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ABSTRACT 
Network simulators serve a variety of purposes. Compared to the 
cost, time, and effort involved in setting up an entire test bed 
containing different types of network devices, network simulators 
are relatively fast and inexpensive. Computer intrusions are 
occurring almost routinely and have become a major issue in our 
networked society. Every organization is faced by the big 
challenge of selecting an intrusion detection system and testing its 
abilities. Therefore, it is worthwhile to investigate the possibility 
of implementing and thoroughly testing intrusion detection 
systems using network simulators. In this paper, we report our 
experience with implementing and testing intrusion detection 
systems using OMNeT++ simulator. We highlight how 
OMNeT++ is harnessed to test and evaluate the intrusion 
detection system in terms of detection accuracy and performance.   

Categories and Subject Descriptors 
B.4.4 [Performance Analysis and Design Aids]: Simulation 

General Terms 
Design, Security 

Keywords 
intrusion detection, intrusion simulation, OMNeT++, performance 
evaluation. 

1. INTRODUCTION 
Primarily, an Intrusion Detection System (IDS) is concerned with 
the detection of hostile actions. IDSs are classified based on the 
detection approach to signature-based, anomaly-based, and 
specification-based systems.  

Signature-based systems, using stored behavior patterns to 
identify and detect attacks, can detect known attacks accurately 
but are ineffective against previously unseen ones. Anomaly-
based systems create a normal behavior model for a system using 
previously seen behaviors in the absence of attacks to classify any 
activities that violate the model as potential attacks. They can 

detect unknown attacks yet produce false alarms for legitimate but 
previously unseen behaviors. Specification-based intrusion 
detection, where manually specified program behavioral 
specifications are used as a basis to detect attacks, has been 
proposed as a promising alternative that combines the strengths of 
signature-based detection (accurate detection of known attacks) 
and anomaly-based detection (ability to detect unknown attacks). 

Testing of Intrusion Detection Systems proves to be a challenging 
task due to the various considerations and players involved in the 
process. For instance, network administrators and security officers 
need to perform thorough tests on the products to compare their 
performance against other products. They also need to make sure 
that IDSs live up to the claims of vendors and expectations of 
customers. Studying and testing a new intrusion detection 
architecture against a variety of intrusive activities under realistic 
background traffic is an interesting and difficult problem. Such 
studies can be performed either in a real or simulated 
environment. 

When simulating in real environments, many real users produce 
significant background traffic by using a variety of network 
services. This background traffic is collected and recorded, and 
intrusive activities can be emulated by running exploit scripts. In 
this approach, the traffic is sufficiently realistic, which eliminates 
the need to analyze and simulate normal user activities. However, 
the testing environment may be exposed to unexpected attacks 
which affect the accuracy of the results negatively. Due to the 
high risk of performing tests in a real environment, researchers 
have been tending to perform tests in simulated environments 
[18]. In this approach, realistic background traffic is generated 
using simulation tools, and attacks are injected accordingly. 

A network simulator is a program that models the behavior of a 
network either by calculating the interaction between the different 
network entities using mathematical formulas, or actually 
capturing and playing back observations from a production 
network. The behavior of the network and the various 
applications and services it supports can then be observed in a test 
lab; various attributes of the environment can also be modified in 
a controlled manner to assess how the network would behave 
under different conditions. 

 
In this paper, we report our experience with OMNeT++ simulator 
in testing a hybrid intrusion detection system that combines 
specification-based and signature-based approaches for attack 
detection and targets Voice over Internet Protocol (VoIP) 
environments. We start off by stating the hurdles that face testing 
of intrusion detection systems in real environments. Next, we 
introduce the main simulation concepts adopted by OMNeT++ 
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and how they can be used to overcome the hurdles. A comparison 
against other simulators will be shown. We then discuss in some 
detail the components of the proposed hybrid IDS focusing on its 
features and advantages over other similar IDSs. Then we shed 
some light on how OMNeT++ is used to implement and test the 
IDS. Finally, we explore the features provided by the simulator to 
evaluate intrusion detection systems quantitatively before 
concluding the paper. 

2. HURDLES OF INTRUSION DETECTION 
SYSTEM TESTING 
The main aim of intrusion detection system testing is to 
quantitatively evaluate hit rate and probability of false alarms. Hit 
rate determines the rate of attacks detected correctly by an IDS in 
a given environment during a particular time frame, whereas 
probability of false alarms determines the rate of false alarms 
produced by an IDS in a given environment during a particular 
time frame. There are several challenges that face the testing of 
intrusion detection systems. Some of these challenges are: 

1. Collection of attack scripts: An important aspect of the testing 
of any IDS is testing its ability to detect a wide range of 
attacks. Collecting a wide range of attack scripts and codes is a 
difficult task. Although many of these scripts and codes are 
available on the Internet, it entails a considerable time and 
effort to adapt them to the particular testing environment. Once 
the script of an attack is identified, it must be reviewed, 
automated, and smoothly integrated into the testing 
environment. Such tasks could be very challenging due to the 
fact that these scripts are developed by different people with 
different technical backgrounds to work in different 
environments. 

