data structures. Messages can arrive from another
module or from the same module. When a message arrives from
the same module, it is called a self-message and is usually used to
implement timers. Simple modules can send messages either
directly to their destination or along a predefined path, through
gates and connections.

Gates are classified into output and input gates. Output gates are
the interfaces through which messages are sent out, whereas input
gates are the interfaces through which messages arrive.
Connections are the links used to connect gates. Connections can
be assigned three parameters, which facilitate the modeling of
communication networks. These three parameters are propagation
delay (which is the amount of time the arrival of the message is
delayed by when it travels through the channel), bit error rate
(which specifies the probability that a bit is incorrectly
transmitted and allows for simple noisy channel modeling), and
data rate (which is specified in bits/second and used for
calculating transmission time of a packet).

OMNeT++ uses two programming languages, namely NED
(Network Description) Language and C++. NED language is used
to describe the model structure and the topology of a network and
its modules. A network description may consist of a number of
component descriptions that can be reused in another network
description, which facilitates the modular description of a
network. NED files can be created with any text-processing tool
and have a human-readable textual topology. On the other hand,
C++ is used for the actual implementation of the simple modules
such as messages and queues. The full flexibility and power of the
programming language can be used, supported by the OMNeT++

simulation class library. The simulation programmer can freely
use C++ object-oriented concepts (inheritance, polymorphism,
etc) and design patterns to extend the functionality of the
simulator.

A simulation program in OMNeT++ is built from: (1) NED files
(.ned) which describe the module structure with parameters and
gates, (2) message definitions (.msg files) which define message
and packet types and structures, (3) simple module sources which
are written in C++ (.cc and .h), and (4) initialization files (.ini) to
set values to parameters defined in .ned files. Therefore, the
design of a topology and the implementation of the modules that
exist in the topology are separated [7].

A model network in OMNeT++ consists of nodes that are
connected by links. The nodes represent network components
(such as hosts, routers, and switches), whereas the links represent
channels and network connections (such as Ethernet). OMNeT++
follows the previously mentioned hierarchical approach to
organize the building of networks at different levels. A network
description in OMNeT++ consists of multiple levels to define
channels with their characteristics, sub-networks or Local Area
Networks (LANs) with their boundaries within the topology, and
individual nodes with their attributes. Within a node, the
traditional layered networking approach is followed to provide
Link, Network, Transport and Application layer protocols and
applications. The channels, simple modules, and compound
modules of one network description can be reused in another
network description, which puts OMNeT++ ahead of many
network simulators that provide poor reusability only via copy-
and-modify operations.

OMNeT++ support for TCP/IP protocols such as Internet Protocol
(IP), Internet Control Message Protocol (ICMP), User Datagram
Protocol (UDP), and Transmission Control Protocol (TCP) started
with the Internet Protocol Suite (IPSuite), and has culminated in
the more recent INET Framework. Both IPSuite and INET
framework have been faithful to the TCP/IP protocol suite with its
layered approach. Several research groups at the University of
Karlsruhe developed MMSim [4] which is a model to simulate
Voice over IP (VoIP) protocols using OMNeT++. The MMSim
model provides support for Session Initiation Protocol (SIP),
Real-time Transmission Protocol (RTP), and Real-Time
Streaming Protocol (RTSP). The modularity that distinguishes
OMNeT++ is reflected on the modeling of networking protocols,
where all components of protocols are divided into a number of
different modules, and each module can have several parameters.
The actual details of each protocol are implemented in C++
programming language, where every major operation of the
protocol is implemented as a member function in the class files
that represent the protocol. All implementations of protocols
follow the specifications detailed in relevant Request for
Comment (RFC) documents.

3.2 Comparison with Related Simulators
In order for the reader to appreciate why OMNeT++ has been
chosen for our implementation and to show the simulator
advantages and strengths, we compare it against two popular
simulators, namely, Ns-2 [14] and OPNET [9]. Ns-2 is popular in
academia for its extensibility (due to its open source model) and
plentiful online documentation. OPNET Modeler is the industry’s

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5593
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5593

leading simulator specialized for network research and
development.

Despite the remarkable similarities between Ns-2 and OMNeT++,
we attempt to show the advantages of the latter in terms of model
management, support for hierarchical models, and debugging and
tracing capabilities.

