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ABSTRACT

While simulationists devise ever more efficient simulation
algorithms for specific applications and infrastructures, the
problem of automatically selecting the most appropriate one
for a given problem has received little attention so far. One
reason for this is the overwhelming amount of performance
data that has to be analyzed for deriving suitable selection
mechanisms. We address this problem with a framework for
data mining on simulation performance data, which enables
the evaluation of various data mining methods in this con-
text. Such an evaluation is essential, as there is no best data
mining algorithm for all kinds of simulation performance
data. Once an effective data mining approach has been iden-
tified for a specific class of problems, its results can be used
to select efficient algorithms for future simulation problems.
This paper covers the components of the framework, the
integration of external tools, and the re-formulation of the
algorithm selection problem from a data mining perspective.
Basic data mining strategies for algorithm selection are out-
lined, and a sample algorithm selection problem from Com-
putational Biology is presented.

Categories and Subject Descriptors

I.6.7 [Simulation Support Systems]: Environments; I.2.6
[Learning]: Knowledge Acquisition

Keywords

Algorithm Selection, Data Mining, Simulation Performance
Analysis

1. INTRODUCTION
In simulation, we often try to optimize our algorithms to-

wards problem-dependent performance requirements. These
are usually related to the specific objectives of the simulation
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study, the available hardware, or the modeling formalism
that is used. While this is necessary to cope with increas-
ingly complex simulation problems, such optimizations also
lead to a strong dependency between the runtime behavior
of an algorithm and the context in which it is used. Conse-
quently, performance characteristics of previously developed
algorithms can be hardly translated to other problem do-
mains. A re-evaluation – and often, a re-optimization – of
the algorithm in its new context becomes necessary.

An alternative to perpetually adjusting an implementa-
tion to the current requirements is the use of extensible sim-
ulation frameworks, such as James II [19]. They allow to
develop portfolios of algorithms that implement the same in-
terface, which ensures their re-usability and exchangeability.
For each new simulation problem, a user can now configure
the system to use the algorithms that are deemed to be most
efficient. This, however, leads to a new problem: the larger
the set of eligible simulation algorithm configurations, the
harder is the manual selection of optimal, or even ’reason-
ably good’, configurations. This problem occurs whenever a
simulation system is sufficiently flexible, even if the targeted
audience has a strong simulation background [7].

The underlying Algorithm Selection Problem (ASP), which
concerns the selection of an optimal algorithm for solving a
given problem, has already been formulated in the 1970s [45].
A selection function has to be identified, which maps the fea-
tures of a problem to an optimal algorithm for its solution
(see section 2.1). How can we find such a selection function
for simulation algorithms?

Selection functions might be manually deducible for small
sets of well-known algorithms, e.g., by interpretation of ex-
perimental data or theoretical considerations – but large
numbers of algorithms and uncertainty regarding their po-
tential performance render such approaches infeasible in many
cases. We argue that this problem can be solved by employ-
ing methods from statistical learning and artificial intelli-
gence on large sets of performance data; a process known
as knowledge discovery in databases, or data mining. Data
mining is a broad, interdisciplinary field with a rich body of
methods. The suitability of these methods depends signif-
icantly on the data set they are applied to; some problems
may be solved with a simple linear regression, while others
demand for more sophisticated techniques. As it is still un-
clear which data mining methods perform particularly well
on which kind of simulation performance data, a system for
the convenient generation of selection functions will have
to provide several alternatives. We developed a framework
for simulation performance data mining, SPDM, to address
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these needs. Its main objective is the creation and evalua-
tion of selection functions by various data mining methods.

This paper consists of three parts. Sections 2 and 3 discuss
some relevant concepts and related work. Then, sections 4
and 5 describe the SPDM framework and the tools we in-
tegrated. Section 6 illustrates the application of SPDM by
presenting a real-world use case.

2. BACKGROUND

2.1 Algorithm Selection Problem
With the definition of the Algorithm Selection Problem [45],

Rice formalized some fundamental concepts that help to
clarify the challenging aspects of the problem and that need
to be related to our specific domain, i.e., simulation. He de-
fined a problem space P, a feature space F, and an algorithm
space A. The feature space contains elements that describe
those aspects of a problem x ∈ P that are relevant for the
selection of an appropriate algorithm a ∈ A. Consequently,
the selection function S : F × R

n → A maps the relevant
features, instead of the actual problems, to algorithms from
the algorithm space. It also takes into account user prefer-
ences from the criteria space, which is denoted by R

n. A
user criterion could, e.g., be the execution time of the algo-
rithm. Note that the arbitrary dimension n of the criteria
space allows for multi-faceted preferences, e.g., to select an
algorithm that spares memory and exhibits a short execu-
tion time for the given problem. By using real numbers,
the user can weight the importance of each criterion. User
criteria are not only important for algorithm selection, but
also for defining how performance can be measured. The
performance mapping p : A × P → R

n defines the perfor-
mance of algorithms for problems in P and each of the n

criteria. A norm g : R
n × R

n → R is now defined on this
performance measure space, so that a single performance
value ||p(a, x)|| = g(p(a, x), w) can be calculated from the
given algorithm performance and the user’s criteria weights
w ∈ R

n. The overall structure (after Rice [45]) is shown in
figure 1.

