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ABSTRACT

This paper demonstrates, both theoretically and by using
numerical examples, that if one has good starting states, one
should not use warmup periods in discrete event simulation
when estimating equilibrium expectations by means of time
averages. The numerical methods used are deterministic,
and they are based on randomization or uniformization. We
also show that if estimating expectations of sums by simula-
tion, good starting states are sometimes difficult to find and
are often inconvenient, which justifies warmup periods.
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I.5 [Simulation]: Output Analysis—Initialization bias

General Terms

Initialization, Estimation

Keywords
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1. INTRODUCTION
A typical objective of a non-terminating discrete event

simulation is to find the equilibrium expectation of some
quantity X(t). To do this, one typically uses time averages,
that is, one forms

X̄(T ) =
1

T

∫ T

0

X(t)dt. (1)

To start the simulation, one has to choose some initial state,
but this will result in an initialization bias. Of course, be-
sides the initialization bias, one also has to consider the vari-
ance of the time average. To deal with both, one typically
uses the mean squared error or MSE (see e.g [1], [19], [20]),
which combines the effect of the variance and the bias. Also,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools ’09, Rome, Italy
Copyright 2009 ICST 978-963-9799-45-5.

a small MSE insures that the estimator X̄(T ) given by (1)
is close to equilibrium expectation E(X) to be estimated.

To reduce the initialization bias, and hopefully also the
MSE, one can either choose an appropriate initial state, or
one can start the simulation at a time −t0, but start col-
lecting data only after time 0. The period from −t0 to 0
is typically called warmup period [10] or initialization phase
[2]. Removing the data collected in the warmup period is
often called transient deletion [1], [12], [13]. In this paper,
we present evidence, both experimentally and theoretically,
that warmup periods should not be used, provided one starts
in a frequently visited state. Both, the experiments and
the theoretical discussions are conducted by using Markov
chains. We note that means and variances of time averages
arising within Markov chains can be calculated by determin-
istic numerical methods, that is, non-simulation methods.

There is a fair amount of literature discussing the initial-
ization bias. Indeed, most textbooks cover this topic (see
e.g. [2], [3] and [10]). A survey of the initialization bias
problem is contained in [13]. Experimental results can be
found in [12], and some credibility issues are discussed in
[14].

Pawlikowski [13] discusses a total of eleven methods to
deal with the initialization bias. Nine of these methods
use statistical tests based on sample functions to determine
when the equilibrium is reached. Though such tests are cer-
tainly useful, our contribution has a different flavor. We are
looking at general rules to decide how to deal with the ini-
tialization bias. Here is an example of what we mean: Awad
and Glynn [1] (see also [4]) suggest to first estimate the equi-
librium probabilities, and to select the starting state non-
deterministically, but according to these equilibrium prob-
abilities. This obviously removes any bias. In this paper,
we show that this method does not give the lowest MSE,
a somewhat counterintuitive result. In fact, we show that
there is always a fixed state that will give a lower MSE than
the one selected based on the equilibrium probabilities, pro-
vided the simulation time is long enough. Hence, the effort
should be geared toward finding a good starting state rather
than using a stochastic initial state based on the equilibrium
probabilities.

As was pointed out in [7], the equilibrium distributions,
being distributions, must be distinguished from the equi-
libria of deterministic systems. However, there are sample
functions that are almost deterministic. In particular, if the
sample function X(t) of interest is the sum of uncorrelated
or weakly correlated random variables, limit theorems apply,
and the stochastic component of X(t) is reduced. How does

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5603 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5603 



this affect the initialization bias will also be investigated in
this paper.

The outline of this paper is as follows: In Section 2, we
provide some background on Markov modeling, which is ba-
sic to our further discussion. In Section 3, we present some
examples that demonstrate that selecting the initial state ac-
cording to the equilibrium probabilities does not lead to the
smallest MSE, and we support this result by mathematical
arguments. Section 4 deals with the case where the statistic
of interest is a sum, and how to determine the warmup pe-
riod if a good starting state is not available. Section 5 will
provide some conclusions.

