
A Framework for Large­scale Simulations
and Output Result Analysis with ns­2

Matteo Maria Andreozzi, Giovanni Stea, Carlo Vallati
Dipartimento di Ingegneria dell’Informazione

University of Pisa, Via Diotisalvi, 2 – 56122 Pisa, ITALY
{m.andreozzi, g.stea, c.vallati}@iet.unipi.it

ABSTRACT
Stochastic simulation is an important aid for the design and per-
formance engineering of computer networks. The credibility of
simulative results can, however, be seriously affected by human er-
rors (e.g., inconsistencies in the parameter selection, poor initializa-
tion of random generators, bugs in the scripts used for post-pro-
cessing), which become more and more likely and numerous as the
dimension of the set of simulated scenarios (simulation campaign)
increases. The occurrence of such errors can be limited by using re-
liable automation tools, i.e. tools which take care of the above men-
tioned tasks by using state-of-the-art methodologies. This work de-
scribes ANSWER (Automated NS-2 Workflow managER), a simula-
tion workflow automation tool for the Network Simulator (ns-2),
explicitly designed for facilitating large-scale simulation cam-
paigns, i.e. those involving many factors. Our framework reduces
the space for errors when defining scenarios, controls the execution
of a large number of scenarios, and reduces the time overhead re-
quired for output data analysis.

Categories and Subject Descriptors
D.2.6 [Software Engineering]; Programming environments – per-
formance measures;I.6.7 [Simulation and Modeling]: Simulation
support system – environments; G.3 [Mathematics of Comput-
ing]: Probability and Statistics – statistical software.

General Terms
Measurement, Performance, Experimentation, Verification.

Keywords
Simulation tools, ns-2, statistical analysis, network simulation

1. Introduction
Stochastic simulation is of paramount importance in aiding the
design and performance engineering of computer networks, all the
more as technological progress make such systems more and more
complex, and consequently less and less treatable through analytic-
al techniques. However, several recent studies have begun to ques-
tion the scientific credibility of computer network simulation stud-
ies, particularly those involving wireless networks (see for instance
5, 5, 5). It is shown therein that many works, even some published
in top-notch conferences and journals, often either lack the essen-
tial feature of scientific studies, i.e. reproducibility, or are per-
formed according to non-rigorous statistical methodologies. For in-
stance, random number generation, confidence intervals, selection
of the initial warm-up period and of the simulation run duration are
seldom treated with the necessary care, resulting in less credible

analyses. The problem with simulation seems to be that there actu-
ally is a lot more to it than simply writing good code. In that re-
spect, to quote 5: “The level of complexity of rigorous simulation
methodology requires more from networking researchers than they
are capable of handling without additional support from software
tools”.
For this reason, developing tools or software layers that support the
networking researcher, automating - to the extent possible - the en-
tire simulation workflow, is becoming of great practical importance.
Henceforth, we refer to simulation workflow as the entire process
which encompasses a simulation study, from defining the object-
ives to plotting the final results. A thorough description of the vari-
ous steps involved in the simulation workflow can be found in 5, as
well as in many good tutorials on the subject. These include some
speculative steps, like defining objectives and metrics, choosing a
suitable simulator, defining the scenarios, which are clearly outside
the scope of automation tools. However, they also include quantit-
ative aspects, like checking a scenario for consistency, selecting
random generator seeds, determining the length of the initial warm-
up period and the number of samples required, running independent
replicas of the same scenario until a certain confidence level is
reached, balancing the simulation load among many machines, stor-
ing the results in such a way that they can easily be analyzed a pos-
teriori. The latter can be more easily (and more reliably) taken care
of once and for all by offloading them to a software tool.
Closely related to the problem of credibility, in that this one too can
be altogether solved or alleviated by using workflow automation
tools, is the problem of scale. Quite often, simulation is aimed at
proving a single research claim (e.g. “this congestion control
schemes achieves a higher throughput than that”), one that can be
supported by few graphs in the performance evaluation section of a
scientific paper. Even when carried out according to state-of-the-art
methods, this is work for a single scientist, which often involves
producing and analyzing a limited amount of output results. The
importance of these data and the need for accessing them usually
drops down when the related paper is eventually accepted. When,
instead, simulation is used to thoroughly evaluate the performance
of a complex system (e.g., a new wireless standard), large-scale
studies are required. These involve a large number of runs (even
when reduction techniques, such as 2k factorial analysis, are em-
ployed), often producing very large amounts of data, access to
which may be required by third parties for long times (e.g., years),
and are the results of team efforts more often than not. In such
cases, without tools taking care of automating some aspects of the
simulation workflow, it is simply impossible to get such an amount
of work done in the first place. Moreover, the room for mistakes or
configuration errors increases with the number of decisions re-
quired, i.e. with the size of the job. For instance, the apparently
simple problem of devising a coherent naming framework for the
output files, so as to facilitate arbitrary post-processing and to en-
able output data to be correlated to the input scenario, becomes
non-trivial when the number of factors which are varied in a simu-
lation study exceeds a few units. Furthermore, the very definition
of simulation scenarios when (sets of) factors may vary condition-
ally depending on the values of other (sets of) factors rapidly be-
comes a nightmare as the number of factors grows beyond a few
units: for instance, when the scenario includes scheduling policies,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
QoSim, 2009, Rome, Italy © 2009 ICST, ISBN 978-963-9799-45-5

