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ABSTRACT

Today’s graphics processing units (GPU) have tremendous
resources when it comes to raw computing power. The sim-
ulation of large groups of agents in transport simulation has
a huge demand of computation time. Therefore it seems
reasonable to try to harvest this computing power for traffic
simulation. Unfortunately simulating a network of traffic is
inherently connected with random memory access. This is
not a domain that the SIMD (single instruction, multiple
data) architecture of GPUs is known to work well with. In
this paper the authors will try to achieve a speedup by com-
puting multi-agent traffic simulations on the graphics device
using NVIDIAs CUDA framework.

Categories and Subject Descriptors

I.6.8 [SIMULATION AND MODELING]: Types of Sim-
ulation—Parallel ; D.2.8 [Software Engineering]: Met-
rics—performance measures

1. INTRODUCTION
Over the last decade, the graphic cards found in common

home PCs have evolved from mere display devices over 3D
rendering devices to today’s generally programmable multi-
core devices. There has been some research on harvesting
the computational power of GPUs[19] [2] [17] [6] based on
OpenGL and DirectX. But it proved to be rather cumber-
some to express general algorithms in terms of textures and
3D operations. Also, the absence of any other data primi-
tive than float numbers has been a drawback for many possi-
ble applications. Lately relevant graphics device companies
(NVIDIA and ATI/AMD) have come up with frameworks
(SDKs) to program GPUs for general problems. These SDKs
are named FireStream[1] and CUDA[7]. Nowadays in the
presence of these SDKs the premises have changed rather
dramatically. It has become feasible to take a given –CPU-
based– algorithm and convert it for GPU execution rather
straight away.
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Problem domains like fluid simulation or molecular dy-
namics, where a small amount of code has to be run on a
huge amount of independent data, successfully adopted the
GPU as their computational needs intrinsically fit into the
SIMD architecture of the GPU.

Simulation of networks –or, as in this paper, of traffic
networks– have in common that they move entities over a
randomly connected network. This highly depends on the
use of random access memory and dynamic data structures.
Thus, the architecture of GPUs is seemingly not the best fit
for their demand. Nevertheless the GPU still has remarkably
fast access to the main memory, albeit without a big cache.
On modern CPUs sophisticated caching techniques help to
speed up random memory accesses. The CUDA framework
tries to mask the lack of caching by computing other threads,
while one thread has to wait for a global memory access.

Therefore it might be possible to benefit from the multi-
core architecture and the fast memory, though it might not
carry the high yield that other domains can achieve.

In the further paper the NVIDIA Framework CUDA is
used for implementing a traffic simulation. The outline of
this paper is as follows: After presenting the related work
in the next section we will recall some fundamental facts
about the hardware used as well as the queue traffic simu-
lation that will be implemented in section 3. In the fourth
section we will describe the various different data structures
and variations of the queue simulations algorithm we bench-
nmarked. The results of the benchmarking will be presented
in section 5 and a conclusion will be given in the last section
of this paper.

2. RELATED WORK
The MATSIM[22] framework has been used thoroughly in

large scale traffic simulations. It is known to deliver plau-
sible results in terms of every day traffic. The MATSIM
framework uses genetic algorithms to simulate typical week-
day traffic. It starts with an initial demand, computed from
several data sources, e.g. census data, questionnaires. This
initial demand consists of complete activity chains for all
agents for the whole day. This demand is then executed with
a mobility simulation, summing up the experienced travel
times delays and times of activity for every agent. After
each iteration, new plans are being calculated, based on the
results of the simulation run. Therefore a fitness function,
which determines how the experienced travel/activity times
should be rated, is defined and genetic algorithms generate
new mutations of the executed plans with respect to this
fitness function. The new plans will be executed in the sim-
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GeForce 8600 GT
Num. cores 32
Clock rate 1.18GHz
Mem bandwidth 7638 MB/s

