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ABSTRACT
Despite a considerable number of topology generation al-
gorithms for simulation of wireless multihop networks it is
difficult to find one with output similar to real networks.

We propose NPART – a Node Placement Algorithm for
Realistic Topologies whose output topologies resemble net-
works encountered in reality. The algorithm is flexible since
it is sufficient to provide it with different input data to obtain
different topologies. To demonstrate its quality, we compare
topologies generated by NPART algorithm with our mea-
surements from open wireless multihop networks in Berlin
and Leipzig. Compared with real topologies, the generated
topologies have almost identical node degree distribution,
similar number of cut-edges and vertices, and distribution
of component sizes after bridge removal.

The importance of node placement algorithm is demon-
strated by comparing ns-2 simulation results for grid and
uniform node placement with NPART generated topologies.
Simulation results show that node placement model plays
as important role in simulation outcome as the accuracy of
wireless signal propagation model.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication; C.2.1 [Network Architecture and Design]:
Network topology

General Terms
Algorithms, measurements

Keywords
Node placement, topology generation, simulation, wireless
multihop networks

1. INTRODUCTION
Wireless multihop networks (WMNs) are used for various

purposes such as Internet access, sensing and logistics appli-
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cations. Each of usage scenarios requires a dedicated pro-
tocol in order to offer sufficient quality and performance to
end users. Verification of a developed protocol is necessary
and, usually, it is performed by simulators due to their low
operating cost and fast setup. Quality of simulation directly
depends on simulation model. The model of WMNs is com-
plex and it consists of five sub-models: node model describes
hardware and software of a node; deployment and mobility
models provide node positions and their movement patterns;
radio model describes the characteristics of the radio used
by the node; wireless signal propagation model deals with
attenuation and characteristics of wireless channel; traffic
models define traffic patterns in a network.

Some of sub-models are based on real data measurements
(e.g., wireless signal propagation [1], traffic models [21]).
However, some of them are synthetic and somewhat arbi-
trary like the topology generators/node placement models.

In [10], [11] and [13] we have presented results of measure-
ments from wireless mesh networks in Berlin and Leipzig.
The analysis based on 1500 topological samples from each of
networks showed that properties of artificial topologies are
substantially different from properties observed in reality.
Table 1 illustrates the differences between sample simulation
setups and characteristics of their topologies and charac-
teristics captured through measurement. The predominant
uniform placement model has issues in reproducing reality:
in order to produce connected topologies, node density must
be increased. This may create higher channel contention
in simulation studies than it is to expect in protocol de-
ployments. Higher node density also reduces the number
of bridges and articulation points in a network. They are
significant since their failure disconnects the network.

The main approach in natural sciences such as physics is
to observe reality and create a model that reflects it. Most
of the existing node placement models do not follow this
approach: they have not been inspired by reality nor verified
by measurements. In order to correct this fundamental issue,
we propose algorithm that produces realistic topologies.

The paper is organized as follows: Section 2 provides def-
initions, Section 3 reviews existing topology generators for
WMN simulations. In Section 4, we present our node place-
ment algorithm. Section 5 shows that the developed algo-
rithm generates topologies whose properties reflect the char-
acteristics of real networks.

2. DEFINITIONS
We use undirected graphs to model communication in

WMNs. In a communication graph, network nodes are rep-
resented as vertices. If a node p is able to communicate with
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n Area R d̄ b̄ āp c̄

Berlin 315 / / 4.02 93.59 75.93 1
Leipzig 586 / / 4.35 101.39 93.32 1

Ngai [16] 100 200x200 40 10.34 0.24 0.43 1.09
Zhu [24] 100 1500 250 7.54 1.54 2.38 1.39

150 x1500 11.19 0.35 0.49 1.08
Wu [23] 100 100x100 25 15.49 0.07 0.09 1

300 46.67 0 0 1

Table 1: Comparison of sample simulation se-
tups from literature and networks from Berlin and
Leipzig. R is communication radius, n number of
nodes, d̄ is the average node degree, b̄ and āp are
average number of bridges and articulation points.
The average number of network partitions is c̄.

a node q there exists an edge pq in the graph. The following
terms and definitions are used in the paper [22].