OMNeT++ models are easier to manage in the sense that they are
independent from the simulation kernel. In OMNeT++, the
simulation kernel is a class library that is easily distinguishable
from the components written by programmers and researchers.
After writing components (simple modules), programmers can
link their executables with the simulation library with no need to
modify OMNeT++ sources. In Ns-2 however, the need to modify
source packages may arise due to the blurriness between
simulation kernel and user models.

The hierarchical module structure in OMNeT++ helps to tackle
model complexity. Any complex component can be implemented
as one unit (simple module) or built out of several smaller
components (compound module). On the other hand, creating
complex components as a composition of several independent
units in Ns-2 is a challenging task due to the flatness of models.

On the front of debugging and tracing, OMNeT++ provides Tkenv
which is a graphical interactive execution environment that allows
for the examination of simulation progress and changing of
parameters in runtime. Conversely, Ns-2 lacks a capable
Graphical User Interface (GUI) as Tkenv. Although Ns-2 provides
the network animator (Nam) to view network simulation and
packet traces, it falls short of providing convenient interaction
with users.

Although OPNET is a leading commercial network simulator that
includes a rich library for a wide spectrum of protocols,
OMNeT++ can stand out in some aspects. For instance, OPNET
assigns packet queues to input gates, and sent messages are
buffered at the remote end of the link until they are received by
the destination module. On the other hand, OMNeT++ gates do
not have associated queues. Sent messages are placed in a data
structure that is called the Future Event Set (FES). The FES is
implemented as a binary heap to insure fast retrieval.
OMNeT++’s approach is faster than OPNET’s because it does not
have the enqueue/dequeue overhead and also spares an event
creation [8].

Due to their high importance and involvement in many
applications, OMNeT++ provides solid support for Finite State
Machines (FSMs). OMNeT++’s support for FSMs is very similar
to OPNET’s. OMNeT++ provides a dedicated class and a set of
macros to build and manage FSMs efficiently.

3.3 How OMNeT++ Can Be Used to
Overcome the Testing Hurdles
C++ programming language can be exploited efficiently to
implement attacks, which alleviates the burden of integrating
attack scripts and codes written in different programming
languages and styles into the testing environment. The full
flexibility and power of the programming language, supported by
the OMNeT++ class library can be used to implement protocol-
related attacks. The same powerful features can also be used to
implement both attacks and detection algorithms without the need

to switch tools or products. Furthermore, OMNeT++ can generate
background traffic that is guaranteed to be free of unwanted
attacks, which gives credibility to hit rate and false alarm tests,
and the test scenario is usually repeatable.

4. VoIP INTRUSION DETECTION
We start this section by shedding some light on some basic VoIP
principles as a prelude to the discussion on the architecture and
components of our hybrid IDS. VoIP refers to the transmission of
voice traffic over IP-based networks. Such a transmission and the
associated services use several interacting protocols. The
protocols covered by our IDS include VoIP application layer
protocols: SIP for session initiation and RTP for data delivery.

Session Initiation Protocol (SIP) is a standard signaling protocol
for VoIP and is described in Internet Engineering Task Force
(IETF) RFC 3261. It addresses some important issues in setting
up and tearing down sessions, such as user location, user
availability, and session management. Its simplicity and
versatility make it the choice of instant messaging, video
conferencing, and multiplayer game applications among others.
SIP uses other protocols such as Session Description Protocol
(SDP) to describe the characteristics of end devices, Resource
Reservation Protocol (RSVP) for voice quality, and Real-time
Transport Protocol (RTP) for real-time transmission.

Elements in SIP can be generally classified into servers,
endpoints, and routing nodes. SIP servers are the components
responsible for various duties aiming at maintaining the service
and enhancing it such as address resolution, registration, and call
redirection. Endpoints (also known as User Agents UAs) are the
devices capable of initiating or terminating a call. Routing nodes
in VoIP environments have the capacity to connect VoIP
networks to either other VoIP networks or circuit-switched
networks.

The base SIP specifications define six types of request: the
INVITE request, CANCEL request, ACK request and BYE
request are used for session creation, modification, establishment,
and termination; the REGISTER request is used to register a
certain user's contact information; and the OPTIONS request is
used as a poll for querying servers and their capabilities.