x ∈ P

Problem Space

f(x) ∈ F

Feature Space

F Feature Extraction

w ∈ R
n

Criteria Space

a ∈ A

Algorithm Space

S(f(x), w)

p ∈ R
n

Performance
Measure Spacep(a, x)

Algorithm Performance

‖p‖ = g(p, w)

Figure 1: The algorithm selection problem. Fea-
ture extraction is expressed by a mapping F : P → F,
which extracts the features f(x) from a given prob-
lem x.

In a simulation context, the problem space comprises not

only the given model, but also the infrastructure to be used
for its simulation. This is an important aspect, as many
parallel simulation algorithms rely on specific computer or
network architectures, e.g., the original GeorgiaTech Time-
Warp simulator (GTW) was designed for cache-coherent
shared memory multiprocessors [6]. Other algorithms may
use specialized hardware accelerators, e.g., for molecular dy-
namics [46] or traffic simulation [42]. Extracted features of a
simulation problem would therefore not only be model size,
model structure, or formalism-specific model properties, but
could also be – e.g., in case of a parallel and distributed
simulation – the network topology, descriptions of available
computing resources, and so on. Identifying the most rel-
evant features of a problem is left to the developer of the
selection mechanism and may pose a considerable challenge
in itself [45].

There are several performance measures for simulation al-
gorithms, e.g., resource consumption, execution time, and
precision (in case of approximative methods). The set of
algorithms can be represented by all eligible configurations
of a simulation system for a given task (see section 2.4).
The concrete definition of the ASP-related entities allows
to store them in a well-structured data sink, a performance
database, which in turn enables the application of automated
data analysis.

2.2 Performance Data Storage
Performance databases are essential tools for the thor-

ough experimental analysis of algorithms, as they support
the experimenter in dealing with the typically vast amounts
of performance data as easily as possible. Many perfor-
mance data management systems have been developed, e.g.,
PerfDMF [24] and PDS [4]. PerfDMF is designed for de-
tailed, large-scale performance analysis of complex parallel
programs. PDS provides access to a central repository of
benchmark results. In principle, both could be used to store
simulation performance data, but they neither focus on the
algorithm selection problem nor on the domain of simulation
algorithms. They do not provide explicit representations of
ASP entities, which are required for convenient analyses in
this context. Additionally, the level of detail is usually in-
appropriate, e.g., PerfDMF focuses on function-wise perfor-
mance measurements, i.e., profiling data, whereas only al-
gorithms as such shall be investigated for the ASP. Finally,
performance metrics like the accuracy of an approximative
simulator are hard to integrate into such tools, as they are
simply not tailored toward those demands. These reasons
led to the development of a custom performance database
that supports ASP-related inquiries for simulation systems.
It is currently integrated with the general-purpose simula-
tion system James II (see section 2.4), but its structure
is sufficiently general to support any other simulation sys-
tem [7]. All necessary data for the mining tasks can be
retrieved from this database, which is realized with Hiber-
nate [1], JDBC [2], and MySQL [3].

2.3 Data Mining
The field of data mining is concerned with the extraction

of knowledge from (potentially large) datasets. To do so,
methods from statistical learning and its adjacent computing-
focused discipline machine learning are applied [50, 17]. Knowl-
edge can be gained from data in many ways; important
data mining tasks are, e.g., clustering, association, feature
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selection, classification, and regression [29]. As data min-
ing is used here for predicting algorithm performance for
a given simulation problem, we restrict the discussion to
classification and regression. Classification means to pre-
dict the class of a so-called problem instance. For exam-
ple, a concrete system configuration could be predicted to
deliver good-performance, medium-performance, or bad-

performance for a given a simulation problem. In this case,
the problem instance would be defined by the configuration
and the features of the simulation problem. Regression is a
generalization of classification that supports an infinite num-
ber of (numerical) prediction classes, i.e., it can be used to
predict the execution time of a configuration. For simplic-
ity, we will refer to both kinds of prediction mechanisms as
predictors.