the scheduler parameters depend on the scheduler type (e.g. a Defi-
cit Round Robin scheduler needs integer-value quanta, whereas a
Proportional Fair one needs real-valued weights). Checking the
consistency of a scenario in these settings is likely to become un-
manageable (and therefore error-prone) rather quickly.
This work describes ANSWER (Automated NS-2 Workflow man-
agER), a software automation tool for the Network Simulator (ns-2)
5, explicitly designed for facilitating large-scale simulation experi-
ments and publicly available on the Computer Networking Group
web site 5. Ns-2 is probably the most used among a vast number of
competitors, due to its open source nature. It is continuously en-
hanced and extended thanks to the contribution of a large com-
munity of researchers. Today, it includes a large number of network
protocols, applications, algorithms, in varied environments, both
wired and wireless, from large-scale Internet routing to wireless
sensor networks. Several works describing simulation workflow
automation tools have appeared lately, some of them designed for
ns-2, e.g. 5, 5, 5, 5, and 5. Most of them (5, 5, 5), in one way or the
other are devoted to animating, visualizing converting or analyzing
ns-2 (wired or wireless) traces, i.e. ASCII logs of packet transmis-
sion events. However, as observed in 5, writing traces requires a
huge amount of disk space, which entails additional simulation
time and high post-processing overhead. Worse yet, there are many
potential simulation output data which are not related in any way to
packet traces, e.g. size of routing tables, etc. Therefore, the above
tools, albeit useful to the ns-2 user community, are of little help in
automating large-scale simulation studies. A software package
which enables, up to some extent, simulation workflow automation
is Akaroa2 5. It allows a user to perform multiple replications in
parallel on different processors, with a central process receiving ob-
servations of the relevant simulation parameters. The central pro-
cess estimates the mean value of each parameter and, if the re-
quired simulation accuracy is reached, terminates the simulation.
While the above tool takes care of some important aspects of the
simulation workflow automation, it provides no help to the user as
far as managing large amounts of output data is concerned.
The ns2measure tool 5, 5, developed at the University of Pisa, rep-
resents a good starting point for the ANSWER framework. It
provides a set of libraries that enhance the ns-2 data collection cap-
abilities, as well as modules to wrap the execution of a single rep-
lica of a simulation scenario, so as to automate independent replica-
tions. The ANSWER tool described in this work adds new features
to 5. It provides a graphical user interface to analyze the ns-2 out-
put results and an automated way to configure and run large-scale
simulation campaigns, i.e. sets of simulation where a number of
parameters vary, thus generating different scenarios. More specific-
ally, it is composed of: i) a simulation description language that can
be used to design simulation campaigns incorporating many factors
in a simple way; ii) a launcher module that generates single scen-
arios from the description and feeds them as an input to the simu-
lator taking care of the statistical issues (e.g., seeds for the random
generators), and iii) a drawer module, i.e. a graphical interface for
output result analysis. The description language is derived from
XML, which makes it easier to exchange simulation data among re-
search groups, thus increasing the interoperability and verifiability
of the results. The launcher minimizes the possibility of human er-
rors, thus increasing the credibility of the results. Finally, the draw-
er is a powerful GUI that can be used to correlate large output data
sets, enabling an analyst to find relationships that are much harder
to find without the aid of automated tools.
The work that most resembles ours is SwanTools, 5, which has been
developed, independently and almost concurrently, for the SWAN
simulator. The architecture of SwanTools is similar to that of AN-
SWER; it is composed of tools that aid the end user to improve the
credibility of the simulation studies. A first set of tools can be used
to design and automatically execute the experiments, while a web
interface is used for output result analysis. Like ANSWER, Swan-
Tools incorporates a simulation description language (Domain