2. THE MARKOV MODELING APPROACH
Our investigations are based on Markov chains. This does

not mean that the variable which is observed in the simu-
lation is necessarily Markovian. Indeed, by adding so-called
supplementary variables, one can convert practically any
discrete-event system into a Markov chain as shown in [7]:
one can use phase-type distributions as supplementary vari-
ables, and phase-type distributions are dense on the posi-
tive axis, which means that any distribution can be approx-
imated arbitrarily closely by a phase-type distribution. If
one has supplementary variables, one has to distinguish be-
tween the variable of interest, say X(t), and the state of the
system, which is a vector that includes all state variables,
including the supplementary variables. Hence, besides X(t),
the variable of interest, we have to keep track of the state
at time t, say M(t), which is typically a vector. The set of
all states will be denoted by S, and the set all values the
variable X can assume by SX .

The MSE is influenced by the initial state, that is, by
M(0) in the case where there is no warmup period. If a
warmup period starts at time −t0, then M(0) becomes a
random vector. The probability that M(0) = i, i ∈ S
will be denoted by πi(0). We assume that the process has
a unique (multidimensional) equilibrium distribution which
will be denoted by πi. If the warmup period t0 approaches
infinity, πi(0) approaches πi. Hence, as pointed out in [1]
and [4], choosing the state at time 0 with probability πi

corresponds to a warmup period of infinite length. Clearly,
if starting in this sense with the equilibrium probabilities
does not reduce the MSE, then warmup periods should not
be used. This will be a salient point in the discussion that
follows.

As mentioned, we use deterministic numerical methods for
our investigations. Deterministic numerical methods have
also been used by others such as [11] and [19]: these authors
used explicit formulas available for the M/M/1 queue. Our
algorithms, on the other hand, can be deal with arbitrary
Markov chains. This allows us to deal with a great variety
of models, as will be shown. In contrast, [19] had to use
simulation already for the M/M/c queue, a system that can
easily be analysed by our algorithms.

Deterministic algorithms tend to be more accurate than
simulation, and for small to medium sized models, they are
much faster. Of course, if the solution of a large problem
is required, most deterministic numerical methods are sub-
ject to the curse of dimensionality, which implies that the
computational effort increases exponentially with the num-
ber of state variables. Hence, as state variables are added,
the size of the problem increases rapidly. In case of Markov
chains, different methods become competitive as the size of

the problem increases. For instance, to find steady-state so-
lutions in small Markov chains, one can use direct methods,
such as Gaussian elimination or the GTH method [17]. For
large Markov chains, iterative methods are faster. From a
certain point onwards, simulation methods become compet-
itive, and as the number of states increases further, they
are the only practical method. For demonstration purposes,
however, it is better to use small examples: it is much eas-
ier to highlight the essential features with small and simple
examples than with the large examples one encounters in in-
dustrial applications. Hence, for our purposes, deterministic
methods are preferable. Indeed, all our examples were done
in Excel, using VBA, a rather slow interpreter. The models
were run of an IBM Laptop.

It is convenient to express the Markovian systems using
events: in Markov modeling, events occur completely at ran-
dom, and they change the state variables in a predictable
way. We assume that there are s events. The event-based
formalism is then converted to a continuous-time Markov
chain with transition matrix A = [aij ]. Typically, A is
sparse. If each of the s events can occur in every state,
and there are N states, then A is an N × N matrix with
sN non-zero entries, Typically, some events cannot occur in
certain states, say departures cannot occur from an empty
queueing system. Therefore, A has typically fewer than sN
non-zero entries, and since s tends to be small compared to
N , A becomes sparse.