The session is initiated using the INVITE method. INVITE
requests follow a three-way handshake model, which means that
the user agent (UA), after receiving a final response to an INVITE
request, must send an ACK request. After establishing a session,
the users can send and receive data using RTP. The UA may send
a CANCEL request to cancel an invitation to a session after it has
sent the INVITE request. INVITE requests can also be sent within
dialogs to renegotiate the session description. A session is
terminated with a BYE request.

SIP is susceptible to many attacks such as Denial of Service
(which includes scenarios like targeting a certain UA or server
and flooding them with requests), tearing down sessions
prematurely by sending fake BYE or CANCEL requests, and
session hijacking by sending fake Re-INVITE requests [10]. With
regard to RTP, attackers can inject artificial packets with higher
sequence numbers, which causes the injected packets to be played
in place of the real ones. Flooding with RTP packets deteriorates
the perceived Quality of Service (QoS) and may also cause
phones dysfunctional and reboot operations [13].

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5593
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5593

4.1 System Architecture and Components
The proposed architecture of the hybrid host-based intrusion
detection system is shown in figure 2.

Incoming VoIP traffic

Filter

State Table

Field Table

Admin

Packet verifier

SIPRTP

Behavior observer

Admin

Protocol
Table

Figure 2. Hybrid Intrusion Detection System Architecture.

The filter receives the incoming traffic and classifies it into
signaling (SIP) and media (RTP) packets. The packet verifier
receives packets from the filter and examines them in terms of
size and structure. Too big or malformed packets are rejected by
the packet verifier in order not to deplete the processing power of
the endpoint. Individual header fields of the packet are examined
to check if they comply with the protocol specifications and
whether mandatory fields are present. Then the system retrieves
all the records of the field from the field table to perform
signature detection for potential suspicious patterns associated
with the field. Multiple records in this table can be used to form a
signature that spans across many fields and protocols. The main
fields of this table and their descriptions are: Protocol ID:
uniquely identifies each protocol. Field ID: uniquely identifies
the field of protocol header. Field Name: contains a name given
to the field. Description: shows the function of the field. Type:
contains the field data type. Pattern: field usually contains
suspicious patterns the administrator is interested in detecting.
Stand-Alone Pattern: A Boolean field to identify whether the
above-described pattern forms an attack on its own or as part of
other fields. Impact: The effect of the attack on the system. If
approved, packets are sent to the behavior observer.

The behavior observer keeps track of the session and whether it
progresses according to specifications. This session awareness is
achieved by keeping Extended Finite State Machines (EFSMs) for
the protocols involved to guard against any unacceptable behavior
that violates proper protocol semantics. This way, unknown
attacks can be detected by the behavior observer. Each protocol
EFSM is provided with state variables to hold the values of
header fields in incoming packets. A protocol EFSM is also
provided with getter functions, so that other protocol EFSMs can
get values of header fields and protocol state, which benefits the
system in terms of detection accuracy.

When reaching a certain state in the EFSM, the system retrieves
all the records of that state from the state table to perform further
checks on semantics violations. Each record in this table
represents a state in the protocol’s EFSM. The main fields in the

table are: Protocol ID: uniquely identifies each protocol. State
ID: uniquely identifies a state in the protocol EFSM. State Name:
contains a name given to the state. Description: describes the
state and the system upon reaching it. Threshold: Identifies the
upper limit for the number of requests that can be received at this
state. Time Unit: Denotes the period of time during which the
threshold is measured. Timer: value for a timer that can be used
at the state. Recommended Action: a procedure that should be
executed by the system upon reaching the state to detect potential
attacks. Impact: The effect of the attack on the system. The state
table follows State Transition Analysis (STA) techniques which
provide a method of representing the sequence of actions that the
attacker performs to achieve a security violation. A major
advantage of using this technique is its ability to foresee an
incoming penetration based on the current system state. The state
table provides special procedures that are associated with its
records to deal with expected attacks and penetrations. The
protocol table is an auxiliary table that contains high-level
information on the protocols and is used for organizational
purposes. Clearly, detecting and reporting attacks take place in
real-time.