GeForce GTX280
Num. cores 240
Clock rate 1.3GHz
Mem bandwidth 120 GB/s

Table 1: Technical data of GPUs used

ulation again. This process converges to a Nash equilibrium.
The range of iterations necessary for the system to move to-
wards a Nash equilibrium can vary from a few iterations
up to several hundreds. Therefore reducing the execution
time of the mobility simulation is of great interest. There
are different implementations of the mobility simulation in
the MATSIM framework. The most advanced is the java-
based implementation of the queue simulation algorithm[3].
Although it has been tried to implement a multi-core ver-
sion of the queue simulation on a beowulf-cluster the results
implied, that the ethernet network latencies –even on an
Gigabit network– make it difficult to gain a decent speedup
by adding more clusters. A solution was the use of special
Myrinet network hardware, but the overall cost of such a
cluster is high[4]. We therefore concentrated on optimizing
the single-CPU version of the queue simulation in recent
years. To use cheap commodity hardware to speedup the
simulation on a single computer would be of great benefit.
In this paper several GPU based version of this queue simu-
lation algorithm will be presented to gain a relevant speedup
on a single computer system.

The GPGPU toolkits have been widely adopted by re-
searchers and industry alike. Todays GPUs are used in
many fields, for example in molecular dynamics[18], gas and
fluid dynamics[16], astro-physics[10] [11], for coupled map
lattices[14] genetic programming[23], graph algorithms[12]
as well as DNA sequencing[24] or even database queries[15].

Most of these examples bear in common, that they in-
volve very computation intensive operations and are known
as being highly adaptable to a SIMD architecture. GPUs
are optimized for SIMD operations, as most of the tradi-
tional duties in the field of rasterization of 3D images can
efficiently be computed in that way.

We retrieved only three papers dealing with multi-agent
simulation and GPU computation alike. Two papers were ei-
ther restricted to the ant model of multi-agent simulation[8],
and therefore nor concerned with network topologies or just
benchmarking the GPU with multi-agent games like ”game
of life”[21]. One more research group we found has released
a preliminary paper on field based vehicular simulation with
GPUs[20]. This paper does not present any results though.
The topic of network simulation on GPU is shortly discussed
in another report on benchmarking GPU applications, it im-
plements the MITSIM[9] algorithm on a GPU[5]. No other
paper of our knowledge deal with network based multi-agent
simulation at this time.

3. PRELIMINARIES
In this section we will shortly describe, which GPU ar-

chitecture we will use as well as how the CUDA framework
is structured. Furthermore we will summarize the queue

simulation algorithm and the necessary data structures.

3.1 The NVIDIA GPU and CUDA framework
NVIDIA GPUs can be found in roughly 70 million PCs

and notebooks around the world. The recent G80 series
of NVIDIA GPUs had up to 128 cores and 1GB of mem-
ory. The newer G200 series reached a computational peak
of 1 TFlop (single-precision floating point operations per
second). In this paper one G80 series GPU, namely the
Geforce 8600GT and one GPU of NVIDIAS latest G200 se-
ries (GTX280) will be used. Table 1 gives an overview of the
number of cores and the clock rate of either RAM and GPU
for these models as well as their typical memory bandwidth.
The older G80 GPU is assembled on a passive-cooled graph-
ics card, the memory bandwidth is notably lower than that
of average G80 cards. The latest version of the CUDA frame-
work (Version 2.0)[7] under Windows XP is used to imple-
ment our algorithms. The CUDA framework is an extension
to the C language that enables us to write code for CPU and
GPU in the same file. It therefore is rather easy to program
in for any experienced C/C++ programmer. It basically
adds the keywords __device__, __global__, __host__ as
method decorators to indicate whether the methods are run
on the host CPU or the GPU and from where they could be
called. Additionally it adds a syntax for describing with how
many parallel threads a method should be started. Methods
declared global are so called ”kernels”. These kernels could
be called from the ”host” (the PC/CPU the graphics device
is running in) and run on the GPU. These kernels run si-
multaneously on different data sets in multiple threads of
execution.