A typical work-flow to generate a predictor involves the
compilation of available data into a prescribed format, the
training of the predictor, and finally its evaluation. Evalua-
tion is usually done by estimating the error that is expected
on a previously unseen set of data. This is problematic, as
the quality of the predictor depends on the amount of avail-
able training data. Several methods can be applied to al-
leviate this problem, e.g., bootstrapping or cross-validation
(cf. [50, p. 125 et sqq.]). Another problem closely related
to the prediction error is the so-called bias-variance trade-
off [50, 17]. The prediction error consists of three parts:
irreducible error, error due to bias, and error due to vari-
ance [17, p. 197]. Let f̂(X) be a prediction function for
data generated by the statistical model Y = f(X) + ε (with
E[ε] = 0 and V ar[ε] = σ2

ε ). The expected error for an input
X = x0 can be decomposed as follows:

Err(x0) = σ
2

ε + Bias
2(f̂(x0)) + V ar(f̂(xo)) (1)

The irreducible error, σ2

ε , is the prediction error even an
optimal predictor, i.e., f(X), would exhibit. It can be re-
garded as stochastic noise, e.g., the runtime of an algorithm
usually varies and can therefore not be exactly predicted by
any means. The squared bias is the error that is introduced
by the model of the predictor, i.e., the underlying assump-
tions with respect to the characteristics of the prediction
task. The variance is the error introduced by not train-
ing the predictor on all instances that are possible. The
bias-variance trade-off means that by decreasing bias the
variance is usually increased, and vice versa. Both bias and
variance depend on model complexity : more complex mod-
els usually increase variance and reduce bias, simpler models
usually increase bias and reduce variance [17, p. 37-38]. As
the main objective is to reduce the overall prediction error, a
good compromise between bias and variance has to be found,
which is highly problem-specific. For this reason, different
machine learning methods should be tested when it is un-
clear which method will perform best. This often holds for
mining tasks on simulation performance data: it is usually
unclear if and how algorithm performance can be inferred
by certain model properties, or how the performances of
available simulation algorithms relate to each other within
the problem space. Furthermore, many machine learning
schemes provide parameters to adjust them to the problem
at hand, which might need to be explored as well. These
circumstances motivate the development of a framework to
evaluate various data mining methods on simulation perfor-
mance data.

Figure 2: The factory filtering process in James II.
Here, a partitioning algorithm, a simulation algo-
rithm, and an event queue have already been se-
lected; filtering is applied to identify a suitable ran-
dom number generator (RNG). The result of all se-
lection processes is a selection tree defining the con-
figuration of the system.

2.4 James II
The general-purpose simulation system James II [19] was

designed to be extensible and flexible enough for the inte-
gration of new modeling formalisms, simulation algorithms,
and auxiliary methods. It does so by providing a registry
for managing plug-ins. Plug-ins are distinguished by their
plug-in type, which allows to identify all plug-ins that can
in principle be used for the same task – e.g., simulation, op-
timization, or random number generation. The selection of
suitable algorithms is done by a filtering method that pre-
vents, for example, that a numerical integrator is chosen to
simulate a Petri Net. Filtering is done hierarchically, when-
ever an algorithm requests a plug-in from the registry to
solve a particular sub-task. Figure 2 shows how a selection
mechanism can be integrated into this filtering process with-
out affecting the rest of the system. In the following, we will
assume that a configuration can be represented as a list of
name-value pairs, instead of an actual selection tree [7] as in
figure 2. This is required to feed the data mining methods,
as they usually cannot cope with hierarchical structures.

3. RELATED WORK
The need to analyze algorithm performance data by ad-

vanced techniques has often been highlighted in the field of
experimental algorithmics [38], although this is hampered
by several limiting factors. For example, it is usually impos-
sible to translate performance findings from one hardware
architecture to the other, e.g., because of differing memory
hierarchies [32, 38, 39] – which makes it even more desirable
to employ automated analysis techniques. Experimental al-
gorithmic analysis also provides methods to obtain the nec-
essary amount of data, e.g., by conducting variance reduc-
tion [37], and is concerned with experimentation methodol-
ogy in general (e.g., [27]).

Systems such as PerfExplorer [23] or Prophesy [47]
are aimed at the analysis of performance data from large-
scale parallel applications. They allow a detailed view on a
given application’s performance characteristics, which helps
to identify bottlenecks and optimization potentials. Conse-
quently, both systems work on much lower levels than our
framework, which is focused on the overall performance of
certain simulation system configurations in relation to each
other, to select a good one automatically.