The degree of a vertex v is the number of edges incident
on v. A pendant vertex is a vertex of degree 1. Maximally-
connected subgraph is a graph such that there exists a path
between any pair of nodes (p, q). Components of a graph G

are its maximally-connected subgraphs. A bridge in a graph
(cut-edge) is an edge whose deletion increases the number of
components. An articulation point in a graph (cut-vertex) is
a vertex whose deletion increases the number of components
in the graph. Given an undirected graph, a degree sequence
is a monotonic nonincreasing sequence of degrees of its ver-
tices. A degree set is a set of integers that make up a degree
sequence. The frequency of an event i is the number ni of
times the event occurred in the experiment. The frequency
can be absolute when the counts ni are given, and relative
when counts are normalized by the total number of events.

3. RELATEDWORK
In WMN research, the most frequent node placement mod-

els are chain, grid and uniform. The chain placement model
places nodes equidistantly on a line. In the grid placement
model (also known as the mesh placement), nodes are lo-
cated at intersections of a rectangular grid. Number of edges
in grid depends on node communication radius, shape and
size of cell. In the literature these parameters are typically
chosen so that all nodes that are not on the grid border
have degree of four. In the uniform placement model, a
placement area (rectangular or circular) of size |A| is chosen
and n nodes are placed inside of it with the uniform prob-
ability puniform = n

|A|
. If the placement area is rectangular

((0, xmax), (0, ymax)), this is typically achieved by sampling
the x coordinate of a vertex from U(0, xmax) and y from
U(0, ymax).

It is particularly difficult to create connected low-density
topologies with the existing random placement models. To
ensure connectivity of a simulated network, node density
is increased. Bettstetter shows in [2] that for the uniform
placement model, nodes must have average degree of 10.8 to
obtain a network that is connected with probability of 0.99.
Li et al. [8] provide even higher estimation – they claim
that obtaining of the same connectivity probability requires
13.78 neighbor nodes on the average.

Such dense networks have strong impact on simulation
results since network diameter is significantly reduced, nu-
merous independent paths between each pair of nodes exist,
failure of individual nodes and losses on individual commu-

nication links do not impact the connectivity nor the func-
tionality of the network.

The need for improved node placement model in WMNs
has been already noticed and several non-homogeneous mod-
els have been proposed. Bettstetter et al. [3] place nodes in
accordance with the uniform process and then apply thin-
ning to it. The thinning operation removes nodes from a
network that have less than k neighbors within radius tr.
Parameters k and tr are specified by the user and they con-
trol the level of inhomogeneity of the topology. However,
authors of [3] discuss only the node placement, ignoring the
properties of topologies that are obtained from it.

Liu and Haenggi [9] propose two quasiregular placement
models. In the first, vertex coordinates are Gaussian dis-
tributed with the mean given by regular grid points. The
second selects vertices from a realization of the uniform
placement model such that every selected vertex is closest
to a regular grid point. The obtained topologies resemble
the grid structure but they are not as regular as grids. In
[5], a two-dimensional Gaussian distribution is used to de-
termine location of sensor nodes. This idea can be extended
so that there are multiple vertex focal points, each of the
focal points having a non-uniform distribution attached to
it.

Onat and Stojmenovic [17] propose considerably differ-
ent approach. They have developed several algorithms that
create connected topologies with high probability and allow
user to choose the average node degree. The shape of to-
pologies primarily depends on the selected algorithm. The
algorithms do not guarantee connectivity of their output - if
the end result is not connected, algorithm is restarted. Their
analysis focuses on algorithm complexity and probability
that created graph is connected. The probability density
function for node degree for each of algorithms is presented
and the differences among placement topologies created by
different algorithms is informally (visually) demonstrated.

4. NPART � A NODE PLACEMENT ALGO-
RITHMFORREALISTICTOPOLOGIES

Our goal is to develop a node placement / topology gen-
erating algorithm that is:

• Flexible – it is capable to create easily more than one
node distribution type.

• Realistic – if algorithm receives input based on mea-
surements from a real network, the algorithm-produced
topologies should have properties similar to the origi-
nal network properties.