As we only have a limited number of ”real” hardware pro-
cessors, threads are joined to thread blocks, which again are
bundled to a grid of thread blocks. This distinction is neces-
sary as a block of threads (with recently up to 512 threads)
is sharing a set of registers as well as a rather small on-
chip memory area. Threads running in the same block can
be synchronized with each other, whilst threads amongst
block of threads cannot be synchronized. Threads within
a block can also access a small amount of additional local
shared memory. Though only up to 512 threads can make
up one block of threads the grid of blocks can run thousands
or even trillions (the actual upper limit of individually in-
dexable threads being 65536 × 65536 × 512) of threads in
parallel.

The architecture of the G80 series consists of 16 multipro-
cessors with 8 thread processors each, summing up to 128
processors that can execute kernels in parallel. Blocks of
threads are run in warps of 16 threads. Reads and writes to
global memory can be done in random access, i.e. the SDK
offers gather and scatter operations.

Nevertheless, as there is no effective caching in place, this
access gets expensive when it does not obey a rather strict
regime of SIMD execution. To avoid this, a block of threads
will be suspended when an out of order memory access is
demanded. While this block of threads waits for the memory
access to be done, other blocks could do some work. A rather
high number of threads is needed to mask these out of order
memory accesses. It is important to maintain a high rate of
memory accesses that are indexed by the actual thread ID,
as these –so called coalesced– accesses could be handled in
an optimized fashion causing an order of 10 less latency.
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3.2 The queue simulation
The queue simulation algorithm uses a graph for repre-

senting the traffic network. The streets are represented by
links in the graph and the junctions by the nodes of the
graph. This network is filled with agents. Every agent has
a predefined plan for the whole day. This plan contains a
succession of activities each with a route to travel from one
activities location to the others.

3.2.1 Data structures for the queue simulation

For implementing the queue simulation we basically need
dynamic fifo (first-in first-out) queues. As it is not possi-
ble to allocate memory on the fly while executing kernels,
we must find a way to safely allocate some upper limit of
memory for all data structures. Fortunately it is possible
to make reasonable assumptions about the biggest size the
queues can have.

One queue holds all vehicles traveling along the link. This
queue is limited by the maximum number of vehicles the link
has space for, often calculated as

spacelink = length ∗ lanes/carsize

A second queue is needed to hold vehicles, which are ready
to leave a link in the actual timestep. The maximum size
of this queue is given by the flow capacity of a link in the
given timestep. For every link the flow capacity is the maxi-
mum number of vehicles that can travel the link in a certain
timestep. The timestep used in our simulation is usually 1
second.

sizebuffer = capacityflow ∗ ∆ttimestep/∆tflowperiod

Therefore the maximum size of both queues is known and
can be allocated before a simulation is run.

3.2.2 The simulation loop

The queue simulation of traffic is based on a rather sim-
ple algorithm. Above defined buffers are used for storing
vehicles, that are moving on the streets. Each link holds ve-
hicles, that travel along, in a queue. When a vehicle enters
the links queue, the minimum time duration is calculated
that the vehicle has to spend on the link using the given
maximum speed allowed on the actual link.

timelink = maxSpeedlink ∗ lengthlink

Vehicles stay in this queue until they have traveled the
link, i.e. this above time is spend. They are ready to leave
the link when two more conditions apply. First, no more
vehicles can leave the link than the link has flow capacity
for this timestep. To assert this condition the second the
buffer for outgoing vehicles with its confined space is used.
Vehicles are being moved from the link to this buffer only
if there is still room in this buffer. Second, a vehicle in this
buffer can leave if there is space left in the destination links
queue.

void sim ( ) {
while ( time != end ) s imstep ( ) ;

}

void s imstep ( ) {
time++
for a l l l i n k s : moveLink ( )
for a l l nodes : moveNode ( )