Modeling Language, DML). Unlike ANSWER, which stores results
in files, SwanTools uses a database, which allows for independent
storage of data. SWAN and ns-2 have different architectures, to the
extent that porting either tool to the other simulator is probably a
prohibitive task. However, we consider the fact that they have sim-
ilar architectures and underlying concepts a point of strength, and
an implicit validation of the ANSWER architecture presented in
this contribution. Future work, possibly in collaboration with the
developers of SWANTools, will consider incorporating the data-
base features into ANSWER.
The rest of the paper is organized as follows: in Section 2 a brief
description of the ns2measure module is provided as background.
Section 3 describes our ANSWER framework with all its compon-
ents. In Section 4, a usage example is shown. Finally Section 5 re-
ports conclusions and highlights directions for future work.

2. The ns2measure package for ns-2
This section describes the ns-2measure module 5, distributed under
the GNU Public License (GPL), which is required in order to run
ANSWER. However, it is completely hidden by the latter, so that
the user does not have to become familiar with it.
Ns2measure, released as a patch for ns-2, addresses two problems:
the collection of samples of metrics and the statistical analysis of
output data. As for data collection, it provides a general mechanism
for specifying which events are to be logged. This allows one to re-
cord data about any type of event rather than just data related to
packet transmission events (which, as already said, form ns-2
traces). Data collection is performed efficiently, avoiding frequent
I/O not to slow down the simulation. The format used in the data
log entries simplifies the extraction of information for a posteriori
analysis and for generating graphs. The data collection subsystem is
based on the implementation of a C++ class called Stat, which pro-
cesses and organizes samples from an arbitrary number of different
metrics. When the user instruments the ns-2 C++ code with calls to
a Stat::put() method, samples of a metric are passed to a Stat ob-
ject. The samples are processed into a different histogram for each
metric and only the final outcome is written to file, avoiding the
frequent I/O that would ensue from constructing raw packet traces.
The Stat class provides support for three types of data: metrics av-
eraged over time (e.g. throughput or loss rate), metrics reflecting
stochastic values over continuous-time (e.g. number of packets in a
queue), and metrics reflecting stochastic values over discrete-time
(e.g. end-to-end delay for a flow of packets).
As for automating statistical analysis, ns2measure allows a user to
execute a number of independent replications of the same simula-
tion scenario and to compute means and confidence intervals on the
chosen metrics. This framework relieves the ns-2 user from having
to write code i) in the Tcl scenarios for selecting independent sub-
streams of random numbers (which is seldom done rigorously), and
ii) in some post-processing scripting language for computing con-
fidence intervals (which is seldom done at all). However, ns2meas-
ure still leaves it to the user to define simulation scenarios. When a
large set of such scenarios, which differ from one another by few
Tcl lines instantiating a single factor, are to be generated, things
rapidly get out of control of the simulation user, jeopardizing the
credibility of the whole campaign.

3. ANSWER Architecture
ANSWER is composed of two separate modules and incorporates
an XML-based description language. An XML file describes a sim-
ulation campaign, i.e. a set of simulation scenarios that can be ob-
tained by varying a number of factors, its cardinality being equal to
the product of the number of values of all the factors. By factor we
mean a parameter that is varied in a simulation scenario, e.g. the
number of mobile stations in a wireless network. The first module,
called launcher, parses the XML description file, it creates single
simulation scenarios from that by instantiating the variable factors,
it feeds each scenario as an input to ns-2 and controls its execution.

The second module, called Drawer, organizes the simulation results
in order to make it easier to plot them through a graphical web in-
terface. The Drawer module too takes the XML description as an
input in order to get the complete description of the simulation
campaign with all its factors and the corresponding values. A pos-
sible workflow with the utilization of the ANSWER tools suite is
illustrated in Figure 1. The three main components of ANSWER are
described in more detail in the following subsections.

Figure 1. Simulation workflow with ANSWER.