• Random – the algorithm does not merely re-create a
sampled topology from measured node locations, wire-
less device parameters (power, receiving threshold),
signal to noise ratio. It is capable to create new, ran-
dom topologies while preserving the properties of flex-
ibility and realism.

The starting point for NPART development is taken from
[11]. In [11], the following sociological and technological rea-
sons that shape topologies of real networks were identified:

• It is more likely that new participants join the network
in areas where connectivity is already good.

• A participant in the network expects to have at least
a single communication link to the remainder of the
network.
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place nodes(nodes n, communication radius R,
number of candidates to evaluate per iteration retries):

placedNodes = place first node arbitrarily at (x,y)
minX=maxX=x
minY=maxY=y
repeat

minMetric=∞

repeat
repeat

x-coordinate=U(minX-R, maxX+R)
y-coordinate=U(minY-R, maxY+R)
create node candidateN from coordinates

until (candidateN ∪ placedNodes is connected)
m=apply metric on placedNodes ∪ candidateN

if(m < minMetric)
bestCandidate = candidateN

minMetric = m

endif
until(retries different candidates are evaluated)
if required, update minX, maxX, minY, maxY

based on bestCandidate location
placedNodes = placedNodes ∪ bestCandidate

until(all n nodes are placed)

Figure 1: NPART pseudo code description.

• A pendant node may become a seed for a new, larger
and well-connected subnetwork.

• It is the network that specifies the area it occupies, not
the other way around. Instead of defining the node
placement area like in most of the existing placement
algorithms, the network should be allowed to grow.

4.1 Algorithm description
The algorithm is presented in Figure 1. As input pa-

rameters, algorithm accepts n, the number of vertices to be
placed and communication radius R. The algorithm calcu-
lates topologies based on the path-loss model in which nodes
are able to communicate if their euclidean distance is less
or equal to the communication radius R. The user should
specify the additional propagation models in the simulation
(shadowing and Rayleigh fading [1]) to create realistic sim-
ulation results.

In the first iteration of the algorithm the first vertex is
placed at an arbitrary point (x,y) in two-dimensional space.
The variables minX and maxX are initialized to x, minY

and maxY to y. Values of these variables from iteration Ik

are used to determine the placement area of nodes in the
next iteration: in iteration Ik+1, x coordinate of candidate
nodes is uniformly sampled from (minX − R, maxX + R),
y coordinate is chosen from (minY − R, maxY + R). This
enables the network to grow, without need to predefine its
geographical size.

It is possible that a vertex placed in rectangle ((minX−R,
minY −R), (maxX + R, maxY + R)) in iteration Ik is not
connected to topology from iteration Ik−1. For example, let
the nodes A, B, and C be placed in the starting three it-
erations (Figure 2). The candidate vertex 0 in iteration I4

is disconnected from nodes placed in I3. Such vertices are
ignored and a new candidate vertex is generated. This con-
dition ensures connectivity of produced topology (function-
ality is implemented in the innermost loop of the algorithm
in Figure 1).

If the candidate vertex is connected with the topology
produced in previous algorithm iteration (such are the can-
didate vertices 1, 2 and 3), a user-defined metric is applied
to it. Section 4.2 describes four metrics that we have imple-
mented and tested. If the candidate vertex has lower metric

Figure 2: Placement area and candidate nodes.

than previous candidate vertices, it is considered as the best
candidate and its data is preserved (variable bestCandidate)
and the minimal metric value is updated (variable minMetric).

Retries vertex candidates are evaluated in each algorithm
iteration and only the best candidate is added to the topol-
ogy at the end of the iteration. If necessary, minX, maxX,
minY , maxY variables are updated. For example, if can-
didate vertex 3 is the best candidate out of three candidate
vertices in Figure 2, variables maxX and minY must be
updated. Number of evaluated vertex candidates per algo-
rithm iteration retries is parameter of the algorithm, and as
the number of evaluated candidates grows, the probability
that the produced topology is closer to the predefined goal
is increased.

After placement of all n nodes their locations can be trans-
lated so that they are in rectangle ((0, 0), (|maxX −minX|,
|maxY −minY |)). This step is optional and does not influ-
ence the functionality of the algorithm.