2. Use of different tools to launch and detect attacks: Testing 
of intrusion detection systems usually involves two main 
phases. The first phase is to develop the intrusion detection 
algorithms and architecture using a specific tool. The second 
phase is to develop the attacks and scenarios necessary to test 
the system using a different tool. This separation of tools 
creates complications when it comes to integrating these tools 
to work together into the specific testing environment. 

3. Generation of background traffic: Most IDS testing 
approaches can be classified in one of four categories with 
regard to their generation of background traffic [3]. Each of 
these categories has its advantages and disadvantages. In the 
following we summarize the four approaches and the 
challenges they pose: 

x Testing using no background traffic: In such a scheme, 
an IDS is set up on a host or network on which there is no 
activity. Then, computer attacks are launched on this host 
or network to determine whether or not the IDS can detect 
the attacks. This approach is useful for verifying that an 
IDS has signatures for a set of attacks and that the IDS can 
properly label each attack. Furthermore, testing schemes 
using this approach are often much less costly to 
implement than the other approaches. However, such a 
scheme can neither say anything about false alarms, nor 
about the IDS ability to detect attacks at high levels of 
background activity [15]. 

x Testing using real background traffic: This approach is 
very effective for determining the hit rate of an IDS given 
a particular level of background activity. Hit rate tests 
using this technique may be well received because the 
background activity is real and it contains all of the 
anomalies and subtleties of background activity. However, 
this approach could be ineffective in determining false 
alarm rates. It is virtually impossible to guarantee the 
identification of all of the attacks that naturally occurred 
in the background activity, which hinders false alarm rate 
testing. It is also difficult to publicly distribute the test 
since there are privacy concerns related to the use of real 
background activity [5]. 

x Testing using sanitized background traffic: In this 
approach, real background activity is prerecorded and then 
sanitized to remove any sensitive data. This sanitization is 
performed to overcome the political and privacy problems 
of using, analyzing, and distributing real background 
activity. Then, attack data are injected within the sanitized 
data stream. Attack injection can be accomplished either 
by replaying the sanitized data and running attacks 
concurrently or by separately creating attack data and then 
inserting these data into the sanitized data. The advantage 
of this approach is that the test data can be freely 
distributed and the test is repeatable. However, 
sanitization attempts may end up either removing much of 
the content of the background activity thus creating a very 
unrealistic environment, or removing information needed 
to detect attacks [6]. 

x Testing by generating background traffic: In this 
scheme, a test bed or simulated network is created with 
hosts and network infrastructure that can be successfully 
attacked. The simulated network includes victims of 
interest with background traffic generated by complex 
traffic generators that model the actual network traffic 
statistics. An advantage of this approach is that the data 
can be distributed freely since they do not contain any 
private or sensitive information. Another advantage is that 
we can guarantee that the background activity does not 
contain any unknown attacks since we created the 
background activity using the simulator. Therefore, false 
alarm rates using this technique are well received. Lastly, 
IDS tests using simulated traffic are usually repeatable 
since one can either replay previously generated 
background activity or have the simulator regenerate the 
same background activity that was used in a previous test 
[1].   

3. OMNeT++ SIMULATOR 
OMNeT++ is an object-oriented discrete event simulation tool 
that uses a modular structure. It may be used for traffic modeling 
of telecommunication networks, protocol modeling, and 
evaluating performance aspects of complex software systems 
among other things. 

3.1 OMNeT++ Simulation and Modeling 
Concepts 
An OMNeT++ model consists of hierarchically nested modules, 
which communicate through message passing. OMNeT++ models 
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are often referred to as networks. The top level module is the 
system module. The system module contains sub-modules which 
can also contain sub-modules themselves. The structure of models 
is shown in figure 1. The depth of module nesting is not limited, 
which allows the user to reflect the logical structure of the actual 
system on the model structure. Modules that contain sub-modules 
are termed compound modules, whereas simple modules lie at the 
lowest level of the module hierarchy. Simple modules contain the 
algorithms in the model. 

System Module

Compound Module

Simple Module Simple Module Simple Module

 

Figure 1. OMNeT++ Model Structure. 

As previously mentioned, Modules communicate by exchanging 
messages. In an actual simulation, messages can represent frames 
or packets in a computer network and can contain arbitrarily 
complex data structures. Messages can arrive from another 
module or from the same module. When a message arrives from 
the same module, it is called a self-message and is usually used to 
implement timers. Simple modules can send messages either 
directly to their destination or along a predefined path, through 
gates and connections. 

Gates are classified into output and input gates. Output gates are 
the interfaces through which messages are sent out, whereas input 
gates are the interfaces through which messages arrive. 
Connections are the links used to connect gates. Connections can 
be assigned three parameters, which facilitate the modeling of 
communication networks. These three parameters are propagation 
delay (which is the amount of time the arrival of the message is 
delayed by when it travels through the channel), bit error rate 
(which specifies the probability that a bit is incorrectly 
transmitted and allows for simple noisy channel modeling), and 
data rate (which is specified in bits/second and used for 
calculating transmission time of a packet). 