}

void moveLink ( ) {

depart = get departure time o f f i r s t veh in queue
while ( depart < now && bu f f e r . hasSpace ( ) )
{

move veh to bu f f e r
remove veh from l i n k
depart = get departure time o f next veh in

queue
}

}

void moveNode ( ) {
for a l l incoming l i n k s bu f f e r s :
{
while ( bu f f e r i s not empty )
{

dest = de s t i n a t i on l i n k o f f i r s t veh
i f ( dest . hasSpace ( ) )
{

move veh on top to de s t i n a t i on l i n k
} else {

// i f f i r s t veh cannot leave , none can
break and return ;

}
}

}
}

Listing 1: Pseudo code for transport simulation

The movement code of the queue simulation is drafted
in pseudo code in listing. 1. This code does not handle
insertion and removing of vehicles on their source and des-
tination links. This is handled in an additional step in an
extra kernel execution.

As we can see from the code, each simulation step con-
sists of two large loops. Each moveLink() call is indepen-
dent from each other, as it only accesses the link and the
buffer of a link. The whole loop could easily be executed in
parallel. As we have a few thousands to hundred thousands
of links in an typical simulation, this also yields a sufficiently
high number of threads to mask the necessary out of order
memory accesses.

The calls to moveNode() are completely independent too.
Although the buffers insert the vehicles into different queues
of the vehicles destination links, these links are all only con-
nected with this one node, so all nodes can be run in par-
allel without mutually competing for link spaces. Using the
nodes to distribute the outgoing vehicles gives us distinct
control over the priorities these links have at a certain node.
It is therefore possible to prioritize e.g. the main road. The
drawback of this in terms of parallel execution is that we
have this double nested loop in the moveNode() method,
leading to a highly serial execution path. This causes some
additional uncoalesced read/write operations.

A second version of the algorithm has been implemented,
where all link buffers run in parallel and deliver their vehi-
cles concurrently. This apparently leads to race conditions
in respect to the free spaces in a destination links queue.
Fortunately the CUDA framework has functionality to ac-
cess and change global memory in an atomic operation. A
get-and-increment atomic operation is used to ”occupy” a
linkspace for one vehicle in a safe manner. Therefore it is
guaranteed that no vehicle will be overridden and lost.

This atomic operation is more expensive than a regular
memory access, but resolving the double nested loop will
hopefully lead to a higher degree of parallel execution. This
variant of the original algorithm has been benchmarked too
for every data structure used further on.

To run our code on the GPU we declare the moveLink()

and moveNode() methods as kernels and call them with an
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appropriate number of threads. The overall number of thread
is of course the number of links respectively nodes in the net-
work, so that every link/node is run in a separate thread.

As been said, the CUDA framework is basically the C
language with some concepts for kernel definition and exe-
cution added. It is rather straightforward to implement a
naive version of the traffic simulation. With the basic algo-
rithms above, the queue simulation is easily implemented on
a CPU. It is parallelized by declaring some portions of it –
namely the moveLink() and moveNode() methods– to run it
on the GPU. This is done by declaring the methods as ”ker-
nels” and changing the calling code to reflect the number of
threads to run in parallel.

In the further paper this implementation will be used to
run the simulation. Only the underlying data structures of
the buffer will be changed to achieve speedups.

3.2.3 Handling of activities

In our simulation every agent has a structured plan for
the whole day. This plan consists of activities and routes
between these activities. Obviously, for a traffic simulation
the routes between the activities are the interesting bits.
Therefore executing an activity is done by having the agent
”wait” for the end of the activity somewhere outside the
traffic simulation.

Each agent starts and ends with an activity called ”home”.
In between these two activities he can do numerous other ac-
tivities, e.g. ”work”, ”school”, ”leisure”, ”shopping”. This
daily plans data structure is held in a big array for all
agents and there is an additional administrative array hold-
ing pointers to the beginning and end as well as to the actual
position within the plan for each agent. Each activity in a
plan has a defined departure time. Each route is a sequence
of links the agent has to travel. Each time the agent passes
a link the position pointer of the agent’s plan is increased.
This also is done, when the agent leaves an activity.