4.2 Quality metrics
A metric that evaluates quality of candidate vertices is

as important as the algorithm itself. Inappropriate metric
results in unsatisfactory topologies. Unfortunately, there
does not exist a universal metric. User must define a metric
and perform tests to check whether the algorithm and the
metric produce desired topologies.

Our goal are topologies that have properties observed in
real, user-initiated networks. In process of metric input se-
lection, it became obvious from experience with the existing
placement models that generic parameters such as the av-
erage node degree do not capture sufficient level of detail.
Realistic topologies can be produced only with more detailed
data that originates from measurements.

Capturing spatial node distribution and link quality met-
rics (e.g., signal to noise ratio, bit error ratio, packet loss
probability) in a real network would be an excellent input
for the vertex placement algorithm. However, antennas’ gain
cannot be automatically collected, signal propagation envi-
ronment is heterogenous and its impact on link quality can-
not be accurately measured with off-the-shelf components
that are commonly used in user initiated networks. Ad-
ditionally, due to privacy concerns not all participants in
such a network are willing to disclose their geographical lo-
cations, and even if they would, dissemination of such data
for scientific purposes would be coupled with serious legal
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limitations. In rare cases when it is possible to take samples
from user initiated networks, typically only the topological
information is available, without node location data.

We have implemented several metrics that use node de-
gree frequencies. We have chosen the degree frequency as
algorithm’s input because it provides a compromise between
detail level, feasibility of sampling, and data anonymity. De-
gree distribution can be used to efficiently describe networks
[15]. It is easily extracted from real networks, regardless
of the routing protocol type (proactive or reactive) and it
does not contain information of individual users. In proac-
tive protocols, it is trivial to calculate it. In case of reactive
routing protocols where no global topology view exists, node
degrees can be easily obtained assuming that nodes in the
network are cooperative: each node samples its degree and
shares it with the central repository. Small errors in sam-
pling (e.g., a node erroneously reports its degree) are hidden
by the larger set of correct data.

As input for distance and adaptive metrics, we calculate
relative node degree frequency from degree sequences from
all samples that were taken from Berlin’s and Leipzig’s net-
works. The relative node degree frequency of real network
is multiplied by number of nodes that should be placed by
the algorithm, creating absolute vertex degree frequency for
target topology target. For each candidate vertex that is
evaluated, absolute degree frequency candidate of topology
that it creates with already placed nodes is calculated and
compared with the target frequency.

The simplest, distance metric is a variation of the Man-
hattan metric:

d
X

degrees

(1targetd−candidated>0 · (targetd − candidated)+

+1targetd−candidated<0 · p · (candidated − targetd)) (1)

where 1A(x) is the indicator function, returning one if
x ∈ A, zero otherwise. The metric sums difference between
proposed and target vertex frequency if difference is posi-
tive. If the difference is negative (candidate topology has
more nodes of certain degree than the target topology), ab-
solute value of difference is multiplied with penalty factor
p. The penalty factor reflects user’s tolerance for exceeding
of degrees: increased tolerance is modeled by smaller values
for the factor p. If p = 1, the distance metric is identical to
the Manhattan metric [7].

The weakness of the distance metric is in its impossibility
to detect stronger need for creation of vertices with certain
degree. Some degrees are more frequent in the target de-
gree frequency so topologies that produce them should be
rewarded. For instance, if the algorithm should create 20
vertices with degree two and three vertices with degree four,
the metric should give greater reward (smaller metric value)
to topologies that increases number of vertices with degree
two in early iterations of the algorithm. The adaptive metric
resolves this issue:

d
X

degrees

(1targetd−candidated>0 · (targetd − candidated) · wd+

+1targetd−candidated<0 · p · (candidated − targetd)) (2)

Dist. Adapt.
Degrees 1 2 3 4 5 metric metric

Abs. Target
degree frequency 2 5 3 2 1 0 0

Abs. Placed
degree frequency 0 3 0 0 0 / /

Weights wd 0.2 0.2 0.3 0.2 0.1 / /

Candidate 1 0 2 2 0 0 9 1.8
Candidate 2 0 0 4 0 0 15 6.9
Candidate 3 1 2 1 0 0 9 1.9

Table 2: Example of Distance and Adaptive metric
calculation for node candidates in Figure 2. Param-
eter p is set to five, the number of retries is three.

and weight wd = |targetd−placedd|
P

d
degrees

|targetd−placedd|
, where placed

is the absolute degree frequency of vertices that form the
topology from the previous iteration.