OMNeT++ uses two programming languages, namely NED 
(Network Description) Language and C++. NED language is used 
to describe the model structure and the topology of a network and 
its modules. A network description may consist of a number of 
component descriptions that can be reused in another network 
description, which facilitates the modular description of a 
network. NED files can be created with any text-processing tool 
and have a human-readable textual topology. On the other hand, 
C++ is used for the actual implementation of the simple modules 
such as messages and queues. The full flexibility  and power of the 
programming language can be used, supported by the OMNeT++ 

simulation class library. The simulation programmer can freely 
use C++ object-oriented concepts (inheritance, polymorphism, 
etc) and design patterns to extend the functionality of the 
simulator. 

A simulation program in OMNeT++ is built from: (1) NED files 
(.ned) which describe the module structure with parameters and 
gates, (2) message definitions (.msg files) which define message 
and packet types and structures, (3) simple module sources which 
are written in C++ (.cc and .h), and (4) initialization files (.ini) to 
set values to parameters defined in .ned files. Therefore, the 
design of a topology and the implementation of the modules that 
exist in the topology are separated [7]. 

A model network in OMNeT++ consists of nodes that are 
connected by links. The nodes represent network components 
(such as hosts, routers, and switches), whereas the links represent 
channels and network connections (such as Ethernet). OMNeT++ 
follows the previously mentioned hierarchical approach to 
organize the building of networks at different levels.  A network 
description in OMNeT++ consists of multiple levels to define 
channels with their characteristics, sub-networks or Local Area 
Networks (LANs) with their boundaries within the topology, and 
individual nodes with their attributes. Within a node, the 
traditional layered networking approach is followed to provide 
Link, Network, Transport and Application layer protocols and 
applications. The channels, simple modules, and compound 
modules of one network description can be reused in another 
network description, which puts OMNeT++ ahead of many 
network simulators that provide poor reusability only via copy-
and-modify operations.   

OMNeT++ support for TCP/IP protocols such as Internet Protocol 
(IP), Internet Control Message Protocol (ICMP), User Datagram 
Protocol (UDP), and Transmission Control Protocol (TCP) started 
with the Internet Protocol Suite (IPSuite), and has culminated in 
the more recent INET Framework. Both IPSuite and INET 
framework have been faithful to the TCP/IP protocol suite with its 
layered approach. Several research groups at the University of 
Karlsruhe developed MMSim [4] which is a model to simulate 
Voice over IP (VoIP) protocols using OMNeT++. The MMSim 
model provides support for Session Initiation Protocol (SIP), 
Real-time Transmission Protocol (RTP), and Real-Time 
Streaming Protocol (RTSP). The modularity that distinguishes 
OMNeT++ is reflected on the modeling of networking protocols, 
where all components of protocols are divided into a number of 
different modules, and each module can have several parameters. 
The actual details of each protocol are implemented in C++ 
programming language, where every major operation of the 
protocol is implemented as a member function in the class files 
that represent the protocol. All implementations of protocols 
follow the specifications detailed in relevant Request for 
Comment (RFC) documents. 

3.2 Comparison with Related Simulators 
In order for the reader to appreciate why OMNeT++ has been 
chosen for our implementation and to show the simulator 
advantages and strengths, we compare it against two popular 
simulators, namely, Ns-2 [14] and OPNET [9]. Ns-2 is popular in 
academia for its extensibility (due to its open source model) and 
plentiful online documentation. OPNET Modeler is the industry’s 
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leading simulator specialized for network research and 
development. 

Despite the remarkable similarities between Ns-2 and OMNeT++, 
we attempt to show the advantages of the latter in terms of model 
management, support for hierarchical models, and debugging and 
tracing capabilities. 

OMNeT++ models are easier to manage in the sense that they are 
independent from the simulation kernel. In OMNeT++, the 
simulation kernel is a class library that is easily distinguishable 
from the components written by programmers and researchers. 
After writing components (simple modules), programmers can 
link their executables with the simulation library with no need to 
modify OMNeT++ sources. In Ns-2 however, the need to modify 
source packages may arise due to the blurriness between 
simulation kernel and user models. 

The hierarchical module structure in OMNeT++ helps to tackle 
model complexity. Any complex component can be implemented 
as one unit (simple module) or built out of several smaller 
components (compound module). On the other hand, creating 
complex components as a composition of several independent 
units in Ns-2 is a challenging task due to the flatness of models. 

On the front of debugging and tracing, OMNeT++ provides Tkenv 
which is a graphical interactive execution environment that allows 
for the examination of simulation progress and changing of 
parameters in runtime. Conversely, Ns-2 lacks a capable 
Graphical User Interface (GUI) as Tkenv. Although Ns-2 provides 
the network animator (Nam) to view network simulation and 
packet traces, it falls short of providing convenient interaction 
with users. 