Machine learning has been used for algorithm selection
before, most notably in problem solving environments such
as PYTHIA II [21], in compiler optimization [51, 48, 49],
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and in the field of artificial intelligence itself, where it is
also known as Meta-Learning (see [10] for a good overview
on AI-related algorithm selection). In [15], several machine
learning methods are applied to sorting algorithms and an
NP-hard probabilistic inference problem. For solving NP-
hard problems, algorithm selection is often done with algo-
rithm portfolios [14, 33, 10], an approach that is related to
portfolio management from financial mathematics [35, 22].
Basically, an algorithm portfolio consists of a (usually rather
small) set of available algorithms to solve a problem.

Vuduc et al. applied linear regression, a custom cost mini-
mization scheme, and support vector machines to select from
three implementations for fast matrix multiplication [48, 49].
They also distinguish between data modeling, i.e., predicting
the runtime of each implementation, and geometric model-
ing, i.e., the identification of sub-regions in which one im-
plementation dominates the others [49]. Both modeling ap-
proaches can be used for algorithm selection (see section 5).

Performance prediction is an ever re-occurring theme in
simulation; the approaches range from analytical ones (e.g.,
[16, 41]), over hybrid ones (e.g., [34, 30, 8]), to purely empiri-
cal ones (e.g., [43]). Still, simulation performance predictors
that employ machine learning are not so widely used yet.
One exception is the work of Ferscha et al. [9], who apply
a full factorial analysis to assess the sensitivity of parallel
and distributed discrete-event simulations with respect to
several synchronization schemes. However, machine learn-
ing has often been applied to meta-modeling, i.e., to train a
predictor on the outcomes of a simulation, so that the pa-
rameter space of the model can be explored much faster than
by simulating the original model. For example, neural net-
works can be used to efficiently predict hardware simulation
results [25].

4. SPDM: SIMULATOR PERFORMANCE

DATA MINING FRAMEWORK

4.1 Requirements
As motivated in section 2.3, a key requirement for a data

mining framework aimed at simulation algorithm selection
is to allow the comparison of many data mining methods.
This is necessary because the optimal trade-off between bias
and variance needs to be found, and the properties of sim-
ulator performance spaces are so heterogeneous (and often
unknown) that it is impossible to select the one optimal
learning method beforehand, for all selection tasks yet to
come. Implementing and testing data mining schemes also
involves a lot of effort, so another requirement of this frame-
work is the easy integration of existing data mining toolkits.

Following our focus on algorithm selection, we will concen-
trate on prediction methods from data mining. Since predic-
tion can be done by either classification or regression, i.e.,
predicting discrete or continuous classes (see section 2.3),
both variants have to be supported. The data mining meth-
ods need to be applicable to performance data from various
sources. They shall automatically construct selection func-
tions for the algorithm selection problem (see section 2.1).
In the following, the realization of such a selection function
as a software component will also be called a selector. The
general work-flow that the framework shall support is shown
in figure 3.

The evaluation of selectors should provide both an esti-

Performance

Database

Performance Data

SPDM

Mining

Selectors

S1

S2

S3...
Evaluation

S*

Figure 3: The SPDM work-flow: performance data
is imported and various data mining schemes are
applied to generate selectors. These will be evalu-
ated, so that the best selector S∗ can be identified.
It can then be used for selecting algorithms in the
simulation system that provided the data.

mation of the expected prediction error and a comparison
between the selectors that have been used. The compari-
son of data miners needs to be fair, i.e., all selectors should
be tested by the same methods. Such an analysis could re-
veal important aspects of the selection task at hand, e.g.,
a linear regression model that performs significantly worse
than a general regression model hints at the non-linearity
of the performance space under scrutiny (following the ar-
gumentation from [25]). Similarly, if all data miners fail,
maybe the data set is insufficient to draw conclusions, or
the selected problem features do not discriminate between
relevant model classes.

4.2 Implementation
SPDM uses the plug-in architecture of James II in several

ways. It basically applies the Strategy pattern [11, p. 315
et sqq.] to the work-flow blueprint outlined in section 4.1.
A flexible data import layer is provided, which allows to
translate available performance data into SPDM’s internal
representation. The representation consists of two classes:
PerformanceTuple (see figure 4) represents a problem in-
stance and therefore combines the Features of a simulation
problem (e.g., certain model properties) and the Configu-

ration that was used to solve the problem, i.e., the selection
tree (see figure 2). The selection tree is flattened to a list
of (name, value) pairs. The name is taken from the plug-
in type, e.g.,’EventQueue’, and the value is the name of the
chosen algorithm, e.g.,’Heap’. Parameters of the algorithms
are handled similarly. Having equally named parameters
or multiple algorithms of the same plug-in type requires an
additional step for re-coding the names.