Table 2 illustrates the application of distance and adaptive

metrics to the example from Figure 2. Nodes A, B and C are
already placed. Topology obtained in I3 defines the weights
wd for the I4. In fourth iteration three candidate vertices
are successively evaluated.

For each candidate vertex we calculate metric values by
Equations 1 and 2. The distance metric calculates equal
value for candidate vertices 1 and 3, so either of them can
be selected as the best candidate vertex. Adaptive metric
correctly chooses candidate vertex 1 as better, since it sat-
isfies greater need to create node of degree three (after I3,
three more nodes with degree three are required) than to
create node of degree one like the candidate vertex 3 (after
I3 two more nodes of degree one are needed to reach the
absolute target degree frequency).

In [12] we have compared the behavior of algorithm, used
with the distance and adaptive metrics, for different com-
binations of parameters p and retries. Input were degree
frequencies from Freifunk Berlin and Freifunk Leipzig net-
works. As quality measure of algorithm we applied the Man-
hattan metric [7] between targeted and produced absolute
degree frequencies. It was shown that the topologies pro-
duced with the adaptive metric are considerably better than
the topologies produced with the distance metric. Based on
this evaluation, we conclude that adaptive metric is better,
and topologies produced by it will be analyzed in more detail
in Section 5.

It is possible to extract additional degree data from topo-
logies. Let us observe relative degree frequency of neighbors
of a node p under condition that degree of p is k. Figure 3
shows that the conditional relative frequencies differ consid-
erably among themselves and to the joint relative frequency.

The metric secondary − Distribution uses these differ-
ences. First it calculates set of conditional relative degree
frequencies for candidate topology and then compares them
(using Manhattan metric) with the target conditional rel-
ative degree frequency. The combined metric is a linear
combination of adaptive and secondary metrics. It is possi-
ble to vary the penalty factor p in the adaptive metric and
weight s for the secondary − Distribution metric.

The pseudo code of all described metrics can be found in
[12].
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Figure 3: Conditional degree distributions.

5. EVALUATION OF CREATED TOPOLO-
GIES

This section compares properties of topologies produced
by the NPART algorithm and presented metrics with prop-
erties of real networks. We demonstrate the quality of the
algorithm and test different combinations of algorithm pa-
rameters to find the one that produces best results.

The data that is used to provide input degree distribu-
tions for the algorithm and for later comparison is taken
from Berlin and Leipzig networks. Sampling methodology,
detailed analysis and comparison with synthetic placement
models are presented in [13]. There is a small change in
datasets if compared with [11] and [13]: only the main parti-
tion (largest maximally connected subnetwork) is considered
for algorithm’s degree data input and later result compar-
ison. The main partition in Berlin has 275 and in Leipzig
346 nodes on the average.

To illustrate the improvements brought by the NPART,
it is also compared with the uniform placement model (ex-
plained in Section 3). Parameters of the uniform placement
algorithm are chosen to create topologies with the average
node degree of six. The average node degree is substantially
lower than proposed in [2] and [8] for networks connected
with high probability so it is possible that such a graph is
partitioned. Increasing the average node degree above six
improves connectivity but creates even greater discrepancy
with measurement results (e.g., bridges do not exist in gen-
erated topologies), while decreasing it creates highly parti-
tioned graphs. Since the size of Berlin’s and Leipzig’s main
partition differs there are also two uniform placement sce-
narios, with 275 and 346 nodes. The data for comparison is
collected in 500 executions of each scenario.

The NPART is also run with two basic setups: 275 vertices
and degree data input from Berlin’s network (NPART/Berlin),
and 346 vertices and degree data input from Leipzig’s net-
work (NPART/Leipzig). The parameter retry is set to 150
while parameters for penalty p and secondary metric weight
are varied to take values from set {0, 1, 5}×{0, 1, 5}. Not all
results are presented since some parameter combinations do
not create reasonable results: as soon as secondary weight s

is higher than the penalty p, the algorithm becomes unsta-
ble and creates almost fully connected graphs. It is shown
later that secondary metric is excellent for refinement of the
adaptive metric but it should not be used on its own.