When an agent reaches an activity, he/she is removed from
the traffic simulation as the attended activity is outside of
the traffic simulations scope. When the departure time for
an activity is reached, the agent is inserted into the traffic
simulation again. A separate kernel is responsible for taking
care of this process. At every timestep this kernel runs over
the plans of all agents in parallel and checks whether the
plans position of this agent points to an activity and if so, if
a particular agent needs to be inserted into the traffic sim-
ulation again (i.e. he is attending an activity and activity’s
endtime is reached or passed).

This is probably not the most efficient implementation of
the insertion process and will most likely not scale well with
increased agent count. There are several ways to alleviate
this problem in future versions of the simulation, but as
these optimizations would be most likely GPU specific, this
is beyond the scope of this paper. The question this paper
wants to answer is, if it is possible to gain a speedup by
using GPU hardware and mostly CPU oriented algorithms.

4. VARIOUS IMPLEMENTATIONS

4.1 Data structures
When programming in Java or C++ there are libraries

of several dynamic data structures in place one can rely
on when it comes to implementing buffers. In the CUDA
framework, these data structures are absent. Therefore all

Start Pos End

S P E S P E S P E...

Admin Data Struct

Array of admin structs

Array of all vehicle data

Veh Veh Veh Veh EmptyEmpty ...

Index 0 1 n

Figure 1: Administration structure for vehicle data
on link/in buffer

dynamic data structures have to be implemented manually.
Namely this is the fifo buffer needed for the queue simula-
tion. As there is no way to allocate/deallocate memory in a
kernel, all memory has to be previously allocated by using
the maximum sizes mentioned above.

The dynamic queues on the GPU will be implemented
by using two distinct blocks of data. One big unstructured
piece of memory stores the actual vehicle data. Another
array of administrative data points into this big array of
vehicle data. It holds the start, end and insertion positions
of the respective link or buffer. Similar data structures have
been utilized for graph search algorithms[12] before.

4.1.1 Array of structs

In Fig. 1 you find the typical data structure for link ad-
ministration. For every link it contains information about
the starting position of this links data in the big vehicle ar-
ray as well as the end position and the insertion point for
the next vehicle. The position member tells us how many
of the queues slots are actually filled with cars right now.
If pos == start, as it is to the beginning of the simulation,
there is no car in the queue, otherwise all cells from start
to pos are filled with car data. The integer values start, pos
and end refer to indices inside of the big chunk of unsorted
car data.

If we add a vehicle to the link or buffer we insert it at
the position pointed to by the pos member of the struct and
increase this member by one to point to the next free space.
If we, on the other hand, want to remove one car from the
start of the queue, we have to move all remaining cars one
position nearer to the start and decrement the pos pointer
to point to the now empty slot.

In the case of not using the moveNode() method an atomic
operation is necesary to ensure that no cars get lost is the
increase of the pos pointer, when a vehicle is moved from
the buffer to the links queue. CUDA provides a method to
receive the content of a global memory position and increase
it in one atomic operation. This content point to a unique
memory position within the buffer, which is reserved for the
thread that issued the atomic operation. If the received
position is before the end position of the particular link,
the vehicle can move there, otherwise the destination link is

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5666 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5666 



full. No other buffer can index this position anymore as the
position pointer is already increased by one.

Performance results in table 2 (marked as AOS respec-
tively AOSNODES) show that this implementation of the
administrative data structure bears some drawbacks. Two
neighboring threads have to access memory with an offset
of the size of the struct in fig. 1. This leads to uncoa-
lesced memory accesses. This comes with a high perfor-
mance penalty. To ease the uncoalesced memory accesses it
is necessary to align the data accessed by two neighboring
threads by 8, 16, 32 or 64 bytes. This can be achieved by a
rather simple transition of the data structure.

Array of n

Start[n] Pos[n]

Array of n

End[n]

Array of n

S P E

S P E

S P E

.

.

.