Finally, a PerformanceTuple includes a real-valued per-
formance field representing ||p|| (see section 2.1). Includ-
ing p itself, i.e., a multi-dimensional performance measure-
ment, is not suitable for many machine learning algorithms,
which are tuned to predict a single outcome. Support for
multi-faceted performance could be integrated by creating
a selection function for each dimension and then combining
the selections of all functions according to the user criteria.
The second class for data representation, PerfTupleMeta-

Data, provides information on the nature of the attributes
defined by a set of PerformanceTuple instances, e.g., which
values a qualitative attribute may have. Each name given
in any Features or Configuration object is regarded as an
attribute.

The other central entity in the framework is the ISelec-

tor interface (see figure 4), which represents the selectors to
be generated. Its main method takes a Features instance
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Figure 4: Structure of Performance Tuples and Se-
lection Functions

describing the problem at hand and returns a list of Con-

figuration instances, sorted by descending predicted per-
formance. This list can then be used by a selection criteria
to re-sort all available factories (see figure 2). Returning a
sorted list instead of a single configuration is advantageous
when it comes to the transparent integration of the selection
process in the existing system – it is not known if the user in-
stalled all available plug-ins or restricts the filtering process
to a certain subset of configurations. Since well-performing
selection functions shall be persisted and deployed with the
simulation system, ISelector extends Serializable. Sort-
ing the available configurations in a list implies that two
configurations can be compared, which allows to provide a
default ISelector implementation and thereby reduce the
implementation efforts for new selectors: merely an alter-
native Comparator implementation for configurations is re-
quired, which will then be used for sorting (cf. figure 4).

4.2.1 Data Import

Although this framework is intended to work on James

II performance data predominantly, importing performance
data from arbitrary sources is an important feature. It al-
lows to test and evaluate SPDM and its methods with ex-
ternal benchmark data, which ensures comparability with
other toolkits. Therefore, a simple file format for reading
performance data has been defined. As performance data
from James II is stored in a performance database (see sec-
tion 2.2), another implementation of the corresponding ID-

MDataImportManager interface retrieves the data from the
James II performance database and translates it into per-
formance tuples. Formerly imported data can be saved to an
XML file and re-read with a corresponding import manager.
Other data import schemes can be integrated similarly.

4.2.2 Selector Generation and Evaluation

The integration of existing toolkits is facilitated by the
Adapter pattern [11, p. 139 et sqq.]. Any adapter for a
data mining method has to implement the ISelectorGen-

erator interface. It defines a single function which takes
the performance data for training and returns an instance
of ISelector. As motivated in sections 2.3 and 4.1, an-
other important task of the framework is the automated
analysis of these generated selection functions by various
methods. This task is divided into two sub-tasks: the evalu-
ation strategy and the performance measurement. An evalu-
ation strategy defines how the available data is divided into

test and training data; it triggers the actual selector gener-
ation. A performance measurement, in turn, calculates the
numerical error for a given selector and test data, i.e., it
executes the generated ISelector instances. Different mea-
surements of selector performance might be very helpful for
advanced analyses: For example, simply counting the num-
ber of mis-predicted best configurations would punish ’near
misses’ overly hard – calculating the total extra runtime
due to mis-predictions might be a much better estimator
of future selector performance. For ’conservative’ selectors
in real-time simulation applications, which could focus on
avoiding very bad configurations instead of always choosing
an optimum, the maximal extra runtime imposed by a single
prediction error might be even more suitable. Implementing
different evaluation strategies is also desirable, as they have
different strengths and weaknesses, e.g., depending on the
amount of available data. Consequently, both kinds of com-
ponents have been realized as plug-in types in James II.
So far we implemented cross-validation and bootstrapping
as evaluation strategies, and several basic performance mea-
surements. The overall structure of SPDM is summarized
in figure 5.

5. METHODS FOR ALGORITHM SELEC-

TOR GENERATION
Basically, any algorithm selection approach that follows

the ideas from section 4.2 by providing a Comparator for
Configurations (see figure 4) comes down to deciding which
of two alternative configurations will perform better on a
given problem, characterized by a set of features. The sorted
list to be returned results from a succession of such decisions.

In principle, there are two ways to tackle this decision
task. The decision approach focuses on the decision as such,
i.e., it classifies tuples of the form

(features, conf1, conf2)

as firstFaster, secondFaster, or equal. Using such a rep-
resentation executes the predictor only once per comparison,
which saves computing time. However, this approach has a
severe drawback: the number of tuples that need to be gen-
erated out of the available data grows quadratically with the
number of available configurations – which could be several
hundreds. In other words, this approach does not scale with
the diversity of simulation system configurations.