The method used here to find the MSE is based on ran-
domization. Randomization involves the conversion of the
transition matrix A into the stochastic matrix P = A/q + I,
where q is chosen such that all entries of P are positive,
which is true if q equals or exceeds the largest leaving rate
−aii, and I is the identity matrix. The Markov chain with
transition matrix P is then randomized, that is, instead of
using constant intervals between steps, one uses exponential
random variables with rate q. For details of this method,
see e.g. [17]. This method is extremely efficient for finding
transient solutions of continuous-time Markov chains, and
it is implemented in many packages, such as [16]. To find
all probabilities πi(t) to be in state i at time t with a pre-
cision better than α by randomization, one needs roughly
sN2(qt + zα

√
qt) multiplications and additions, where zα

can be found from normal tables. The zα arises because the
Poisson distribution approaches the normal distribution as
qt increases. We note that the time and space complexity of
the randomization method is comparable to that of finding
equilibrium probabilities.

Here, we need means and variances of time averages, and
to obtain these, the randomization method can be modified
to accomplish this. Actually, as shown in [6], to find the
variance of a time average is even slightly faster than the
randomization method described above, and the same is true
in order to find the the expectation of a time average.

3. SOME COUNTERINTUITIVE RESULTS
The MSE is influenced by both the bias and the variance

of X̄(T ), where X̄(T ) is defined by (1). Here, the bias is
defined as

B(X̄(T )) = E(X̄(T )) − E(X),

where E(X) is the equilibrium expectation to be determined.
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Table 1: Measures for the time average of the num-
ber in an M/M/1/10 system

λ = 0.8, µ = 1, T = 1000
E(X) = 2.966, Var(X) = 7.561

X(0) B(X̄(T )) Var(X̄(T )) MSE
0 -0.0273 0.1703 0.17100
1 -0.0236 0.1705 0.17101
2 -0.0165 0.1709 0.17113
3 -0.0064 0.1714 0.17147
4 0.0061 0.1721 0.17210
5 0.0205 0.1727 0.17309

equil 0.0000 0.1725 0.17247

The mean squared error can be written as

MSE(X̄(T )) = E((X̄(T ) − E(X))2)

= Var(X̄(T )) + B2(X̄(T )). (2)

Hence, the MSE is equally influenced by the bias and by
Var(X̄(T )).

To see how the MSE is influenced by the initial state M(0),
consider the M/M/1/10 queue, that is, a one-server queue
with Poisson arrivals, exponential service times, and a wait-
ing room of 10. Table 1 contains the results for the time
average between 0 and T = 1000 for an arrival rate λ = 0.8
and a service rate µ = 1, resulting in a traffic intensity
ρ = λ/µ = 0.8. The table shows the bias, the variance
and the MSE for the queue starting with M(0) = X(0) cus-
tomers initially. The lowest MSE is reached when X(0) is set
to 0, a result proven in [11]. Note that the expected value is
E(X) = 2.966, but starting with 3 customers in the system
leads to a higher MSE. The last row shows what happens
if the initial state is selected according to the equilibrium
probabilities of the process as suggested by [1]. In this case,
the bias is obviously 0. However, the MSE is higher than
when starting with X(0) ≤ 4, that is, any effort spent for
warmup is not only worth nothing, it is even detrimental.
To me, this result seemed extremely counterintuitive, and I
therefore used a different method to find the MSE as a check,
namely one based on eigenvalues suggested by Reynolds [15].
The result matched up to 6 digits [7]. Hence, the effect is
real. Returning again to Table 1, one notices, however, that
the starting state is really not all that important. The same
can be said for queues with c > 1 servers, provided c ≤ 10
[7]. We found that this is also true for Erlang queues. In
other words, if one has a reasonable initial state M(0), the
initial bias problem is a non-issue, and there should not be
any warmup period.