Although OPNET is a leading commercial network simulator that 
includes a rich library for a wide spectrum of protocols, 
OMNeT++ can stand out in some aspects. For instance, OPNET 
assigns packet queues to input gates, and sent messages are 
buffered at the remote end of the link until they are received by 
the destination module. On the other hand, OMNeT++ gates do 
not have associated queues. Sent messages are placed in a data 
structure that is called the Future Event Set (FES). The FES is 
implemented as a binary heap to insure fast retrieval. 
OMNeT++’s approach is faster than OPNET’s because it does not 
have the enqueue/dequeue overhead and also spares an event 
creation [8]. 

Due to their high importance and involvement in many 
applications, OMNeT++ provides solid support for Finite State 
Machines (FSMs). OMNeT++’s support for FSMs is very similar 
to OPNET’s. OMNeT++ provides a dedicated class and a set of 
macros to build and manage FSMs efficiently. 

3.3 How OMNeT++ Can Be Used to 
Overcome the Testing Hurdles 
C++ programming language can be exploited efficiently to 
implement attacks, which alleviates the burden of integrating 
attack scripts and codes written in different programming 
languages and styles into the testing environment. The full 
flexibility  and power of the programming language, supported by 
the OMNeT++ class library can be used to implement protocol-
related attacks. The same powerful features can also be used to 
implement both attacks and detection algorithms without the need 

to switch tools or products. Furthermore, OMNeT++ can generate 
background traffic that is guaranteed to be free of unwanted 
attacks, which gives credibility to hit rate and false alarm tests, 
and the test scenario is usually repeatable. 

4. VoIP INTRUSION DETECTION 
We start this section by shedding some light on some basic VoIP 
principles as a prelude to the discussion on the architecture and 
components of our hybrid IDS. VoIP refers to the transmission of 
voice traffic over IP-based networks. Such a transmission and the 
associated services use several interacting protocols. The 
protocols covered by our IDS include VoIP application layer 
protocols: SIP for session initiation and RTP for data delivery. 

Session Initiation Protocol (SIP) is a standard signaling protocol 
for VoIP and is described in Internet Engineering Task Force 
(IETF) RFC 3261. It addresses some important issues in setting 
up and tearing down sessions, such as user location, user 
availability, and session management. Its simplicity  and 
versatility make it the choice of instant messaging, video 
conferencing, and multiplayer game applications among others. 
SIP uses other protocols such as Session Description Protocol 
(SDP) to describe the characteristics of end devices, Resource 
Reservation Protocol (RSVP) for voice quality, and Real-time 
Transport Protocol (RTP) for real-time transmission. 

Elements in SIP can be generally classified into servers, 
endpoints, and routing nodes. SIP servers are the components 
responsible for various duties aiming at maintaining the service 
and enhancing it such as address resolution, registration, and call 
redirection. Endpoints (also known as User Agents UAs) are the 
devices capable of initiating or terminating a call. Routing nodes 
in VoIP environments have the capacity to connect VoIP 
networks to either other VoIP networks or circuit-switched 
networks. 

The base SIP specifications define six types of request: the 
INVITE request, CANCEL request, ACK request and BYE 
request are used for session creation, modification, establishment, 
and termination; the REGISTER request is used to register a 
certain user's contact information; and the OPTIONS request is 
used as a poll for querying servers and their capabilities. 

The session is initiated using the INVITE method. INVITE 
requests follow a three-way handshake model, which means that 
the user agent (UA), after receiving a final response to an INVITE 
request, must send an ACK request. After establishing a session, 
the users can send and receive data using RTP. The UA may send 
a CANCEL request to cancel an invitation to a session after it has 
sent the INVITE request. INVITE requests can also be sent within 
dialogs to renegotiate the session description. A session is 
terminated with a BYE request. 

SIP is susceptible to many attacks such as Denial of Service 
(which includes scenarios like targeting a certain UA or server 
and flooding them with requests), tearing down sessions 
prematurely by sending fake BYE or CANCEL requests, and 
session hijacking by sending fake Re-INVITE requests [10]. With 
regard to RTP, attackers can inject artificial packets with higher 
sequence numbers, which causes the injected packets to be played 
in place of the real ones. Flooding with RTP packets deteriorates 
the perceived Quality of Service (QoS) and may also cause 
phones dysfunctional and reboot operations [13]. 
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4.1 System Architecture and Components 
The proposed architecture of the hybrid host-based intrusion 
detection system is shown in figure 2.  

Incoming VoIP traffic

Filter

State Table

Field Table

Admin

Packet verifier

SIPRTP

Behavior observer

Admin

Protocol
Table

 

Figure 2. Hybrid Intrusion Detection System Architecture. 