The prediction approach, in contrast, aims at predicting
the performance of each configuration independently. The
outcomes can then be compared, which would amount to
two predictions per comparison. Still, the performance of
each configuration only needs to be predicted once for sort-
ing the list, so that the effort can be reduced by some caching
within the comparator component. This approach has many
advantageous aspects: Firstly, the number of tuples to be
analyzed grows only linearly with the number of available
configurations. Secondly, it can be realized by both (quan-
titative) prediction and classification, although prediction
lends itself more naturally to the problem. A classification
algorithm could simply classify algorithms to perform good,
medium, or bad under the given circumstances, but this
classification might become invalid – for example, if a new
algorithm is much faster than the other algorithms on cer-
tain problems, so that the performance of the others has to
be changed to medium or bad for these cases.
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* RandomSelectorGenerator
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DecisionTreeGenerator ...
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Figure 5: This UML chart depicts the central components of SPDM: data import (orange), data representa-
tion (green), selector generation (red), evaluation (blue), and the overall assessment strategy (purple). The
final product to be generated are instances of the ISelector interface (grey). Interfaces marked with bold
borders correspond to components that are exchangeable via the plug-in mechanism of James II.

Finally, quantitative prediction methods could help when
searching for tipping points in the simulation space, i.e., the
set of problem features for which an algorithm is likely to
outperform the others – which in turn could steer experi-
mentation to the ’most interesting’ regions of the problem
space. These are the main reasons why the current ISe-

lectorGenerator implementations follow the prediction ap-
proach instead of the decision approach, but this could be
easily implemented as well.

This distinction between the decision and the prediction
approach reflects the distinction between geometric model-
ing and data modeling in [49], but is different in that the
geometric modeling merely divides the feature space into
regions dominated by a certain implementation, while the
decision approach has to do this for any combination of two
algorithms – it is unknown which implementations will be
available to the user. This is the reason why geometric mod-
eling works although the decision approach is troublesome.

Both ways of prediction could be augmented by general
multi-model classifiers [50, p. 250 et sqq.], i.e., meta-learners
that combine several predictors and learn when to use which.
This is supported by SPDM, as the James II registry al-
lows selector generators to discover other selector genera-
tors, which could then be used to create selectors that work
together – the resulting selector ensemble just has to imple-
ment the ISelector interface as well. Realizing such kinds
of selector generators is subject to future work. The next
section briefly presents the data-mining tools we have inte-
grated into SPDM so far.

5.1 Tool Integration

5.1.1 WEKA

The WEKA toolkit is a powerful and popular open-source
machine learning software written in Java [50]. It contains
several algorithms for all kinds of data-mining tasks; so far
we have implemented generators based on WEKA’s version
of the C4.5 decision tree algorithm, J48, as well as its imple-
mentation of Quinlan’s M5 model tree algorithm [44], M5P.
Decision trees are only able to classify problems, but their
structure is human readable and may reveal interesting pat-
terns in the training data, e.g., the importance of different
attributes. M5 model trees are related to decision trees but
allow numerical prediction by a linear model. The model to
be used is selected by a decision tree.

5.1.2 MLJ

MLJ is a set of Machine Learning Tools in Java [40].
It is a Java port of MLC++, a framework developed to
ensure comparability and repeatability of machine learning
results [31]. We integrated ID3, another decision tree al-
gorithm and predecessor of C4.5, as well as a Näıve Bayes
approach.

5.1.3 Joone

Joone is an engine for neural network simulation in Java
[36]. Since neural networks are limited to real-valued input,
our wrapper has to re-code all nominal attributes. Joone is
highly flexible and allows various shapes of networks, trans-
fer functions, and learning algorithms. This is reflected in
our adapter, which is highly configurable as well. Changing
the size of the model or the shape of the transfer function
is important for finding the best trade-off between variance
and bias, as described in section 2.3. Joone also supports
multi-threading, which speeds up the costly training process.

5.1.4 JDM

We also started the integration of the official Java Data
Mining interface, JDM [29], by following the guidelines from
[20]. A general interface for Data Mining tools in Java has
great appeal, as this could considerably reduce the efforts of
integrating new tools. However, so far only a limited range
of commercial toolkits support the JDM, although a new
version of it is already under way [28]. We use the JDM

implementation of KXEN Inc. to test our wrapper, but this
is still work in progress.