We also ran the M/M/1 queue with finite buffers for other
buffer sizes, and other values of ρ, but the results were essen-
tially the same. Also note that if the system starts with the
equilibrium probabilities, one can use the variance to find a
95% confidence interval, and this is 2.966± 1.96

√
0.17247 =

2.966 ± 0.814. Obviously, setting T to a value below 1000
would increase this confidence interval, and the practical
value of a simulation with such a large confidence interval is
questionable.

To gain a further understanding of the problem, note
that TB(X̄(T )) = B + o(1/T ), and that TVar(X̄(T )) =
V + o(1/T ), where B and V are constants, that is, they are
independent of T [8], [18]. As shown in [7], the convergence

is usually quite fast. Hence, we conclude from (2):

MSE(X̄(T )) =
V

T
+

B2

T 2
+ o(1/T ). (3)

Consequently, as T increases, B2

T
decreases much faster than

V
T

, and for large enough T , the bias therefore becomes neg-
ligible when compared to the variance. For a related result,
see [1].

In addition to this, the following theorem is proven in [7].

Theorem 1. Let Vari(X̄(T )) be the value of Var(X̄(T )),
given the system starts in state i. Then, for any stochastic
system, mini Vari(X̄(T )) < Varπ(0)(X̄(T )), where
Varπ(0)(X̄(T )) is the variance when starting with probability
πi(0) in state i ∈ S. Here, we assume that no πi(0) = 1.

The proof follows immediately from the law of total vari-
ance, as shown in [7]. The theorem implies that there is
at least one state i which has a lower Vari(X̄(T )) then the
variance obtained by starting with the equilibrium probabil-
ities. Let i∗ be such a state. For large enough T , equation
(3) indicates that the bias becomes negligible compared to
the variance, which means that when setting M(0) to i∗,
MSEi(X̄(T ) is less than MSEπ(X̄(T )), and no warmup pe-
riod should be used. Here, the subscript i denotes the initial
state, and the subscript π indicates that the initial state is
chosen according to the equilibrium distribution. This con-
vention will be used freely in the remainder of this paper.
For small systems, values of i∗ are typically not difficult to
find. For instance, for M/M/c queues, one can choose the
initial number in the system to be approximately equal to
the traffic intensity, that is, the arrival rate over the service
rate.

Note that Theorem 1 holds for any Markov chain, no mat-
ter how large, and it holds also if supplementary variables
are present. It even holds when the supplementary vari-
ables are continuous. The theorem therefore remains valid
for non-Markovian systems, provided that by introducing
a sufficient number of supplementary variables, the system
can be made Markovian.

Another reason why warmup periods are not always ben-
eficial is the following. If one starts in a state i which is
of reasonable importance, say it is visited often, then one
is almost guaranteed to visit this state quite often during
a simulation that is long enough to yield significant results.
In Markov chains, the system regenerates at these points,
and one obtains several probabilistically undistinguishable
sub-processes, all starting in state i. Because of this, all
these subprocesses should all be treated the same way, and
they could be interchanged without effecting the underlying
the stochastic properties of the process. Hence, why should
the first subprocess be singled out and be given a warmup
period? On the other hand, it does make sense to have a
warmup period if the initial state is an outlier, or if it is a
transient state, that is, a state where the expected number
of visits is finite.

4. ESTIMATING EXPECTATIONS OF

SUMS
In the previous section, we showed that there is a state i∗

such that if the system is in i∗ at time 0, then the MSE is
minimized provided the data collection time is long enough.
Our examples, together with the examples given in [7], showed
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that in many cases, the state the system is in at time 0 has
no major effect on the MSE. We will call the state the sys-
tem is in at time 0 time-zero state. If there is no warmup,
that is, if t0 is zero, then the time-zero state is equal to the
starting state. A time-zero state will be called a good time-
zero state if the MSE corresponding to this state is close to
the minimal MSE, that is, close to MSEi∗ .