3.1 XML code description
In order to describe and specify a campaign simulation setting, the
XML description language has been selected due to its well known
support in all operative systems and due to its interoperability
between major programming languages. The choice of XML im-
proves the verifiability, repeatability and, therefore, credibility of
the simulation work since it allows others to check the results, even
using different simulators. Furthermore, when the simulation work
is performed in a team, the XML description can be used to ex-
change the results, so that analysts performing data post-processing
can use the XML document as metadata.
The standard XML has been enhanced by defining a syntax capable
of describing a simulation campaign. The syntax is based on a new
set of tags, which can be divided into two semantic groups. The
first one is composed of simulation management tags, describing
global aspects of the simulation campaign: simulator execution
path, statistical parameters and metrics to be collected during simu-
lations. The second group of tags contains the tags that describe all
the possible values for the simulation factors which will be varied
during the execution of the simulation campaign.
The first group of tags is illustrated in Table 1, along with a brief
description of their meaning. A feasible configuration requires at
least the path of the ns-2 executable, the name of the base scenario
that contains the network description and the default values, the
path for the output directory and the statistical parameters about
confidence intervals. These last tags are used by the launcher tool
to control the execution of independent replications of a given scen-
ario in order to get results with the desired statistical characterist -
ics, as described in the following sub-section. The second group of
tags, or factor tags, describe the simulation factors. This group is
basically composed of two types of tag: <param> and <instance>.
The first one represents the name of the factor that will be varied
during the simulation campaign, according to the values specified
into its instance sub tags. The instance attribute value stores a value
for the corresponding <param> parameter. A nested param tag can
also be included into an instance tag. This means that this paramet-
er will be varied only in correspondence of that instance value.
The param tag contains also three more tags. A <name>, i.e. a hu-
man-readable name for the parameter; a textual <description>, de-
scribing its role in the simulated scenario; a <tclname>, which
stores the name of the correspondent Tcl name that must be used by
the launcher tool to configure its name within ns-2.
For instance, assume we want to simulate a system where a paramet-
er A takes two values, X and Y. When A is equal to X, another para-

meter B becomes meaningful. When A is equal to Y, yet another
parameter C becomes meaningful (while B has no meaning in this
case). The resulting XML code is shown in Figure 2. As shown in the
next subsection, simulation scenarios are built by performing the
Cartesian product of all instances at the same param level recurs-
ively. The result is used by the launcher to feed the ns-2 simulator.

Table 1. Generic simulation tags.
Tag name Tag description

<name> Human readable name for the simulation
campaign. It is used to tag the results dis-
played by the Drawer tool.

<description> Short textual description of the simulat-
ive campaign (e.g., objectives, etc.).

<ns_path> Path to the simulator executable.
<base_scenario> Tcl file describing the network topology.
<min_run> Minimum number of execution runs.
<max_run> Maximum number of execution runs.
<output_dir> Directory for output files.
<check_metrics> Metrics to check.
<check_conf_level
>

Desired confidence interval.

<param>
<name>A</name>
<instance value=’X’>

<param>
<name>B</name>
<instance value=’Z’>

</param>
</instance>
<instance value=’Y’>

<param>
<name>C</name>
<instance value=’J’>

</param>
</instance>

</param>
Figure 2. A simple XML example.

3.2 Launcher
The launcher tool is responsible for providing a correct input for
the ns-2 simulator based on the XML campaign description. Its
main role is to interface with ns-2, relieving the user of the burden
of preparing home-made scripts or using manual commands, all op-
erations that are known to be error-prone. Unlike home-made
scripts, the launcher does not need to be modified to cope with dif-
ferent simulation campaigns. Indeed, it takes the XML description
as an input and uses it to produce the correct data input for the spe-
cific simulation campaign execution on ns-2. Our first version of
the launcher tool fully supports the ns-2 simulator, and it can be
easily modified to interact with other network simulators. A frame-
work module acting as a simulator-adaptable intermediate layer
between the researcher and the simulator promotes the interoperab-
ility among different systems.
The launcher operates in two main steps: it first parses the XML
configuration file and then it checks its consistency with the XML
extended for simulation language . The consistency check is suc-
cessful if all required simulation management tags are specified
into the parsed XML file, and if factor tags have valid values.
Starting from a correct input file, the launcher tool internally builds
a tree data structure representing all the scenarios stemming from
the combinations of the factors included in the simulation cam-
paign. This tree is built as follows: a new node is created for each
<instance> tag and it is connected with the node representing the
instance where it is nested, if such node exists. If the instance tag
belongs to the top level XML file structure, it is connected to the
root of the tree.

For instance, considering again the example shown in Figure 2 the
resulting tree will be the one reported in Figure 3.