The filter receives the incoming traffic and classifies it into 
signaling (SIP) and media (RTP) packets. The packet verifier 
receives packets from the filter and examines them in terms of 
size and structure. Too big or malformed packets are rejected by 
the packet verifier in order not to deplete the processing power of 
the endpoint. Individual header fields of the packet are examined 
to check if they comply with the protocol specifications and 
whether mandatory fields are present. Then the system retrieves 
all the records of the field from the field table to perform 
signature detection for potential suspicious patterns associated 
with the field. Multiple records in this table can be used to form a 
signature that spans across many fields and protocols. The main 
fields of this table and their descriptions are: Protocol ID: 
uniquely identifies each protocol. Field ID: uniquely identifies 
the field of protocol header. Field Name: contains a name given 
to the field. Description: shows the function of the field. Type: 
contains the field data type. Pattern: field usually contains 
suspicious patterns the administrator is interested in detecting. 
Stand-Alone Pattern: A Boolean field to identify whether the 
above-described pattern forms an attack on its own or as part of 
other fields. Impact: The effect of the attack on the system. If 
approved, packets are sent to the behavior observer. 

The behavior observer keeps track of the session and whether it 
progresses according to specifications. This session awareness is 
achieved by keeping Extended Finite State Machines (EFSMs) for 
the protocols involved to guard against any unacceptable behavior 
that violates proper protocol semantics. This way, unknown 
attacks can be detected by the behavior observer. Each protocol 
EFSM is provided with state variables to hold the values of 
header fields in incoming packets. A protocol EFSM is also 
provided with getter functions, so that other protocol EFSMs can 
get values of header fields and protocol state, which benefits the 
system in terms of detection accuracy.  

When reaching a certain state in the EFSM, the system retrieves 
all the records of that state from the state table to perform further 
checks on semantics violations. Each record in this table 
represents a state in the protocol’s EFSM. The main fields in the 

table are: Protocol ID: uniquely identifies each protocol. State 
ID: uniquely identifies a state in the protocol EFSM. State Name: 
contains a name given to the state. Description: describes the 
state and the system upon reaching it. Threshold: Identifies the 
upper limit for the number of requests that can be received at this 
state. Time Unit: Denotes the period of time during which the 
threshold is measured. Timer: value for a timer that can be used 
at the state. Recommended Action: a procedure that should be 
executed by the system upon reaching the state to detect potential 
attacks. Impact: The effect of the attack on the system. The state 
table follows State Transition Analysis (STA) techniques which 
provide a method of representing the sequence of actions that the 
attacker performs to achieve a security violation. A major 
advantage of using this technique is its ability to foresee an 
incoming penetration based on the current system state. The state 
table provides special procedures that are associated with its 
records to deal with expected attacks and penetrations. The 
protocol table is an auxiliary table that contains high-level 
information on the protocols and is used for organizational 
purposes. Clearly, detecting and reporting attacks take place in 
real-time. 

As can be gathered from the abovementioned description, our 
design adopts some advanced intrusion detection techniques. 
Firstly, our architecture provides a stateful and cross-protocol 
detection in specification-based and signature-based modules. The 
behavior observer performs stateful detection by keeping the 
EFSMs of all the involved protocols and assembling state from 
multiple packets. It also performs cross-protocol detection by 
providing external interfaces between protocol EFSMs in the form 
of callable functions which return values of important protocol 
state variables. The field table has the ability to store signatures 
that cross protocol boundaries. Furthermore, the state table 
follows the progress of protocol sessions carefully providing 
stateful detection. The special procedures stored in the table have 
the ability to perform cross-protocol detection. Secondly, the 
design of the database tables is simple and clean. This advantage 
is achieved by separating the anomalies in protocol traffic from 
specific attacks. Thirdly, our design maintains a reasonable 
balance between database normalization and performance. We 
provide a less normalized database (two levels of hierarchy) with 
more attributes per table. A signature in our database is entirely 
stored in a single table (either field or state table), which reduces 
retrieval time significantly. Fourthly, our signature database can 
thwart obfuscation attempts made by attackers to evade detection 
by representing attacks in the state table using a higher-level and 
audit record independent representation. 

4.2 Comparison with Related IDSs 
Several IDSs have been proposed to meet the special needs of 
VoIP environments. SCIDIVE [19] is a stateful, and cross-
protocol IDS for VoIP. SCIDIVE can be considered a signature 
based detection system rather than an anomaly based system. As 
mentioned previously, signature-based systems lack the ability to 
detect new and novel attacks, and the rule database needs to be 
updated on a regular basis following new attacks. This limitation 
is addressed by vIDS [13]. Instead of relying entirely on a rule 
database, vIDS is based on interacting protocol state machines. 
However, all the attacks used to test the efficiency of vIDS were 
known attacks and had to be encoded in the system as attack 
patterns. The capabilities of vIDS in detecting attacks based on 
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normal behavior specifications were not shown. Moreover, the 
design of vIDS covers the issues relating to protocol-semantics 
anomaly detection, while not addressing protocol-syntax anomaly 
detection. 

vFDS [12] is an online statistical detection mechanism designed 
for VoIP systems. vFDS relies on pure statistical anomaly 
approaches which affect its sensitivity  negatively. In addition, 
vFDS is limited to detecting flooding attacks. Our design provides 
a combination of specification-based and signature-based 
detection techniques to bring the false alarm rate to its lowest 
level. It also addresses syntax and semantics-related issues to 
cover a wider range of attacks. 