5.1 Properties of generated topologies
Figure 4 informally illustrates the differences between real

topology from Berlin’s network, a topology created by the
uniform placement model, and an NPART topology. The

uniform-placement model topology has distinguishably dif-
ferent shape than the real topology: there does not exist
notable clustering of nodes as in reality. Also, real sample
has numerous bridges, both on network outskirts and in its
central parts. The NPART topology follows these charac-
teristics more accurately.

Although visual representation of topologies in Figure 4
gives a valuable insight in shape and characteristics of gen-
erated topologies, such informal comparison is not sufficient.
For formal comparison of measured and generated topolo-
gies we have selected four topological metrics: degree dis-
tribution, bridge and articulation point count and relative
component size after bridge removal. These topological met-
rics directly influence properties of protocols that are sim-
ulated. The node degree distribution is correlated to the
congestion on the wireless channel and probability of packet
loss. Bridges are only communication links between net-
work components. If these components are of considerable
size, bridges that connect them tend to get congested, reduc-
ing the available throughput per flow and increasing packet
latency, thus reducing quality of services deployed in a net-
work. So, in addition to bridge count it is important to cap-
ture the size of components that are connected by bridges.
Articulation points are gateways between different network
components so they may get easily overloaded as well. Also,
their removal disconnects a network. Their occurrence is of
particular importance in sensor networks, where nodes have
limited energy source and processing capacity. Since artic-
ulation points tend to route more traffic than other nodes
in the network they are more prone to energy exhaustion
and critical failure that partitions the sensor network. Due
to limited memory and processing power, packet buffers at
a node are also more prone to overloading, creating packet
drops.

For each metric, we compare distribution of the metric
from the measurement with distributions of NPART-created
topologies and of the uniform placement topology. We con-
sider that generated topology is better if it closely resembles
the properties observed in reality.

Figure 5 shows the vertex degree probability mass function
(PMF). As it can be seen, for all parameter combinations,
the degree distribution of topologies created by NPART pre-
cisely follows the distribution of measurements. NPART
adapts with ease to both Berlin and Leipzig distributions.
The uniform distribution has its own shape that is consid-
erably different from real distributions. Also, it has zero-
degree nodes, indicating existence of partitioned samples.

The bridge to edge ratio (Figure 6) and articulation point
count (Figure 7) show that NPART topologies follow the
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Figure 4: Visual comparison of a measured topology, a topology created by uniform node placement model
and a NPART-produced topology.
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Figure 5: Comparison of node degree distributions.
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Figure 6: Cumulative distributions of bridge to edge ratio for real samples and created topologies.

properties of real networks. However, the proposed algo-
rithm creates slightly more bridges and articulation points
than it should. The uniform placement model is unable to

adapt nor to represent the reality: its topologies have less
than 1% of bridges and few articulation points.

Figure 8 shows the cumulative distribution of relative com-
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Figure 7: Cumulative distributions of articulation point count for real samples and created topologies.
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Figure 8: Cumulative distribution of weighted network components obtained by removing of all bridges.

ponent size obtained by removal of bridges. The majority
of components are small (less than five nodes) and distribu-
tion directly obtained from component size would not pro-
vide much information – almost whole distribution weight
would be concentrated between one and five. To offset this
effect, each component is weighted by its size, relatively to

the network size: Crel = Ccount·|C|
n

. For instance, in a graph
with 100 nodes, after all bridges are removed, ten compo-
nents of three vertices exist. The relative component size is:
3·10
100

= 0.3: 30% of vertices are in three-vertex components.
NPART is again considerably better than the uniform

placement model, in particular for the Berlin’s network. To-
pologies produced with the assistance of secondary met-
ric have distributions more aligned with real measurements
than samples produced by the adaptive metric, both for
Leipzig and Berlin distributions.

5.2 Issues of simpli�ed propagation modeling
Although considerably better than existing topology gen-

erators, the algorithm can be further improved since it cre-
ates more bridges and articulation points than it should.