Figure 3. A simple tree.

By navigating the tree, the launcher produces all simulation scen-
arios which it feeds as an input to ns-2. In fact, each possible path
from the root to a leaf represents a simulation scenario, and every
node along the path contains a particular parameter value. By ex-
amining all the possible paths from the root to the leaves of the
tree, the launcher builds the list of all resulting simulation scenari-
os (simulations list). The launcher then uses the values stored into
the generic simulation tags to guide multiple executions of the ns-2
simulator. Specifically, it takes the ns-2 executable path from the
<ns_path> tag and the base network topology file from the
base_scenario tag. For each single scenario it instructs ns-2 to run
replications, using different and independent initialization seeds for
all the involved random number generators. The launcher keeps
running independent replications of the same scenario until either
of the following occurs (see Figure 5):
- the average values of the collected metrics, i.e., those stored in

the check_metrics tag, are within the confidence interval spe-
cified in the check_conf_level tag;

- the max_run limit for replications number is reached,
whichever occurs first. The min_run parameter forces the execution
of a minimum number of replicas as specified inside this tag even
if the confidence interval has already been obtained for the spe-
cified metrics. At the end of each replica, the results are stored in
files named after the collected metrics and located in the output_dir
directory.
Note that, with launcher, a running simulation campaign can be in-
terrupted at will and resumed directly from the breakpoint without
losing the previous data, with a resolution equal to that of a single
simulation run. In fact, launcher checks for partial status informa-
tion before starting a new simulation run.

3.3 Drawer
The drawer tool is a graphical web interface that can be used to ag-
gregate and analyze the results produced by ns-2 through the
launcher. The drawer has been developed using the PHP scripting
language, and is meant to be used on a Linux machine within the
Apache web server. The drawer takes as an input the XML config-
uration file describing the simulation campaign, which is required
in order to correctly reconstruct all parameter names and pre-condi-
tions, and the output files containing the simulation campaign out-
put metrics, produced according to the ns2measure file format. In
fact, these files contain comma separated values. The last two val-
ues on a row are respectively the metric value and its confidence
interval while the former values represent the instances of the simu-
lation factors according to which that metric was collected. A
simple example is shown in Figure 4. Now, the correct interpreta-
tion for those factors (including a human readable description) is
included in the XML file. Therefore, in order to present human-
readable results, the XML file is needed as well.

X,10,0.001
Y,15,0.002

Figure 4. A simple output structure.

As a first form, the drawer tool presents the user with an interface
where she can select one of the metrics collected during the simula-
tion runs. Then, it displays a second form where the user selects the
simulation scenarios for which the selected metric has to be plotted.
In the next and last form the user inputs the labels to be inserted
into the graph, along with other style options as label position, font,
and so on.
The graphs are drawn by invoking the open source gnuplot tool
through a PHP shell execution command. After the requested
graphs have been stored locally at the web server, the drawer tool
shows its last form, where the resulting image is shown through the
web browser. At this point the user can download images produced
by the gnuplot software, choosing among PNG, EPS, CSV or
gnuplot source scripting formats. The drawer tool supplies the
chosen file format for download by using internal format conver-
sion routines. Figure 6 shows a screenshot of the drawer interface.

Figure 5. Launcher flow chart for a single scenario.

3.4 Portability
As can be seen from Figure 1, our framework drives the ns-2 simu-
lator in order to obtain results that can be analyzed through a graph-
ical web interface. Obviously, the core of that system is represented
by the simulator itself. Although it is probably the most common
network simulator, ns-2 is not the only one. A new release, called
ns-3, is currently under development. The latter is going to be very
different from ns-2: for instance, Python will be used instead of Tcl
for configuring scenarios.
The ANSWER architecture has been designed with a specific atten-
tion to modularity, which makes it relatively easy to adapt it to oth-
er simulation environments. In particular, the launcher can be mod-
ified to work with other simulators with relatively little effort: if
the target simulator allows the definition of a base scenario in a file
and accepts the factors through the command line, our module can
work with it without any modifications. Otherwise, the script can
be easily extended modifying just a few functions that implement
the interface with the simulator.

Adapting the drawer to other simulators appears to be trickier, due
to its reliance on the structure of the output results. If a simulator
uses the same output file structure as ns2measure, the drawer can
be used to analyze the results without any problem. For instance,
ns-3 developers foresee a metrics collection system similar to that
of ns2measure 5, which would make ANSWER easily portable to
ns-3. Otherwise if the simulator has a different output structure the
drawer needs modifications; however, the changes are limited only
to the functions that load the results into memory.