5. IMPLEMENTATION AND TESTING 
USING OMNeT++ 

5.1 Implementation of Attacks and Detection 
Components 
Attacks that target networked environments take advantage of 
vulnerabilities in networking protocols. Such attacks can be 
classified into (1) message flow attacks which are used by 
attackers to exploit vulnerabilities in the flow of messages used 
by protocols, (2) parser attacks which aim at hampering proper 
parsing by constructing invalid messages, and (3) flooding attacks 
which are used by attackers to deny legitimate users access to 
network resources. 

In light of the above, we classify the implemented attacks based 
on the targeted protocols for implementation reasons. As 
mentioned earlier, protocols in OMNeT++ are implemented in an 
object-oriented manner as classes using C++ programming 
language. The main operations of each protocol are implemented 
as member functions in the class files. Therefore, we follow the 
same concept and implement protocol-related attacks as member 
functions in the class files that represent the protocol. 

Detection algorithms are implemented in some of the member 
functions that perform tasks related to the protocol operation. For 
instance, handleMessage() method, which is a member function 
responsible for handling messages coming to the protocol module, 
is used for the implementation of the detection algorithms 
responsible for checking the validity of the incoming packets and 
compliance of sessions with specifications. The protocol EFSMs, 
which form the main part of our behavior observer, are 
implemented in this method. 

All attacks are given identification numbers, which are stored in a 
system text file. The code that launches attacks (calls the member 
function that represents the attack) chooses a number randomly 
from the range of the identification numbers, and launches the 
associated attack accordingly. Furthermore, the attack launching 
code itself is activated in the endpoints based on a randomly 
selected number that should exceed a certain threshold. This 
technique guarantees that the majority of the simulated network 
background traffic remains benign. Such techniques are made 
possible by the random number generation features provided by 
OMNeT++. OMNeT++ enjoys the support of several Random 
Number Generators that can be configured in the initialization 
files. 

Events in OMNeT++ simulator environment can be controlled to 
occur at a specific time. Message/event related functions can be 
used to send messages to other modules, schedule an event, or 
delete a scheduled event. In our implementation, we use send(), 
scheduleAt(), and cancelEvent() methods to send packets, 
schedule, and cancel events respectively. The abovementioned 
methods provide different flavors with different parameter 
settings. This feature facilitates the detection and launching of 
attacks that require accurate timing such as flooding attacks, and 
message flow attacks. 

Message manipulation functions provided by protocol modules 
allow for creating malformed packets and launching parser attacks 
easily. The simulator library contains various functions to set the 
value of different fields, and the length of the entire message. For 
example, setLength() method allows for the creation of packets 
with lengths that go beyond the protocol specifications. Similar 
functions can be used to get the value of message fields to 
perform detection. Such functions are used to build our packet 
verifier. 

MMSim module provides interaction between SIP and RTP which 
makes cross-protocol detection at the application layer possible. 
RTP attributes can be captured by SIP through a specialized 
function that can be called from SIP module. 

On the other hand, C++ streams, which are associated with files, 
are used to emulate our signature database. All protocols, protocol 
header fields, and protocol states are given identification 
numbers, and all this information alongside relevant detection 
information is stored in the abovementioned files which act as 
database tables. 

System files can also be used to aid the IDS in terms of 
performing stateful detection. Values of header fields of incoming 
packets are stored in temporary system files associated with 
sessions. Such files are named in a way that reflects the ID of the 
affiliated session, and the files contain records for the packets 
belonging to the active protocols of the session. This feature 
allows modules such as the Field Table to store signatures that 
span across multiple packets that could belong to different 
protocols. Since the relevant information is kept in these system 
files, the IDS can perform detection for the entire session or 
connection. Such system files get deleted automatically once the 
session is terminated. 

5.2 Network Topology and Configuration 
Figure 3 shows the simulated network topology. Our simulated 
network comprises two domains each with a Proxy and Registrar 
Server. Proxy servers are elements that route SIP signaling 
requests to servers and SIP signaling responses to clients. A 
registrar is a server that accepts client’s requests to register in a 
certain domain and places the information it receives in those 
requests into the location service for that domain. Each domain 
also contains a set of User Agents (endpoints) which are 
connected to the servers by a 10Base-T Ethernet. 

We use the Audio/Video profile with minimal control 
(RTP/AVP), with UDP as the underlying protocol. An application 
profile describes how audio and video data may be carried within 
RTP. Our payload type is static with the identification number 10 
and has the encoding L16. The payload type defines how a 
particular payload is carried in RTP. The clock rate, which is used 
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to generate RTP timestamps, is 44100 Hz and the number of 
transmission channels is 2. Endpoints in a domain make calls to 
other endpoints in the other domain randomly and without 
predefined durations. The abovementioned parameter setting is 
recommended as one of the standard operating parameter settings 
for audio encoding and payload type [11]. 

 

Figure 3. Simulated Network Topology. 