One can sometimes find a good time-zero state by inspec-
tion: for instance, in the M/M/1 queue, it can be shown
that starting with an empty system is best [11]. If good
time-zero states cannot be found, a warmup period from
time −t0 to time 0 can be used. Warmup periods are also
useful if it is inconvenient or impossible find a good time-
zero state. For instance, in agent-base systems, one may
want to initialize all agents in the same way, using identi-
cal initial parameters, and let the simulation determine how
the system develops. Often, the length of the warmup pe-
riod needed to hit a good time-zero state can can be found
by considering the structure of the problem. For instance,
in a sequential queueing system, one may be interested in
the output of the last server. If one starts with an empty
system, it will take a while until the first job reaches the
last server, and before this happens, the output of the last
server is zero, and hence a poor time-zero state. The logical
way to mend the situation is to make the warmup period t0
long enough such that the first job can reach the last server.

Frequently, one has to estimate expectations of sums, and
in this case, finding a good initial state can be both diffi-
cult and inconvenient. Hence, in this case, warmup periods
may be needed. If the sum has only a few terms, it may
still be better to have no warmup, but this changes as soon
as the number of terms reaches a certain threshold. As we
will show, this threshold increases with increasing correla-
tion among the summands.

We consider the threshold in the context of systems con-
taining many components, we will call them agents. Let
X(t) be a sum, with each agent of the population, or of
some well-defined subpopulation contributing a summand.
Such systems include many agent-based systems, but also
systems such as queueing networks, where one is interested
in the number of jobs in a subnetwork, or even the entire
network. Agents have attributes, such as age, and a simula-
tion may be used to find the average age, and to do this, one
needs the sum of all ages. Properties are attributes that can
have only two values, namely 0 and 1: the value 1 indicates
that the agent has the property, and 0 that it does not. If
Yi is the value of the property Y for agent i, then the num-
ber of agents with property Y in a population of size N is
obviously

∑N

i=1 Yi. In queueing networks, the agents would
be the queues, and their attributes the queue lengths.

To find the MSE involving sums, consider first the case
where the individual summands Yi(t) are independent iden-
tically distributed random variables. The distributions in
question are identical if all agents are initialed in the same
way and if their development in time is determined by the
same stochastic laws. The distributions are independent if
the agents do not influence one another in any way. Though
the assumption of independence is not normally true, it will
provide useful bounds. Hence, consider the estimator for
E(X) in a population of size N , where X(t) =

∑N

i=1 Yi(t).
Let Ȳi(T ) be the time average of Yi(t) in the interval from
0 to T . Since all Ȳi(T ) have the same expectation and
variance, we can drop the subscript i, that is B(Ȳ (T )) is

the common bias and Var(Ȳ (T )) the common variance of
the Ȳi(t). It follows that Var(X̄(T )) = NVar(Ȳ (T )) and
B(X̄(T )) = NB(Ȳ (T )). Hence

MSE(X̄(T )) =

N
∑

i=1

Var(Ȳi(T )) +

(

N
∑

i=1

B(Ȳi
∗

(T ))

)2

= NVar(Ȳ (T )) + N2B2(Ȳ (T ). (4)

As N increases, the bias gains in weight when compared to
the variance. In fact, if N is large, the bias becomes huge,
and the asymptotic suggested by (2) becomes problematic.
To illustrate this, consider an agent-based system, with all
agents initialized the same way. Of course, the equilibrium
probability of such an arrangement is small, which means
such a state is a poor starting state, and it becomes worse
as the population size N increases. Nevertheless, this type
of initialization can be very convenient.

After the warmup, which terminates at time 0, the prob-
ability to be in state i is πi(0). Of course, the best that one
can hope for is the at time 0, πi(0) = πi, where the πi are the
equilibrium probabilities, and it thus makes sense to concen-
trate on this case. Starting with the equilibrium probabili-
ties brings the bias to 0, and MSEπ(X̄(T )) = Varπ(X̄(T )).
Obviously, one should not start in equilibrium if

Varπ(X̄(T )) > MSEi(X̄(T )) = Vari(X̄(T )) + Bi(X̄(T ))2.