4. Usage Example
As previously said, ANSWER is designed to help a user to manage
large simulation campaigns aimed at evaluating a complex system.
In these cases it is reasonable to assume that the number of the sim-
ulation scenarios is large. ANSWER helps one to drive neatly the
simulator to obtain the desired results and to easily analyze the res-
ults. Moreover a large number of simulation runs can be described
synthetically through a single XML file. In particular, XML allows
one to represent complex scenarios without sacrificing readability.
In this section a simulation campaign is described in order to
demonstrate the power of the XML description. The case study is a
centralized wireless network with a Base Station (BS) where a
scheduler allocates the resources. The comparative evaluation of
scheduling policies is the objective of the simulation campaign.
Note that a scheduler is defined by multiple factors, which are
sometimes interdependent. For instance, one such factor is the
name of the scheduling policy itself, Deficit Round Robin (DRR),
Proportional Fair (PF), Earliest Deadline First (EDF) and Max C/I.
However, different scheduling policies require different configura-
tions, and, accordingly, different factors. For instance, DRR sched-
ulers depend on integer quanta, the PF schedules has real-valued
alpha parameter, the EDF scheduler need as input the value of the
offset used to mark the packets and, finally, the Max C/I wants no
parameters. This conditional variation of parameters is neatly ac-
counted for in the XML file by using nested tags. The above ex-
ample is described in Table 2 and Table 3. Table 2 illustrates the
factors and the relative values while Table 3 shows the pre condi-
tions required to make a factor meaningful. The factors without
preconditions are factors that are always meaningful at each simu-
lation scenario and therefore each case needs a value for that. For
example, the simulator needs the value of the number of mobile
stations and the scheduling policy to build a feasible scenario.

Table 2. Example parameters variation.

Scheduler
Deficit Round Robin (DRR), Propor-
tional Fair (PF), Max C/I (MAXCI),
Earliest Deadline First (EDF)

Quantum 190,1000 and 10000 bytes
Alpha 0.1, 0.3, 0.5, 0.7 and 0.9
Offset 20 and 40ms
Packet expire 40, 80 ms
MSs number 70, 80 and 90

Table 3. Example parameters pre-condition.
Scheduler No pre-conditions
MSs number No pre-conditions
Quantum Scheduler == DRR
Alpha Scheduler == PF
Offset Scheduler == EDF
Packet expire Scheduler == DRR or Scheduler == PF

In a full factorial simulation campaign all these parameters should
be varied. However, it would be useless to simulate the PF sched-
uler varying the quantum because the latter has no influence on a
PF scheduler. Therefore, in order to avoid redundant runs, a home-
made shell script that launches the ns-2 instances should be written
with some care, and probably with a lot of nested if clauses. In that
case, it would be poorly verifiable and manageable. For instance,
adding a new factor once the script is complete could easily lead to
rewriting large parts of it. Using our script, the first step is to edit
the XML file in order to specify the desiderate campaign. The
XML example shown in Figure 8 describes the simulation cam-
paign for assessing the performance of the schedulers. As can be
seen, the nested structure of XML tags easily represents conditional
parameters, whose existence is tied to specific values of other para-
meters. The first tag provides statistical information and descriptive
data, like the number of runs or the confidence intervals. Under the
param tag a new parameter is included with the correspondent val-
ues specified by the instance tag. Inside a value, a new set of para-
meters can be specified. In the example, if the selected scheduler is
DRR, PF or EDF, one or more factors become meaningful, other-
wise (i.e., in the MAXCI case) there is no additional parameter.
Adding a new value or a new parameter only requires inserting new
tags, without modifying any program or script. The simulation
scenarios are created by the launcher module that performs the
Cartesian product of the factors at the same level. For example, in
this case the performance of each scheduler is evaluated for every
number of mobile stations and if the scheduling policy is the DRR
the simulations are performed for each quantum paired with expira-

Figure 6. A screenshot of the drawer interface.

tion time value. Figure 7 illustrates a sample of the scenarios result-
ing from the XML presented here.
After the simulation runs have completed, the resulting output data
can be analyzed using the graphical web interface. As described in
the previous section, this web interface takes as input the raw simu-
lation data and the XML file to analyze the results. At this point the
analyst can easily access the simulation results and make graphs
with them.