Admin Data Struct

Struct with admin arrays

Index

0

1

n

Array of all vehicle data

Veh Veh Veh Veh EmptyEmpty ...

Figure 2: SoA layout for the administrative struc-
ture

4.1.2 Struct of arrays

Instead of using an array filled with structs of the above
layout, this struct is changed to hold pointers to arrays of
a simple data type, i.e. an integer value in this case. This
will –in terms of memory access– give lead to a memory
layout that better aligned with thread indices. Two adjacent
kernels will have adjacent memory accesses, separated by
4 byte integers, which enables coalesced memory accesses,
the fastest way to access the global memory from a thread
block. In terms of the implementation it is also a simple
optimization step, as one only ”shifts” the index to the right.
This has been done to all administrative memory layouts
and the allocation code has to be slightly adopted. The
changes layout of the data structure is illustrated by fig.
2.This Struct of Arrays (SOA) layout has been suggested
from the CUDA team[13].

The actual struct is to change from the form in fig.3(a) to
that in fig.3(b). Likewise the implementation needs changes.
A former expression
int size = array[index].pos − array[index]. start ;
will change to
int size = array.pos[index] − array.start [index ];

This transition could be done in a nearly mechanical way.
It was applied to the buffer and the link’s and agent’s ad-

ministrative structs. Results of this simple data structure
”optimization” could be found in table2 as SOA and SOAN-
ODES.

QueueAdmin{
int pos ;
int s t a r t ;
int end ;

}

(a) AoS before

QueueAdminSoA{
int pos [ ] ;
int s t a r t [ ] ;
int end [ ] ;

}

(b) SoA after

Figure 3: Translation of the struct from AoS to SoA.

4.1.3 Ring buffers

Another drawback of the above implementation is the
need to shift remaining vehicles in the buffer whenever a
vehicle is removed. This leads to performance penalties in
a congested situation, when only a small amount of vehicles
is allowed to leave a link and all remaining vehicles must
be moved forward each timestep. This causes uncoalesced
memory accesses, which should be avoided. A common way
to avoid this is the use of ring buffers known from file I/O
implementations. A possible ring buffer data structure is
given by the following struct, as illustrated by fig. 4.

QueueAdminRing{
int s t a r t [ ] ;
int l en [ ] ;
int ep [ ] ;
int count [ ] ;

}

The ring buffer comes with some extra overhead in ad-
ministrative data and effort. The ring buffer implementa-
tion above has one start pointer, that is pointing into the
vehicles block to indicate this links first memory position as
before. The other members of the struct are relative to the
start position. The len member gives us the maximum size
of this buffer. So start + len point behind the last element
of this buffer. The ep (extraction point) member indicates,
where the first element of the actual queue resides. The
count member is also relative to the extraction point mem-
ber and indicates how many units are in the queue right now.
Vehicles are removed from a memory position calculated by

postop = start + ep

.
Up to count vehicles can be removed from there, calculat-

ing the next position as

nexttop = start + (ep + i) mod len

where i runs from 0..count -1. We can insert up to len -
count vehicles at the insertion position calculated as

posinsert = start + (ep + count) mod len

Insertion and removal of vehicles does not need to move
any existing vehicles anymore, enhancing situations where
the AOS data structure was not performing well. The size of
our administrative data structure is increased by one integer
which could result in performance losses in the uncongested
timesteps of the simulation.

Results show that the ring buffer implementation clearly
outperforms the AOS version in all simulation runs, gaining
even more advantage with higher network load.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5666 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5666 



Array of n

Start[n] ep[n]

Array of n

Count[n]

Array of n
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Admin Data Struct
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Index

0

1

n

E C LS

E C LS
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Array of all vehicle data

Veh Veh Veh Veh EmptyEmpty ...

len[n]