6. USE CASE: STOCHASTIC SIMULATION

ALGORITHMS
We now briefly describe a set of stochastic simulation al-

gorithms that are commonly used in Computational Biology,
and then illustrate what kinds of studies are possible when
using the SPDM on their performance data. In [13], Gille-
spie proposed an alternative to simulating chemical reaction
networks by ordinary differential equations (ODEs). While
ODEs are suitable for simulating systems with many par-
ticles, they do not account for the stochastic effects that
govern the behavior of chemical reaction networks with rel-
atively few particles. Such networks can often be found in
biology, e.g., in cell signaling pathways.

Hence, Gillespie introduced two stochastic methods, the
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First Reaction Method and the Direct Method (DM), to sim-
ulate such networks. Both are basically simulating the same
continuous-time Markov chain and hence produce equivalent
results, but they differ algorithmically [13]. Later, the First
Reaction Method was enhanced by Gibson and Bruck [12],
who introduced their variant as the Next Reaction Method
(NRM). The NRM maintains additional data structures to
speed up the simulation, e.g., it relies on an efficient event
queue implementation. In [5], Cao et al. apply similar en-
hancements to the Direct Method, which leads to the Opti-
mized Direct Method. We refer to [26] for a detailed compar-
ison of the actual algorithms, as their theoretical advantages
and disadvantages are not relevant in this context. In fact,
SPDM should allow for an automated empirical assessment
of the implementations under scrutiny.

James II provides implementations of the Direct Method
and the Next Reaction Method, as well as several event
queues [18]. We chose ten event queue variants and com-
bined each with the NRM implementation. Together with
the Direct Method, which does not rely on any additional
data structure, we therefore have eleven configurations of
the simulation system to test. These configurations repre-
sent our algorithm space A (cf. figure 1). The problem space
P was defined by the CCS model from [26], a synthetic
benchmark model that is parameterizable with respect to
the number of chemical species involved, the number of re-
actions per species, and the number of reactants per reac-
tion, which determines the degree of interdependence be-
tween the reactions. Hence, P is three-dimensional in this
case: there were between one and ten species interacting by
one to fifty reactions, each reaction having one to ten re-
actants, i.e., species participating in the reaction. The last
parameter also adjusts the number of products per reaction,
as all reactions in CCS have the same number of reactants
and products.

Our feature space F has three dimensions as well: we se-
lected the number of species, the number of reactions, and
the average number of reactants and products per reaction as
features. Features have to be easy to compute, as they need
to be extracted at run-time from each simulation problem to
which algorithm selection shall be applied (see figure 1). The
features we selected merely require a single pass through the
model and hence can be computed in O(n), as illustrated by
the simplified sample code in algorithm 1.

The execution time was taken as a performance measure.
Our overall data set consisted of 59 problems that were se-
lected randomly from P, and all eleven configurations were
applied to each problem, which results in 649 performance
tuples. To rule out side-effects from external load or the
operating system, each application of a configuration to a
problem was replicated ten times, i.e., this data set repre-
sents 6490 simulation runs. The performance tuples were
constructed using the average execution time. The overall
work-flow followed is depicted in figure 7: while also a man-
ual algorithm selection requires to define benchmark mod-
els, to run experiments, and to store the results (e.g., in a
database), using SPDM also requires to program at least
one feature extractor (cf. algorithm 1) and to configure the
framework regarding input data and selector generators to
be tested. As a result, SPDM returns the performance of the
selectors it generated and evaluated. In contrast, a manual
analysis has to deal with the raw performance data.

Algorithm 1 Feature extraction for SSA

public class SSAFeatExtr extends

FeatureExtractor {

public Map ext rac tFeature ( ISimulat ionProblem
prob ) {

//...(+ 5 lines model creation from problem)
double avgDeg = 0 ;
L i s t r e a c t s = model . ge tReact ions ( ) ;
for ( IG i l l e s p i eRea c t i o n r : r e a c t s )

avgDeg += r . getChangeVec ( ) . l ength ;
avgDeg = avgDeg / r e a c t s . s i z e ( ) ;

Map f = new HashMap( ) ;
f . put(”# Spec i e s ” , model . getStateVec ( ) . l ength ) ;
f . put(”#React ions ” , r e a c t s . s i z e ( ) ) ;
f . put(”#AvgReactProdDeg ” , avgDeg ) ;
return f ;
}

}

Simulation System

Benchmark
Problems

Algorithm Selection

Model Set-Ups + 
Performance Data

Performance
DB

Feature 
Extraction

SPDM
Config., Analysis & Selection

Figure 7: Overall work-flow of using SPDM.