If equation (4) holds, this is equivalent to

NVarπ(Ȳ (T )) > NVari(Ȳ (T )) + N2Bi(Ȳ (T ))2

or

Varπ(Ȳ (T )) − Vari(Ȳ (T ))

Bi(Ȳ (T ))2
> N. (5)

If N is below the left hand side of this inequality, then it
does not make sense at all to have a warmup period. Since
warmup periods require computational resources, it is very
well possible that even when N is violating (5), warmup
periods are not worthwhile. Hence, (5) is, in this sense, only
a lower bound for the threshold requiring a warmup.

To show how (5) is applied, we assume that we have a
population of N M/M/1/10 queues, all of them identical and
independent, and we ask as to when considering a warmup
period makes sense. From Table 1, we obtain, if 0 is the
starting state

Varπ(Ȳ (T )) − Var0(Ȳ (T ))

B0(Ȳ (T ))

= (0.17247 − 0.17100)/0.02732 = 1.97.

Hence, for N < 1.97, there is no point using a warmup
period, and for practical purposes, we may use a threshold
of 2. Even as N increases beyond that, warmup periods
may not be required. The are only needed if N is somewhat
larger than this lower bound.

The threshold for the need of warmup periods increases if
the terms of a sum are correlated. In the extreme case of
perfect positive correlation, the variance also increases with
N2, and the relative importance of the variance relative to
the squared bias does not change as N increases. In practi-
cal cases, the correlation coefficients are somewhere between
0 and 1, that is, one has neither uncorrelated random vari-
ables, nor perfectly correlated random variables. A little
reflection shows that in this case, (5) can still serve as an
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upper bound. To see how correlation will affect the value of
N satisfying (5), we introduce the following example.

Consider a stochastic version of what is called the SIRS
model [9], for Susceptible, Infected, Recovered and Suscepti-
ble in systems analysis. In this model, there is a population
of size N , say a population of humans, where each person
is either susceptible to a certain illness, or he/she has the
illness, or he/she has recovered and has immunity. After a
certain time, immunity is lost. We assume that the rate of a
susceptible person to get infected is λS , that the rate of an
infected person to recover is λI , and the rate of a recovered
person to lose immunity and become susceptible again is λR.
We use two models: infections through some external source,
such as contaminated water, and infections through contact
with other people. In the first model, λS is independent of
the number of infected people, and the health status of the
agents are independent random variables, but in the second
model, the corresponding random variables are not indepen-
dent. Both models are Markovian, and the two models have
the same recovery rate λI = 10, and the same rate of losing
immunity λR = 1. The two models differ in the infection
rates: for the external source model, λS = 1, whereas in the
infection through contact model, λS = 0.01 + 0.8

√
XI/

√
N .

The simulation runs for a time interval of T = 100. Pro-
vided one wants to find the expected number of infected
people XS , for which values of N should a warmup period
be considered? To decide this, we use (5), with Yi(T ) = 1
if person i is infected, and Yi(t) = 0 otherwise. If all agents
are independent and initialized in the same way, then it is
best to initialize the agents to be neither susceptible nor
infected, leading to a values of Var(Ȳ (T )) = 6.45318E-05
and B(Ȳ (T )) = −0.000272109. The value of Varπ(Ȳ (T )) is
then 6.48495E-05, and the bound given by (5) becomes 4.29.
Hence, there is no point to have a warmup period before the
population reaches a size of 5.

At which population size does it pay to have a warmup
period in the case of infection through contact? One could
use (5), but this formula requires values for Var(Ȳ (T )) and
B(Ȳ (T )). Somewhat arbitrarily, we used the values obtained
while N = 1. If the initialization must be the same for all
agents, then the best starting state is again XS = XI = 0,
and the values for Var(Ȳ (T )) = 0.000017357, B(Ȳ (T )) =
−0.000097251 and Var(Ȳ (T )) = 0.000017524, respectively.
Hence, (5) yields 17.5.