Our IDS is installed on all endpoints and servers in both domains. 
The Internet connection between the two domains is assumed to 
have a delay of 40 ms and a packet loss of 0.2%. Such values for 
delay and packet loss are acceptable by most network Service 
Level Agreements (SLAs) for backbone providers [16]. 

It is important to mention that all of the abovementioned features 
which allow OMNeT++ to create real-like networking 
environments can easily be configured in the NED and 
initialization files of OMNeT++ without the need to compile the 
sources. 

5.3 Traffic Generation 
We aim at proving that the intrusion detection system can operate 
under stressful network conditions, adds little overhead to the 
network, and is robust. To do this, performance tests are 
conducted on the simulated network using a high-load scenario. 
We run the experiment under the high load for five different 
times. Each run lasts for 120 minutes which gives as an overall 
simulation time of 20 hours. The results, which will be shown in 
the next section, are averaged across the different runs and taken 
with and without the operation of the IDS to observe the 
difference. We use background traffic sent at a frequency of 1.5 
calls per 1 second. Figure 4 shows the calls captured at the proxy 
server in one of the domains. 

OMNeT++ provides numeric parameters that can be set in the 
initialization files to return random numbers distributed uniformly 
or from various distributions. For example setting a parameter to 
truncnormal(3, 0.7) would return a new random number from the 
truncated normal distribution with mean 3.0 and standard 
deviation 0.7 every time the parameter is read from the C++ code. 
Such a feature is useful for traffic generation and specifying inter-
arrival times for generated calls. We use the Uniform distribution 
for our traffic generation. 
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Figure 4. Call Requests at a Proxy Server under High-Load. 

6. IDS EVALUATION AND 
EXPERIMENTAL RESULTS 
In this section we discuss how the simulator is used to evaluate 
the performance of the IDS. Our discussion will revolve around 
two axes, namely, the IDS coverage and runtime impact. 

6.1 IDS Coverage 
Assessing the coverage of intrusion detection systems is a 
challenging task with many ramifications. The coverage of any 
intrusion detection system depends on the attacks that the IDS can 
detect under ideal conditions. The number of dimensions that 
form each attack makes the assessment difficult. Each attack has a 
particular goal and works against particular software. Attacks may 
also target a certain version of a protocol used or a particular 
mode of operation. Different sites may consider some attacks 
more important than others, which affects the assessment greatly. 
For instance, E-commerce sites may be very interested in 
detecting distributed denial of service attacks, whereas military 
sites may pay a great deal of attention to surveillance attacks.  

We list in table 1 all the attacks implemented to test the system 
along with the protocols they target and the effect they have on 
the attacked system. We implement six attacks using the 
simulator to demonstrate the functionality of the intrusion 
detection system at the application layer. Some of these attacks 
can be found in classifications such as the one released by 
VoIPSA for threats that VoIP systems are vulnerable to [17]. 

There are several dimensions that can be taken from table 1. It is 
important to realize the diversity of the attacks implemented by 
the simulator to test the system in terms of the protocols involved 
and the effect they have. Some attacks are cross-protocol which 
forms another dimension. As shown in the table, the effect of the 
attacks varies widely. The attacks violate many of the security 
services that should be provided by systems such as availability, 
confidentiality, authentication, and data integrity. Therefore, we 
can safely say that OMNeT++ allows us to implement attacks that 
cover a wide range of protocols and security threat. 

During the experiment, the IDS has managed to detect all the 
attack instances presented. Some of the attacks such as CANCEL 
and malformed packets were unknown to the IDS prior to the 
experiment. In other words, we did not encode any special 
signatures, and hence all detections for such attacks were based 
on normal behavior specifications. OMNeT++ can also be used to 
simulate false attacks. Such a feature allows us to plot Receiver 
Operating Characteristic (ROC) curves which show the detection 

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5593 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5593 



rate versus false alarms per time unit. It is important to realize that 
the simulator’s ability to implement and detect attacks is not 
confined to the attacks used during the experiment. The 
implemented attacks are meant to represent a wide range of 
security service violations and attack categories. The proposed 
intrusion detection components, which are implemented with 
OMNeT++, are capable of detecting other attacks that violate the 
syntax or semantics of protocols. 

6.2 Runtime Impact 
It is vital that any security measure to be implemented in a VoIP 
network does not impede the performance of the network. Quality 
of Service (QoS) is very important to the operation of VoIP 
networks. The implementation of various security measures in a 
VoIP network can introduce some complications that can degrade 
QoS. These complications range from delaying call setups to 
delaying delivery of data packets. In this section we show how 
OMNeT++ can be used to measure the impact of the IDS on the 
environment quantitatively. We will show some of the features 
provided by the simulator to measure various delays, packet loss, 
and memory consumption caused by the operation of the IDS. 