As can be gathered from the abovementioned description, our
design adopts some advanced intrusion detection techniques.
Firstly, our architecture provides a stateful and cross-protocol
detection in specification-based and signature-based modules. The
behavior observer performs stateful detection by keeping the
EFSMs of all the involved protocols and assembling state from
multiple packets. It also performs cross-protocol detection by
providing external interfaces between protocol EFSMs in the form
of callable functions which return values of important protocol
state variables. The field table has the ability to store signatures
that cross protocol boundaries. Furthermore, the state table
follows the progress of protocol sessions carefully providing
stateful detection. The special procedures stored in the table have
the ability to perform cross-protocol detection. Secondly, the
design of the database tables is simple and clean. This advantage
is achieved by separating the anomalies in protocol traffic from
specific attacks. Thirdly, our design maintains a reasonable
balance between database normalization and performance. We
provide a less normalized database (two levels of hierarchy) with
more attributes per table. A signature in our database is entirely
stored in a single table (either field or state table), which reduces
retrieval time significantly. Fourthly, our signature database can
thwart obfuscation attempts made by attackers to evade detection
by representing attacks in the state table using a higher-level and
audit record independent representation.

4.2 Comparison with Related IDSs
Several IDSs have been proposed to meet the special needs of
VoIP environments. SCIDIVE [19] is a stateful, and cross-
protocol IDS for VoIP. SCIDIVE can be considered a signature
based detection system rather than an anomaly based system. As
mentioned previously, signature-based systems lack the ability to
detect new and novel attacks, and the rule database needs to be
updated on a regular basis following new attacks. This limitation
is addressed by vIDS [13]. Instead of relying entirely on a rule
database, vIDS is based on interacting protocol state machines.
However, all the attacks used to test the efficiency of vIDS were
known attacks and had to be encoded in the system as attack
patterns. The capabilities of vIDS in detecting attacks based on

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5593
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5593

normal behavior specifications were not shown. Moreover, the
design of vIDS covers the issues relating to protocol-semantics
anomaly detection, while not addressing protocol-syntax anomaly
detection.

vFDS [12] is an online statistical detection mechanism designed
for VoIP systems. vFDS relies on pure statistical anomaly
approaches which affect its sensitivity negatively. In addition,
vFDS is limited to detecting flooding attacks. Our design provides
a combination of specification-based and signature-based
detection techniques to bring the false alarm rate to its lowest
level. It also addresses syntax and semantics-related issues to
cover a wider range of attacks.

5. IMPLEMENTATION AND TESTING
USING OMNeT++

5.1 Implementation of Attacks and Detection
Components
Attacks that target networked environments take advantage of
vulnerabilities in networking protocols. Such attacks can be
classified into (1) message flow attacks which are used by
attackers to exploit vulnerabilities in the flow of messages used
by protocols, (2) parser attacks which aim at hampering proper
parsing by constructing invalid messages, and (3) flooding attacks
which are used by attackers to deny legitimate users access to
network resources.

In light of the above, we classify the implemented attacks based
on the targeted protocols for implementation reasons. As
mentioned earlier, protocols in OMNeT++ are implemented in an
object-oriented manner as classes using C++ programming
language. The main operations of each protocol are implemented
as member functions in the class files. Therefore, we follow the
same concept and implement protocol-related attacks as member
functions in the class files that represent the protocol.

Detection algorithms are implemented in some of the member
functions that perform tasks related to the protocol operation. For
instance, handleMessage() method, which is a member function
responsible for handling messages coming to the protocol module,
is used for the implementation of the detection algorithms
responsible for checking the validity of the incoming packets and
compliance of sessions with specifications. The protocol EFSMs,
which form the main part of our behavior observer, are
implemented in this method.

All attacks are given identification numbers, which are stored in a
system text file. The code that launches attacks (calls the member
function that represents the attack) chooses a number randomly
from the range of the identification numbers, and launches the
associated attack accordingly. Furthermore, the attack launching
code itself is activated in the endpoints based on a randomly
selected number that should exceed a certain threshold. This
technique guarantees that the majority of the simulated network
background traffic remains benign. Such techniques are made
possible by the random number generation features provided by
OMNeT++. OMNeT++ enjoys the support of several Random
Number Generators that can be configured in the initialization
files.