Results.
Figure 6 shows a truth map of the CCS data, a visual-

ization inspired by [49]: it plots the best configurations as
a point cloud in the feature space. A single combination of
algorithms, NRM with a simple list-based event queue im-
plementation, dominates a large part of the feature space.
The only exception is a region with few species and few re-
actions, as can be seen in the middle plot of figure 6.
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Figure 8: Performance of data mining schemes on
CCS performance data, each averaged over 1000 it-
erations of 0.632 bootstrapping.

Figure 8 shows the results of some classifiers that have
been applied to the data set. The performance was mea-
sured by letting each generated selector sort all configura-
tions for a (formerly unseen) combination of features from
the test set. Then, the real-world execution time of the
configuration that was predicted to be the fasted, tpred, is
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Figure 9: Effect of neural network parameters (50
bootstrapping iterations): Neither number of lay-
ers nor number of neurons have a positive effect
on selector performance. This motivates the explo-
ration of other parameters (learning algorithm, type
of synapse, etc.), or changing the internal structure
of the selector, e.g., by generating a single neural
network per configuration (instead of one large one).

compared to the execution time of the fastest configuration
for the given set of features, tbest. The relative slowdown

can then be computed easily:
tpred

tbest
− 1. Since tpred ≥ tbest,

the slowdown will always be greater than 0, which would be
the optimal outcome. All numbers have been averaged over
1000 iterations of 0.632 bootstrapping.

The performance of the tested methods differs greatly:
while the neural network performs worse than a random al-
gorithm selection, the decision tree methods (J48, ID3) and
the Näıve Bayes classifier can perform significantly better,
albeit still far away from the optimum. As another bench-
mark, we implemented a WinnerTakesAll selector that sim-
ply ranks all configurations according to their overall perfor-
mance on the training set. It does not consider any problem
features and selects a fixed configuration order. No data
mining method can outperform it in this example, which
suggests that the sample data set is too homogeneous or
too small to allow effective data mining. Although this re-
sult might seem unsatisfying in that the data mining tech-
niques applied in this specific case are not superior to a
much simpler method, it nicely illustrates why a framework
like SPDM can be of great use. Firstly, SPDM shows that
a certain configuration is indeed so dominant for the given
problem that none of the tested mining methods yields bet-
ter results than a very simple technique. Secondly, SPDM

also showed which of the applied mining techniques have re-
turned the best results and could therefore outperform Win-

nerTakesAll selection when more performance data is avail-
able. Thirdly, the results also give an estimate of the overall
speed-up to be expected by an intelligent selection criteria
when compared to the average case – here, this would still
be ≈ 25% of the execution time (for M5P, see figure 8).

Also note that these results are preliminary – the perfor-
mance measure only considers the configuration predicted to
be best and none of the algorithms was particularly tuned
towards the input. These results should merely illustrate
how SPDM allows us to apply a broad range of methods in
a convenient manner, as the selection of a suitable approach
is non-trivial and fine-tuning requires additional efforts. In
fact, SPDM can be easily configured to tune the parame-
ters of a data mining scheme automatically. This allows, for
example, to explore the various aspects of neural network pa-
rameterization, as depicted in figure 9. It is also important
to notice that none of the results from above can guarantee
that the generated selectors work well in real life: perhaps
the selected features allow to predict the performance of the
CCS benchmark model, but do not translate to other mod-
els (with the same features)? Other features would have to
be chosen if that was the case. This aspect has still to be
investigated for the stochastic simulation algorithms and the
generated selectors.

7. CONCLUSIONS
In this paper, we motivated the use of data mining meth-

ods to automatically analyze simulator performance data
and thereby tackle the algorithm selection problem. We
introduced a general data mining framework for this task,
SPDM, and described its central entities, as well as the spe-
cific requirements that led to them. SPDM is built on the
simulation system James II, but can process performance
data from other systems as well. Finally, we outlined dif-
ferent data mining strategies in the context of algorithm
selection and presented a typical use case for SPDM, the
generation of selection functions for stochastic simulation
algorithms.

As the use case in section 6 illustrates, algorithm selection
may sometimes concern only a subset of the configuration
space, e.g., if only one or two configurations dominate the
others – but to detect such situations will be greatly facil-
itated by an automated performance data analysis. More-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5659 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5659 



over, the gain of selecting the better of both dominant con-
figurations might still be worth the effort, especially if the
effort of trying out various data mining schemes is reduced
to a few minutes, as intended by the SPDM framework.

While SPDM itself is up and running, further work needs
to be done until a fully-automated algorithm selection for
James II is in place. Most importantly, the work-flow of
parameterizing a set of benchmark models, exploring the
simulation space, selecting some features, and interactively
exploring the data mining results is still in its infancy. To
investigate the applicability of a given data mining method
to algorithm selection, much more performance data and
additional sets of simulation algorithms are needed.
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