We have carefully investigated the input data and orig-
inal topology samples. It was revealed that some nodes
with high degree have several pendant nodes attached to
them. In reality it is possible due to the phenomenon of
correlated shadowing. The correlated shadowing on wireless

Figure 9: Impact of correlated shadowing.

channel may cause that nodes which are physically close
cannot communicate (as shown in the left part of Figure
9, nodes A and B cannot communicate despite rather small
distance between them). Correlated shadowing model exists
for single-wireless-hop analysis [6] but it is not supported in
discrete event simulators for multihop networks. The propa-
gation models supported by simulators create links if intern-
ode distance is small (as shown in right part of the Figure
9). As the result, there are less pendant nodes in simulator
than in reality for identical placement of nodes.

If high number of pendants is requested from placement
generator, it cannot fulfil this request without affecting other
characteristics of generated topology: it creates requested
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Figure 10: Node degree and bridge to edge ratio distributions after reduction of pendant node count by 20%.
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Figure 11: Cumulative distributions of articulation point count and weighted network components after
reduction of pendant node count by 20%.

number pendant nodes, but also increases number of bridges
and articulation points more than it should.

To overcome this issue, we provide option in our tool to
a user, so that he/she may reduce the number of generated
pendant nodes. The user has freedom to decide which topol-
ogy characteristic is more important for him/her: accurate
degree distribution, or better fit with bridge and articulation
point distributions. We have performed numerous tests and
empirically found that the 20% reduction ratio of pendant
node count provides good results.

Due to space limitations, we present results only for NPART
/Berlin samples. NPART/Leipzig exhibits similar behavior
[12]. The degree distribution (Figure 10(a)) follows closely
the real distribution, except of course for nodes of degree
1. Bridge share and articulation point count are reduced as
it can be seen in Figures 10(b) and 11(a). It can be seen
that reduction in pendant node count results in NPART to-
pologies that have characteristics which are closer to real
distributions than topologies from Figures 6 and 7.

The relative component size distribution in Figure 11(b)
retains good fit with reality as for the original distribution.
It also demonstrates the importance of secondary metric: in
Figure 11(b) the topologies created without the secondary

metric have worse alignment with reality than in Figure 8(a),
while topologies that have used the secondary metric remain
as good as they were.

5.3 ns-2 Simulation results
This section demonstrates that choice of node placement

algorithm considerably impacts simulation results. For this
purpose, we have used ns2 simulator [4], version 2.29 with
Rayleigh-Ricean fading extension [19]. Nominal communi-
cation range of nodes is set to 250m.

There are six distinct simulation setups:

• Grid node placement and two-ray-ground propagation

• Grid node placement and Rayleigh propagation

• Uniform node placement and two-ray-ground propaga-
tion

• Uniform node placement and Rayleigh propagation

• NPART/Berlin node placement and two-ray-ground
propagation model

• NPART/Berlin node placement and Rayleigh propa-
gation model
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Figure 12: ns-2 simulation results for different topology and signal propagation models.

Grid consists of 272 nodes, put in 16 rows and 17 columns.
Internode distance is 200m. For uniform node placement,
275 nodes are placed in 2700x2700m area, producing av-
erage node degree of 7.4. Such parameter selection creates
network that is not too dense but connected with rather high
probability. NPART algorithm generates 275-node topolo-
gies, using data input from Berlin’s network and combined
metric (s=1, p=5). Routing protocol is AODV [18].

The number of TCP flows is varied (4,6,8,10) in each of
simulation setups to test protocol’s behavior under differ-
ent network loads. We observe throughput and number of
flows that were unable to start (unsuccessful flows). In or-
der to avoid counting of unsuccessful flows that are caused
by partitioned network, uniform placement topologies are
tested for connectivity before they are accepted for simula-
tion. Simulations are performed on 50 different topologies
except for grid where all topologies are identical. TCP flows
are created between randomly selected pairs of nodes.