Array of n

Figure 4: Administration structure implemented as
a ring buffer

4.2 Algorithms

4.2.1 Node versus buffer movement

One particular non-parallel part of the simulation algo-
rithm described above is the double-nested loop in the moveN-
ode() code. By stepping through the incoming links in pre-
defined sequence of choice, one has the opportunity to reg-
ulate the traffic at a finer level if there is demand for it,
e.g. one could have streets with higher capacity move first.
Dropping this behavior in favor of letting the buffers freely
compete for a space on the vehicles destination link, a kernel
can be run over all link buffers in parallel. It might be ben-
eficial to the performance if the outer loop of moveNode() is
removed and the kernel is run over all buffers in parallel.

void moveBuffer ( ) {
while ( bu f f e r i s not empty )
{
ATOMIC ( get po in t e r to a unique f r e e space on

de s t i n a t i on l i n k )
i f ( po in t e r i s VALID)
{

move veh on top to de s t i n a t i on l i n k
} else {

// i f f i r s t veh cannot leave , none can
break and return ;

}
}

}

Listing 2: Pseudo code for concurrent buffer
movement

Listing 2 describes the new method moveBuffer(). One
change to the code is necessary in terms of memory access.
Before, the nodes controlled access to their outgoing links
and there was no race condition for the links free spaces, as
every link is only connected to exactly one node that could
possibly insert vehicles into the link. When running in paral-
lel over all buffers, two buffers of incoming links of the same
node could try to insert their first vehicle onto an outgoing
link at the same time. To race condition could be resolved
with the ability of CUDA to issue atomic operations to
global memory. In this case an atomic fetch-and-increment
operation secures a link space position for an outgoing vehi-

cle and increases the pointer to free space to another place
in one atomic instruction, guaranteeing the returned pointer
to be unique. This implementation was run additionally to
the moveNode() runs. The regular movement code with the
moveNode() method could be found in the results with the
post-fix NODES, i.e. AOSNODES, SOANODES, RINGN-
ODES. The runs with moveBuffer() do not have a post-fix,
i.e. AOS, SOA, RING. The results will show, that the ex-
tra speedup provided by dropping the explicit control over
the nodes/junctions scheduling algorithm is minor, there-
fore using the more elaborate moveNode() algorithm is to be
prefered.

4.2.2 Separate vehicle movement

One additional code mutation was implemented dealing
with the actual movement of vehicles within the moveNode()
respectively moveBuffer() code. This code variant was only
implemented for the best performing data structure RING.
The (uncoalesced) movement of vehicle data within the in-
ner loop was replaced with a simple integer write into a new
index array. In a separate kernel, the actual movement of
the vehicles was computed. This movement could then be
performed in a more coalesced manner. Only the index writ-
ing was out-of-order. The performance improvements of this
where not as big as expected, although this variant turned
out to be the fastest on the GeForce 9800 GT card, the im-
provement was small and could not be reproduced on the
GTX280.

Figure 5: GeForce 8600GT speedup relative to java
implementation

5. PERFORMANCE RESULTS
Several samples of an existing simulation run of the traf-

fic in the Zurich area were chosen to benchmark the per-
formance of the data structures. Samples of approximately
850k agents (100%), 425k agents (50%), 212k agents (25%),
85k agents (10%) down to a mere 8.500 agents (1%) were
used. The network consists of about 37k links and 24k nodes.

First, all of these samples were run on our highly opti-
mized Java version of the MATSIM mobility simulation. As
the two implementations, the GPU approach on the one
hand and the optimized java implementation on the other,
differ in their algorithms rather significantly the measured
performance is not easily compared. The java version does
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Figure 6: GTX 280 speedup relative to java imple-
mentation

additional operations (e.g. creating events) that are not im-
plemented in the GPU version. On the other hand this
version is capable of disabling links with no traffic, therefore
being highly inexpensive when there is no or little traffic in
the network. Despite these differences the comparison still
gives a rough idea of the performance improvements of a
GPU implementation.