-nodes 70 -psDiscipline pf -pfAlpha 0.1 -pkt-expire 40
-nodes 80 -psDiscipline pf -pfAlpha 0.1 -pkt-expire 40
-nodes 90 -psDiscipline pf -pfAlpha 0.1 -pkt-expire 40
…
-nodes 70 -psDiscipline pf -pfAlpha 0.9 -pkt-expire 80
-nodes 80 -psDiscipline pf -pfAlpha 0.9 -pkt-expire 80
-nodes 90 -psDiscipline pf -pfAlpha 0.9 -pkt-expire 80
-nodes 70 -psDiscipline drr -drr-quantum 190 -pkt-expire 40
-nodes 80 -psDiscipline drr -drr-quantum 190 -pkt-expire 40
-nodes 90 -psDiscipline drr -drr-quantum 190 -pkt-expire 40
…
-nodes 70 -psDiscipline drr -drr-quantum 10000 -pkt-expire 80
-nodes 80 -psDiscipline drr -drr-quantum 10000 -pkt-expire 80
-nodes 90 -psDiscipline drr -drr-quantum 10000 -pkt-expire 80
-nodes 70 -psDiscipline maxci
-nodes 80 -psDiscipline maxci
-nodes 90 -psDiscipline maxci
…
-nodes 70 -psDiscipline edf -edf-offset 40
-nodes 80 –psDiscipline edf -edf-offset 40
-nodes 90 -psDiscipline edf -edf-offset 40
Figure 7 – Part of a sample scenario for evaluating schedulers.

5. Conclusions and Future Work
In this paper we described ANSWER, a simulation workflow auto-
mation tool which is useful for both improving the credibility of
simulations and making large-scale simulation campaigns manage-
able. Our experience in performing large-scale simulation studies
confirms that ANSWER is effective in reducing the possibility of
human errors due to script errors and cuts the time spent to obtain
results. In particular the visual interface for data analysis has
proved valuable in reducing the post-processing analysis time, thus
speeding up the entire process. Finally the use of a flexible and eas-
ily extendible simulation description language based on XML has
improved the productivity of our team.
There are several directions in which the ANSWER framework can
be extended. We are currently working on incorporating database
storage of the simulation results, which would open new possibilit-
ies for output data analysis. As far as the XML document is con-
cerned, a possible extension is to enhance the set of controls that
are performed through the definition of a Document Type Defini-
tion (DTD) that describes the structure of the XML document with
its semantic rules. Through a DTD document the launcher module
will be able to verify not only the syntax of a XML scenario, but
also the correctness of its structure. With this new feature, the user
would be sure not only that a document is well formed but also val-
id. It is our belief that moving progressively the scenario definition
from Tcl to XML would on one hand increase the interoperability

of ns-2 with different simulators, and, on the other, increase its
verifiability and reuse. This is therefore another direction of en-
hancement of this work.
Furthermore we are working on extending the launcher tool to take
advantage of parallel computing in order to distribute the load ac-
cording to the Multiple Replication in Parallel (MRIP) approach 5,
so as to speed up the simulations. Algorithms for 2k factorial ana-
lysis can also easily be incorporated into the launcher tool, so as to
further reduce the number of generated scenarios. A graphical web
interface to launch and remotely control the simulations is currently
under design, with the aim of further improving the usability of our
framework and of reducing its learning curve.
We are currently using ANSWER for didactic purposes, exploiting
it in a fifth-year undergraduate course of Advanced Networking
Systems. Our objective is to facilitate a steeper learning curve of
the students, enabling them to focus their attention on the simula-
tion objectives rather than on tweaking ns-2 and generating self-
made scripts to launch simulation batches or to post-process output
data.

References
[1] L. F. Perrone; C. J. Kenna; B. C. Ward, "Enhancing the Cred-

ibility of Wireless Network Simulations with Experiment
Automation," Networking and Communications, 2008.
WIMOB '08. IEEE International Conference on Wireless and
Mobile Computing, , vol., no., pp.631-637, 12-14 Oct. 2008.

[2] S. Kurkowski, T. Camp, M. Colagrosso. MANET simulation
studies: the incredibles. Proc. ACM SIGMOBILE MC2R,
vol. 9, no. 4, Oct. 2005, pp. 50-61.

[3] K. Pawlikowski, H.-D. J. Jeong, and J.-S. R. Lee, “On credib-
ility of simulation studies of telecommunication networks,"
IEEE Communications Magazine, vol. 40, January 2002.