Events in OMNeT++ simulator environment can be controlled to
occur at a specific time. Message/event related functions can be
used to send messages to other modules, schedule an event, or
delete a scheduled event. In our implementation, we use send(),
scheduleAt(), and cancelEvent() methods to send packets,
schedule, and cancel events respectively. The abovementioned
methods provide different flavors with different parameter
settings. This feature facilitates the detection and launching of
attacks that require accurate timing such as flooding attacks, and
message flow attacks.

Message manipulation functions provided by protocol modules
allow for creating malformed packets and launching parser attacks
easily. The simulator library contains various functions to set the
value of different fields, and the length of the entire message. For
example, setLength() method allows for the creation of packets
with lengths that go beyond the protocol specifications. Similar
functions can be used to get the value of message fields to
perform detection. Such functions are used to build our packet
verifier.

MMSim module provides interaction between SIP and RTP which
makes cross-protocol detection at the application layer possible.
RTP attributes can be captured by SIP through a specialized
function that can be called from SIP module.

On the other hand, C++ streams, which are associated with files,
are used to emulate our signature database. All protocols, protocol
header fields, and protocol states are given identification
numbers, and all this information alongside relevant detection
information is stored in the abovementioned files which act as
database tables.

System files can also be used to aid the IDS in terms of
performing stateful detection. Values of header fields of incoming
packets are stored in temporary system files associated with
sessions. Such files are named in a way that reflects the ID of the
affiliated session, and the files contain records for the packets
belonging to the active protocols of the session. This feature
allows modules such as the Field Table to store signatures that
span across multiple packets that could belong to different
protocols. Since the relevant information is kept in these system
files, the IDS can perform detection for the entire session or
connection. Such system files get deleted automatically once the
session is terminated.

5.2 Network Topology and Configuration
Figure 3 shows the simulated network topology. Our simulated
network comprises two domains each with a Proxy and Registrar
Server. Proxy servers are elements that route SIP signaling
requests to servers and SIP signaling responses to clients. A
registrar is a server that accepts client’s requests to register in a
certain domain and places the information it receives in those
requests into the location service for that domain. Each domain
also contains a set of User Agents (endpoints) which are
connected to the servers by a 10Base-T Ethernet.

We use the Audio/Video profile with minimal control
(RTP/AVP), with UDP as the underlying protocol. An application
profile describes how audio and video data may be carried within
RTP. Our payload type is static with the identification number 10
and has the encoding L16. The payload type defines how a
particular payload is carried in RTP. The clock rate, which is used

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5593
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5593

to generate RTP timestamps, is 44100 Hz and the number of
transmission channels is 2. Endpoints in a domain make calls to
other endpoints in the other domain randomly and without
predefined durations. The abovementioned parameter setting is
recommended as one of the standard operating parameter settings
for audio encoding and payload type [11].

Figure 3. Simulated Network Topology.

Our IDS is installed on all endpoints and servers in both domains.
The Internet connection between the two domains is assumed to
have a delay of 40 ms and a packet loss of 0.2%. Such values for
delay and packet loss are acceptable by most network Service
Level Agreements (SLAs) for backbone providers [16].

It is important to mention that all of the abovementioned features
which allow OMNeT++ to create real-like networking
environments can easily be configured in the NED and
initialization files of OMNeT++ without the need to compile the
sources.

5.3 Traffic Generation
We aim at proving that the intrusion detection system can operate
under stressful network conditions, adds little overhead to the
network, and is robust. To do this, performance tests are
conducted on the simulated network using a high-load scenario.
We run the experiment under the high load for five different
times. Each run lasts for 120 minutes which gives as an overall
simulation time of 20 hours. The results, which will be shown in
the next section, are averaged across the different runs and taken
with and without the operation of the IDS to observe the
difference. We use background traffic sent at a frequency of 1.5
calls per 1 second. Figure 4 shows the calls captured at the proxy
server in one of the domains.

OMNeT++ provides numeric parameters that can be set in the
initialization files to return random numbers distributed uniformly
or from various distributions. For example setting a parameter to
truncnormal(3, 0.7) would return a new random number from the
truncated normal distribution with mean 3.0 and standard
deviation 0.7 every time the parameter is read from the C++ code.
Such a feature is useful for traffic generation and specifying inter-
arrival times for generated calls. We use the Uniform distribution
for our traffic generation.