The simulation was run with the differently sized agent
samples on the CPU and the two GPUs. The Java and
the CPU versions were run on a Intel Pentium Dual Core
2.2 GHz, the GPU version on a desktop computer with a
GeForce 8600 GT and one with a GTX200. The technical
data of these cards could be found in table 1. The perfor-
mance results can be found in fig. 5 for the older GeForce
8600 GT and in fig. 6 for the GTX 280. To get a better
understanding of which part of the speedup must be at-
tributed to not using dynamic data structures and the Java
language we implemented a CPU version of the CUDA C-
like code, which was executed on a single core at 2.2Ghz. As
we can see from fig. 7 the CPU version was slower than the
Java version for the simpler implementations, but a little
bit faster for the RING variations. It is also interesting to
notice the difference in caching schemes between CPU and
GPU which results in the SoA approach to be even a little
slower than the AoS implementation on a CPU. This is in
stark contrast to the 8600 GT results in fig. 5, where the
SoA implementation was significantly faster on all runs.

On the GPU the different samples were run for the three
given data structures (array of structs (AOS), struct of ar-
rays (SOA) and ring buffer (RING)) in two code variants.
One with the original moveNode() code that serializes the
traffic on the nodes for finer control over the streets priori-
ties, marked with NODES, and one where all buffers com-
pete for linkspace with no post-fix. Two additional runs
(RING2, RINGNODES2) were benchmarked with the sep-
arated vehicle movement. The speedups in these diagrams
are relative to the java versions runtime.

As we can see from the results on the GeForce 8600GT
our naive implementation can at least compete with the java
version. Using a data structure more suitable for our needs
will brings it up to a speedup of 6 over the java version.
Changing the movement code for the vehicles improves the
performance not necessarily, though.

Figure 7: Single CPU speedup relative to java im-
plementation

On the newer GTX280 all runs were faster than the java
version. The GTX280 has 7.5 times the number of proces-
sors of the GeForce 8600GT, therefore it should give us an
performance improvement of this magnitude as well. It ap-
parently does so for the data structures AoS and SoA, as
the speedup is around 8 for these data structures. With the
more sophisticated ring buffer, it reaches a speedup of over
60. This must be attributed to the improved memory man-
agement of the GTX280 and the much higher memory band-
width this card offers. This is a very promising result, as it
implies that our implementation will automatically profit
from coming hardware improvements.

6. CONCLUSION AND OUTLOOK
As one can see from the above results these simple ”op-

timization” leads to a performance gain around the fac-
tor 6 from an unsuitable data structure to the ring buffer
implementation. A speedup of up to 67 times compared
against out highly optimized java version was achieved. This
speedup was achieved by using proper data structures adopt-
ing an algorithm developed for CPU usage. The GTX280
GPU could simulate up to 16000 seconds within one second
of realtime with an relevant population sample (10%). Some
more peak realtime speedups could be found in table 2.

Nevertheless the code is far from being optimized. Several
well known parallel algorithms like prefix scans or double
buffered techniques could be used, to speed up the simula-
tion code. This implementation uses the simplest possible
way to activate the agents, i.e. to look at every agent in
every timestep and check if it needs activation. This seems
a certain candidate for further optimization. It apparently
does not scale very well with increasing agent count. Pro-
filer runs with the actual implementation indicate that this
part of the program gets the dominant factor with increasing
agent count. Still it should feasible to ”sort” the agents into
some buckets, regarding their planned departure time and
then only inspect that one bucket for every timestep, that
hold the agents with a departure scheduled for this timeslot.
Not having truly dynamic data structures might be prob-
lematic, as one would have to reserve space for all agents in
every bucket, to make sure we can handle every thinkable
constellation of departure. On the other hand, one might
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Impl 10%k 25% 50% 100%

Java opt. 462 308 181 108
GPU 8600 GT 1419 1077 816 585
GPU GTX280 16.383 12.892 9695 6699

Table 2: Speedup against realtime for different num-
ber of agents

fill smaller buckets and mark them with an timstep, having
to run over some smaller buckets with the same timestep
instead of one large. To investigate further improvements
will be part of our future research.
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