Warm up phase is set to 30s and simulation is executed
for 250s. Warm up phase of 30s is sufficient because AODV
is a reactive routing protocol with aggressive purging of in-
active routes. Prolonging the warm up time cannot change
results: nodes that are required to maintain the local con-
nectivity have enough time to execute neighbor detection
process (Section 6.10 in [18]) because of frequent heartbeats.
Inactive routes are deleted after 15s (Section 10 in [18]) so
even if we prolong the warm up phase, the inactive routes
will be removed from routing tables. Runtime of 250s is suf-
ficient for TCP (that is used as transport protocol for FTP
traffic) to leave initial slow-start phase: the total simula-
tion time is much longer than the packet round-trip times
in networks that were simulated. Increasing this value to
larger values does not bring considerable changes: we have
performed a test, increasing simulation run time to 500s for
uniform placement scenario with 10 flows under two-ray-
ground propagation model. Average throughput with 95%
confidence intervals was 5708.2 [4932.3, 6484.0] which is very
close to 5657.1429 [4980.2, 6334.1] obtained for 250s runs.

As expected and already shown in research studies [14]
[20], there exists a considerable difference in simulation re-
sults between over-simplistic, over-optimistic two-ray-ground
propagation model and realistic Rayleigh model: obtained
throughput is considerably higher and number of unsuccess-
ful flows is considerably lower for the two-ray-ground model.

It is important to observe that for the same propagation
model there also exists considerable difference in simulation
results between grid, uniform node placement and NPART
produced topologies: in NPART topologies throughput is
lower than in both synthetic placements. This is partic-
ularly notable if two-ray-ground model is exclusively used.
Stochastic variations of the channel introduced by the Rayleigh
fading reduce the difference between placement models, but
NPART topologies still have smaller throughput.

Simulation of NPART/Berlin topologies with realistic wire-
less signal propagation model results in particularly high ra-
tio of unsuccessful flows – although a communication path
between pair of nodes exists (NPART guarantees connected
topologies), AODV is unable to find it. In [10] we have
predicted such behavior of AODV with a different method-
ology. The uniform placement model creates fewer unsuc-
cessful flows than NPART/Berlin while in grid structured
network only one of all simulated flows was unsuccessful,
even with Rayleigh fading on the wireless channel.

6. CONCLUSIONS
We have proposed, developed and evaluated NPART -

Node Placement Algorithm for Realistic Topologies. The
algorithm provides input to simulation of static wireless mul-
tihop networks. It is flexible since it is sufficient that user
defines a metric in accordance with his/her needs or pro-
vides different input data and algorithm creates topologies
with different properties.

The algorithm guarantees the connectivity of generated
topologies. In wireless mesh or sensor networks, this is a
common property. In some application scenarios, such as
Disruption Tolerant Networks, complete network connectiv-
ity is rarely encountered. For such scenarios, NPART may
be used to produce connected subnetworks of a globally dis-
connected network. We plan to extend NPART so that it
can fully support generation of disconnected topologies.

We have evaluated the algorithm and shown that with ap-
propriate metric and parameter selection, NPART-created
topologies resemble those from practice. Stochastic anal-
ysis is used to compare NPART-produced topologies with
ubiquitous uniform placement algorithm and real networks
in Berlin and Leipzig. The properties of interest are node
degree distribution, bridge to edge ratio, articulation point
count and size of graph components after bridge removal.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5669 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5669 



The properties of topologies produced by our algorithm fit
closely the measurements of real networks, while uniform
placement model has its own properties that are far from
reality.

The importance of accurate signal propagation models is
known and shown in numerous publications but the im-
pact of topology generators on simulation outcome is of-
ten overlooked. We have compared the average throughput
and the number of unsuccessful flows in topologies produced
by the grid, uniform placement model and our proposed
NPART algorithm under simplistic two-ray-ground and re-
alistic Rayleigh signal propagation models. Simulation re-
sults show that node placement model plays as important
role in simulation outcome as the wireless signal propaga-
tion model.

A tool based on NPART is developed and it can be down-
loaded from project’s webpage1. User can specify type of in-
put data (Berlin or Leipzig data sets are built into the tool),
number of retries, metric parameters, and output format.
The tool currently supports ns2 and .dot output formats.
We have also developed an importer of ns2 topologies for
Jist/SWANS simulator. We do hope that our results will
encourage the research community to use realistic modeling
in all segments of simulation setup thus increasing the sim-
ulation quality and narrowing the gap between simulation
and reality.
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