50

60

70

80

90

100

110

0 2000 4000 6000

Simulation Time

C
al

l
R

eq
u

es
ts

Proxy ServerRegistrar Server

Switch
Router Router

Proxy ServerRegistrar Server

Switch

UA

UA

UA

UA

UA UA

UA

UA

UA

UA

Figure 4. Call Requests at a Proxy Server under High-Load.

6. IDS EVALUATION AND
EXPERIMENTAL RESULTS
In this section we discuss how the simulator is used to evaluate
the performance of the IDS. Our discussion will revolve around
two axes, namely, the IDS coverage and runtime impact.

6.1 IDS Coverage
Assessing the coverage of intrusion detection systems is a
challenging task with many ramifications. The coverage of any
intrusion detection system depends on the attacks that the IDS can
detect under ideal conditions. The number of dimensions that
form each attack makes the assessment difficult. Each attack has a
particular goal and works against particular software. Attacks may
also target a certain version of a protocol used or a particular
mode of operation. Different sites may consider some attacks
more important than others, which affects the assessment greatly.
For instance, E-commerce sites may be very interested in
detecting distributed denial of service attacks, whereas military
sites may pay a great deal of attention to surveillance attacks.

We list in table 1 all the attacks implemented to test the system
along with the protocols they target and the effect they have on
the attacked system. We implement six attacks using the
simulator to demonstrate the functionality of the intrusion
detection system at the application layer. Some of these attacks
can be found in classifications such as the one released by
VoIPSA for threats that VoIP systems are vulnerable to [17].

There are several dimensions that can be taken from table 1. It is
important to realize the diversity of the attacks implemented by
the simulator to test the system in terms of the protocols involved
and the effect they have. Some attacks are cross-protocol which
forms another dimension. As shown in the table, the effect of the
attacks varies widely. The attacks violate many of the security
services that should be provided by systems such as availability,
confidentiality, authentication, and data integrity. Therefore, we
can safely say that OMNeT++ allows us to implement attacks that
cover a wide range of protocols and security threat.

During the experiment, the IDS has managed to detect all the
attack instances presented. Some of the attacks such as CANCEL
and malformed packets were unknown to the IDS prior to the
experiment. In other words, we did not encode any special
signatures, and hence all detections for such attacks were based
on normal behavior specifications. OMNeT++ can also be used to
simulate false attacks. Such a feature allows us to plot Receiver
Operating Characteristic (ROC) curves which show the detection

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5593
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5593

rate versus false alarms per time unit. It is important to realize that
the simulator’s ability to implement and detect attacks is not
confined to the attacks used during the experiment. The
implemented attacks are meant to represent a wide range of
security service violations and attack categories. The proposed
intrusion detection components, which are implemented with
OMNeT++, are capable of detecting other attacks that violate the
syntax or semantics of protocols.

6.2 Runtime Impact
It is vital that any security measure to be implemented in a VoIP
network does not impede the performance of the network. Quality
of Service (QoS) is very important to the operation of VoIP
networks. The implementation of various security measures in a
VoIP network can introduce some complications that can degrade
QoS. These complications range from delaying call setups to
delaying delivery of data packets. In this section we show how
OMNeT++ can be used to measure the impact of the IDS on the
environment quantitatively. We will show some of the features
provided by the simulator to measure various delays, packet loss,
and memory consumption caused by the operation of the IDS.

OMNeT++ provides three important methods to return times
associated with messages (packets), namely, creationTime() to
return the message creation time, sendingTime() to return the
message last sending time, and arrivalTime() to return the
message last arrival time. Such values can be used to calculate
various delays such as end-to-end delay (which refers to the time
it takes for a voice transmission to go from its source to its
destination), call setup delay (which refers to the period that starts
when a caller dials the last digit of the called number and ends
when the caller receives the last bit of the response), and
processing delay (which is the time required by an endpoint or a
server to process a message) among others. Figure 4 shows the
end-to-end delay experienced by an endpoint in the network with
and without our IDS installed. The figure shows end-to-end delay
for individual RTP voice packets. Our IDS added about 2.6
milliseconds on average to the voice transmission delay. As
shown in the figure, the overall delay remains considerably less
than the upper bound of 150 milliseconds defined as the
acceptable one-way delay for high voice quality [2]. The delay
variation (jitter) remains at 2 milliseconds with a slight addition
of 3 * 10-5 seconds by our IDS. Therefore, our IDS has a trifling
impact on end-to-end delay.