OMNeT++ provides three important methods to return times 
associated with messages (packets), namely, creationTime() to 
return the message creation time, sendingTime() to return the 
message last sending time, and arrivalTime() to return the 
message last arrival time. Such values can be used to calculate 
various delays such as end-to-end delay (which refers to the time 
it takes for a voice transmission to go from its source to its 
destination), call setup delay (which refers to the period that starts 
when a caller dials the last digit of the called number and ends 
when the caller receives the last bit of the response), and 
processing delay (which is the time required by an endpoint or a 
server to process a message) among others. Figure 4 shows the 
end-to-end delay experienced by an endpoint in the network with 
and without our IDS installed. The figure shows end-to-end delay 
for individual RTP voice packets. Our IDS added about 2.6 
milliseconds on average to the voice transmission delay. As 
shown in the figure, the overall delay remains considerably less 
than the upper bound of 150 milliseconds defined as the 
acceptable one-way delay for high voice quality [2]. The delay 
variation (jitter) remains at 2 milliseconds with a slight addition 
of 3 * 10-5 seconds by our IDS. Therefore, our IDS has a trifling 
impact on end-to-end delay. 
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Figure 5. End-to-end delay. 

Queues and their characteristics can be efficiently simulated in 
OMNeT++. The simulator’s library provides a container class 
called cQueue that can hold objects of almost all types in 
OMNeT++ library. An important aspect associated with queues of 

network devices is packet loss. Packet loss at endpoints and 
servers could be the result of high sending rates especially in 
transmissions based on protocols that lack built-in transmission 
control mechanisms such as UDP, or processing spikes which 
mean that the CPU is spending too much time on some packets 
which has the consequence of missing subsequent ones. The 
packet loss rate at endpoints and servers can be affected by the 
operation of IDS. Figure 6 shows the packet loss rate at servers 
and endpoints queues with and without our IDS for various 
amounts of traffic. The packet loss rate with our IDS is only 
0.02% higher than the rate without it on average. The overall 
packet loss remains at 0.04% on average, which is considerably 
less than the 1 percent level specified by many codecs as the 
upper limit. 
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Figure 6. Packet loss. 

Measuring the memory consumption of an intrusion detection 
system is vital in gauging its effect on the host. Some IDSs could 
exhaust all the available memory after a relatively short runtime, 
leaving the host with the possibility of crashing. We therefore use 
the functions provided by OMNeT++ class library and C++ 
programming language to identify the IDS’s main data structures 
and add methods to track their size during simulation. Figure 7 
shows the memory usage of the IDS at a server. The figure 
exhibits the gradual increase in memory consumption as call and 
session establishment requests arrive. 
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Figure 7. Memory consumption. 

Memory consumption at the server starts at 96.2 KB and grows 
linearly till it reaches 3.8 MB as the simulation time passes the 40 
minutes mark. The figure shows a surge in consumption that 
brings the amount of consumed memory to 6 MB. The surge can 
be attributed to a sudden increase in the number of connection and 
session establishments. Thereafter, the amount of consumed 
memory is decreased to remain around 4 MB as 1 hour of 
simulation time elapses. Afterwards, the figure shows a linear 
increase in memory consumption followed by a decrease before 
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the overall consumption stabilizes around 10 MB. Such a figure is 
acceptable considering the plenty amounts of memory enjoyed by 
servers these days. When perceiving memory consumption results 
it is important to bear in mind that the experiment has been run 
using a high-load scenario whereby new calls are arriving every 
second and established calls deliberately linger to occupy memory 
for long durations of time. 

7. CONCLUSION 
In this paper, we have presented how OMNeT++ simulator can be 
used to implement and efficiently test an intrusion detection 
system suitable for VoIP environments. We have demonstrated 
how OMNeT++ is used as an evaluation framework that can be 
utilized to generate attacks and implement detection 
methodologies. The simulator has been successfully used to 
implement a novel intrusion detection architecture, and to collect 
various results aiming at assessing its performance aspects. We 
have clearly shown that the framework can be reliably used to test 
both the hit rate and false alarm rate of intrusion detection 
systems. Considering the availability and ease of use of 
OMNeT++ as an open source simulator and the hurdles that face 
traditional testing methods and tools, we believe our framework 
can form a solid base for future research in this area. 
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9. APPENDIX A: TABLE 1. IMPLEMENTED ATTACKS WITH TARGETED PROTOCOLS 
AND EFFECT. 
 

Attack Name Brief Description Protocols Involved Effect 

BYE Attack A faked request sent by attackers to fool the 
parties involved in a session into tearing it 
prematurely. 

SIP, RTP Session Tear down 

Re-INVITE Attack A faked request sent by attackers to one of the 
parties involved in a session to fool it into 
redirecting the call to the attacker. 

SIP,RTP Session Hijacking 

CANCEL Attack A faked request sent by attackers to cancel a 
call attempt made by legitimate users. 

SIP Denial of Service 

Malformed Messages Malformed protocol messages created by 
attackers to hamper victim processing 

All Protocols Denial of Service 

REGISTER Flooding Overwhelming registrar servers with too many 
requests within a short time. 

SIP Denial of Service 

Voice Injection Injecting an alternative voice stream to one of 
the parties involved in a session. 

RTP Playing Artificial 
Stream 
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