[4] L.F. Perrone, C. Cicconetti, G. Stea and B. Ward, “On the
Automation of Computer Network Simulators”, in Proc. of
SIMUTOOLS 2009, Rome, 3-5 March 2009.

[5] http://nsnam.isi.edu/nsnam/, ns-2 simulator home page.
[6] http://cng1.iet.unipi.it/wiki/index.php/ANSWER
[7] C. Cicconetti, E. Mingozzi, G. Stea. Measurement module for

ns-2. http://info.iet.unipi.it/~cng/ns2measure/, last update
May 2006.

[8] S. Kurkowski, T. Camp, and M. Colagrosso. A visualization
and animation tool for NS-2 wireless simulations: iNSpect. In
Proc. MASCOTS, 2005.

[9] J. Malek. Trace graph – Network Simulator NS-2 trace files
analyser. http://www.tracegraph.com/, last update Jan. 2006.

[10] G. Ewing, K. Pawlikowski, and D. McNickle, Akaroa2: Ex-
ploiting network computing by distributing stochastic simula-
tion. . In: Proceedings of the European simulation multiconfer-
ence (ESM'99), SCS, Warsaw. pp. 175-181.

[11] D. Savić, M. Pustišek, and F. Potortì, “A tool for packaging
and exchanging simulation results," in Proc. of
VALUETOOLS'06, Pisa, Italy, October 11-13, 2006.

[12] C. Cicconetti, E. Mingozzi, and G. Stea 2006. An integrated
framework for enabling effective data collection and statistical
analysis with ns-2. In Pro. WNS2‘06, Pisa, Italy, October 10,
2006.

[13] T. R. Henderson, S. Roy, S. Floyd, G. F. Riley. ns-3 project
goals, in Proc. of WNS2’06, Pisa, Italy, October 10, 2006.

http://cng1.iet.unipi.it/wiki/index.php/ANSWER
http://nsnam.isi.edu/nsnam/

<?XML version="1.0" encoding="UF-8"?>
<simulation>

<!-- Management informations -->
<name>Scheduler</name>
<description>Scheduler evaluation</description>
<ns_path>path/to/ns</ns_path>
<base_scenario>base.tcl</base_scenario>
<min_run>5</min_run>
<max_run>5</max_run>
<output_dir>savefile</output_dir>
<check_metrics>metrics_to_check</check_metrics>
<check_conf_level>0.95</check_conf_level>
<!—Scenario description -->
<multicell>

<param>
<name>NMS</name>
<description>Number of mobile stations</description>
<tclname>nodes</tclname>
<instance value="70"></instance>
<instance value="80"></instance>
<instance value="90"></instance>

</param>
<param>

<name>Scheduler</name>
<description>Type of scheduling policy</description>
<tclname>psDiscipline</tclname>
<instance value="pf">

<param>
<name>pf-alpha</name>
<description>Alpha parameter for PF</description>
<tclname>pfAlpha</tclname>
<instance value="0.1"></instance>
<instance value="0.3"></instance>
<instance value="0.5"></instance>
<instance value="0.7"></instance>
<instance value="0.9"></instance>

</param>
<param>

<name>expire</name>
<description>Packet expire</description>
<tclname>pkt-expire</tclname>
<instance value="40"></instance>
<instance value="80"></instance>

</param>
</instance>
<instance value="drr">

<param>
<name>quantum</name>
<description>Quantum for drr scheduler</description>
<tclname>drr-uantum</tclname>
<instance value="190"></instance>
<instance value="1000"></instance>
<instance value="10000"></instance>

</param>
<param>

<name>expire</name>
<description>Packet expire</description>
<tclname>pkt-expire</tclname>
<instance value="40"></instance>
<instance value="80"></instance>

</param>
</instance>
<instance value="maxci"></instance>
<instance value="edf">

<param>
<name>offset</name>
<description>Edf offset</description>
<tclname>edf-offset</tclname>
<instance value="20"></instance>
<instance value="40"></instance>

</param>
</instance>

</param>
</multicell>

</simulation>
Figure 8. XML example.

	1. Introduction
	2. The ns2measure package for ns-2
	3. ANSWER Architecture
	3.1 XML code description
	3.2 Launcher
	3.3 Drawer
	3.4 Portability

	4. Usage Example
	5. Conclusions and Future Work