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0 2000 4000 6000

Simulation Time

P
ac

ke
t

D
el

ay
 (

S
ec

)

With IDS Without IDS

Figure 5. End-to-end delay.

Queues and their characteristics can be efficiently simulated in
OMNeT++. The simulator’s library provides a container class
called cQueue that can hold objects of almost all types in
OMNeT++ library. An important aspect associated with queues of

network devices is packet loss. Packet loss at endpoints and
servers could be the result of high sending rates especially in
transmissions based on protocols that lack built-in transmission
control mechanisms such as UDP, or processing spikes which
mean that the CPU is spending too much time on some packets
which has the consequence of missing subsequent ones. The
packet loss rate at endpoints and servers can be affected by the
operation of IDS. Figure 6 shows the packet loss rate at servers
and endpoints queues with and without our IDS for various
amounts of traffic. The packet loss rate with our IDS is only
0.02% higher than the rate without it on average. The overall
packet loss remains at 0.04% on average, which is considerably
less than the 1 percent level specified by many codecs as the
upper limit.

0

0.01

0.02

0.03
0.04

0.05

0.06

0.07

0 20000 40000 60000 80000

Number of Packets
L

o
ss

 P
er

ce
n

ta
g

e
(%

)

With IDS Without IDS

Figure 6. Packet loss.

Measuring the memory consumption of an intrusion detection
system is vital in gauging its effect on the host. Some IDSs could
exhaust all the available memory after a relatively short runtime,
leaving the host with the possibility of crashing. We therefore use
the functions provided by OMNeT++ class library and C++
programming language to identify the IDS’s main data structures
and add methods to track their size during simulation. Figure 7
shows the memory usage of the IDS at a server. The figure
exhibits the gradual increase in memory consumption as call and
session establishment requests arrive.

0

2000000

4000000

6000000

8000000

10000000

12000000

0 1000 2000 3000 4000 5000 6000 7000 8000

Simulation Time

M
em

o
ry

 i
n

 B
yt

es

Amount of Consumed Memory

Figure 7. Memory consumption.

Memory consumption at the server starts at 96.2 KB and grows
linearly till it reaches 3.8 MB as the simulation time passes the 40
minutes mark. The figure shows a surge in consumption that
brings the amount of consumed memory to 6 MB. The surge can
be attributed to a sudden increase in the number of connection and
session establishments. Thereafter, the amount of consumed
memory is decreased to remain around 4 MB as 1 hour of
simulation time elapses. Afterwards, the figure shows a linear
increase in memory consumption followed by a decrease before

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5593
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5593

the overall consumption stabilizes around 10 MB. Such a figure is
acceptable considering the plenty amounts of memory enjoyed by
servers these days. When perceiving memory consumption results
it is important to bear in mind that the experiment has been run
using a high-load scenario whereby new calls are arriving every
second and established calls deliberately linger to occupy memory
for long durations of time.

7. CONCLUSION
In this paper, we have presented how OMNeT++ simulator can be
used to implement and efficiently test an intrusion detection
system suitable for VoIP environments. We have demonstrated
how OMNeT++ is used as an evaluation framework that can be
utilized to generate attacks and implement detection
methodologies. The simulator has been successfully used to
implement a novel intrusion detection architecture, and to collect
various results aiming at assessing its performance aspects. We
have clearly shown that the framework can be reliably used to test
both the hit rate and false alarm rate of intrusion detection
systems. Considering the availability and ease of use of
OMNeT++ as an open source simulator and the hurdles that face
traditional testing methods and tools, we believe our framework
can form a solid base for future research in this area.

8. REFERENCES
[1] Durst, R., Champion, T., Witten, B., Miller, E., and

Spagnuolo, L. 1999 Testing and Evaluating Computer
Intrusion Detection Systems. Communications of ACM, 42
(7), 53-61.

[2] International Telecommunication Union –
Telecommunication Standardization Section
Recommendation G.114: One-way Transmission Time. May
2003. Retrieved March 2008, from ITU web site:
http://www.itu.int.