Instead of using this approximation, we calculated the ex-
act values for MSEi0 and MSEπ, where i0 is the state with
XS = XI = 0. The results are given in Table 4. Warmup
periods are obviously only beneficial if MSEπ < MSEi0 ,
and according to Table 4, this happens only for N > 14.
However, even for N=20, the difference between MSEi0 and
MSEπ is hardly noticeable, and a warmup period, which re-
quires computational resources, may not be advantageous.
Of course, as the population increases, the difference be-
tween MSEπ and MSEi0 becomes larger, and at some point,
one has to find either a good starting state, or one has to use
a warmup period. In the latter case, the statistical methods
reviewed in [13] for determining the length of the warmup
seem to be appropriate.

To summarize, our example indicates that when estimat-
ing expectations of sums with only few terms, warmup pe-
riods are often detrimental. However, as the number of
terms in the sum increases, warmup periods become advan-
tageous. The crossover point between no warmup period

Table 2: Effect of warmup in infection through con-
tact model

MSEi0 MSEπ

1 1.73674E-05 1.75238E-05
2 3.3156E-05 3.3457E-05
3 4.9168E-05 4.95907E-05
4 6.52444E-05 6.57639E-05
5 8.1358E-05 8.1949E-05
6 9.75019E-05 9.81394E-05
7 0.000113674 0.000114333
8 0.000129872 0.000130527
9 0.000146097 0.000146723
10 0.000162348 0.00016292
11 0.000178624 0.000179117
12 0.000194926 0.000195315
13 0.000211253 0.000211513
14 0.000227606 0.000227711
15 0.000243983 0.000243909
16 0.000260386 0.000260107
17 0.000276814 0.000276306
18 0.000293268 0.000292504
19 0.000309746 0.000308703
20 0.00032625 0.000324902

and a warmup period increases as the correlation between
the terms in the sum decreases, that is, if the correlation
coefficient ρ approaches 1, the crossover point typically ap-
proaches infinity.

5. CONCLUSION
In this paper, we showed that if the MSE is to be mini-

mized, and if a good starting state is known, then no initial
transient deletion is required, and, in fact, any such deletion
increases the MSE. Hence, in simulation, the effort should
be geared toward finding a good starting state. There is al-
ways a starting state i∗ that minimizes the MSE for a large
enough simulation time T , but in our examples, there were
usually a number of good starting states in the sense defined
earlier. The problem thus becomes to find good starting
states, which, I believe, will require a shift of the paradigm
in the initialization bias theory. This paper is, of course,
only a start in this direction, and we hope that others will
follow. We believe that there are many results still waiting
to discovered.

If warmup periods are used, one has to distinguish be-
tween starting state, the state the system starts with at time
−t0, and the time-zero state, the state when data collection
begins. The objective of the warmup period is to reach,
with high probability, a good time-zero state. This problem
can often be solved by looking at the structural properties
of the model, together with the entity to be estimated. For
instance, if one wants to use simulation to find the output
of the last queue in a sequence of queues, such as the output
of an assembly line, then one obviously will not have a good
time-zero state before the first job has a reasonable chance
to reach the last server. In this connection, we note that in
the M/D/∞ queue with a service time of 1, one can show
that the bias disappears completely after simulating for 1
time unit (see [5] and references therein). This allows to
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dispense with any statistical procedure otherwise needed to
determine the length of the warm up period.

The bias can be substantial if one wants to estimate the
expectation of a sum as indicated by considering equation
(4). This is not surprising because in the time average
of sums, the coefficient of variation decreases, that is, the
stochastic component of the process in question decreases,
which implies that it behaves more like a deterministic pro-
cess. More generally, warmup periods become important
when the sample function in question becomes more deter-
ministic.
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