[3] Mell, P., Hu, V., Lipmann, R., Haines, J., and Zissman, M.
2003 An Overview of Issues in Testing Intrusion Detection
Systems. Technical Report. NIST IR 7007, National Institute
of Standard and Technology. Available: http://csrc.nist.gov.

[4] MMSim – Simulation of Multimedia Protocols using
OMNeT++. Retrieved January 2008, from
http://www.ibr.cs.tu-bs.de/projects/mmsim.

[5] Mueller, P. and Shipley, G. 2001 Dragon claws its way to the
top. Network Computing, 45-67.

[6] National Laboratory for Applied Network Research 2003.
NLAR Network Traffic Packet Header Traces. Available:
http://pma.nlanr.net.

[7] OMNeT++ Simulator. Retrieved January 2008, from
OMNeT++ web site: http://www.omnetpp.org.

[8] OMNeT++ User Manual. Retrieved October 2008, from
OMNeT++ web site:
http://www.omnetpp.org/doc/usman.html.

[9] OPNET Modeler. Retrieved June 2008, from OPNET web
site: http://www.opnet.com.

[10] Poikselka, M., Mayer, G., Khartabil, H., and Niemi, A. 2004
The IMS: IP Multimedia Concepts and Services in the
Mobile Domain. Wiley, Sussex, 278.

[11] Schulzrinne, H. RTP Profile for Audio and Video
Conferences with Minimal Control. RFC 1890, IETF
Network Working Group. January 1996. Retrieved March
2008, from IETF web site: http://tools.ietf.org.

[12] Sengar, H., Wijesekera, D., Wang, H., and Jajodia, S. 2006
Fast Detection of Denial-of-Service Attacks on IP
Telephony. In Proceedings of IEEE Fourteenth International
Workshop on Quality of Service, (New Haven, CT, 2006).

[13] Sengar, H., Wijesekera, D., Wang, H., and Jajodia, S. 2006
VoIP Intrusion Detection Through Interacting Protocol State
Machines. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN’06), (Philadelphia,
USA, 2006).

[14] The Network Simulator Ns-2. Retrieved March 2008, from
Ns-2 web site: http://www.isi.edu/nsnam/ns/.

[15] The NSS Group 2003. Intrusion Detection System Group
Test (Edition 4). Available: http://www.nss.co.uk.

[16] Voip-Info.org, QoS, 2004. Available: http://www.voip-
info.org

[17] VOIPSA. VoIP Security and Privacy Threat Taxonomy,
October 2005. Available: http://www.voipsa.org.

[18] Wan, T. and Yang, X. 2001 IntruDetector: A Software
Platform for Testing Network Intrusion Detection Systems.
In Proceedings of the 17th Annual Computer Security
Applications Conference (ACSAC 2001) (New Orleans,
Louisiana, December 2001).

[19] Wu, Y., Bagchi, S., Garg, S., Singh, N. and Tsai, T. 2004
SCIDIVE: A Stateful and Cross Protocol Intrusion Detection
Architecture for Voice-over-IP Environments. In
Proceedings of the 2004 International Conference on
Dependable Systems and Networks (DSN’04) (Florence,
Italy, 2004).

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5593
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5593

9. APPENDIX A: TABLE 1. IMPLEMENTED ATTACKS WITH TARGETED PROTOCOLS
AND EFFECT.

Attack Name Brief Description Protocols Involved Effect

BYE Attack A faked request sent by attackers to fool the
parties involved in a session into tearing it
prematurely.

SIP, RTP Session Tear down

Re-INVITE Attack A faked request sent by attackers to one of the
parties involved in a session to fool it into
redirecting the call to the attacker.

SIP,RTP Session Hijacking

CANCEL Attack A faked request sent by attackers to cancel a
call attempt made by legitimate users.

SIP Denial of Service

Malformed Messages Malformed protocol messages created by
attackers to hamper victim processing

All Protocols Denial of Service

REGISTER Flooding Overwhelming registrar servers with too many
requests within a short time.

SIP Denial of Service

Voice Injection Injecting an alternative voice stream to one of
the parties involved in a session.

RTP Playing Artificial
Stream

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5593
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5593

