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ABSTRACT 
An integrated modeling and simulation tool called Component-
based System Modeler and Simulator (CoSMoS) is developed. 
It supports visual development of families of models that have 
well-defined logical specifications. The logical component-
based models persist in relational databases and may be 
automatically translated into specific target simulation and 
markup programming languages. The underlying system-
theoretic modeling framework of CoSMoS lends itself for the 
well-known discrete-time, continuous, and discrete-event 
modeling approaches. Currently, CoSMoS supports developing 
parallel DEVS-compliant models which can be executed using 
the DEVS-Suite simulator. The underlying process lifecycle of 
the CoSMoS enables systematic transitioning from visual model 
development and design of experiments to simulation execution 
and experimentation. Simulation data can be used for run-time 
animation and viewing of time-based trajectories or exported for 
post processing. This tool helps to simplify  simulation-based 
system design, verification, and validation. The core capabilities 
of the CoSMoS are exemplified with a conceptual model of an 
anti-virus network software system. 

Categories and Subject Descriptors 
I.6.1 [Simulation and Modeling]: Types of Simulation – 
animation, visual; I.6.5 [Simulation and Modeling]: Model 
Development – modeling methodologies; I.6.7 [Simulation and 
Modeling]: Simulation Support Systems – environments  

General Terms 
Design, Experimentation, Measurement, Theory, Verification. 

Keywords 
CoSMoS, M&S lifecycle, DEVS-Suite, visual modeling  

1. INTRODUCTION 
Complex systems are described using a set of model 
abstractions and relationships. For example, the Unified 
Modeling Language (UML) [9] and Discrete Event System 
Specification (DEVS) [14] are primarily used for software 
modeling and simulation modeling, respectively. The 
abstractions and relationships offered by these allow modeling 
both structures and behaviors of dynamical systems. In contrast, 
other languages such as XML Schema and System Entity 
Structure (SES) [13] are mainly targeted for modeling structures 
of systems. XML Schema [3] can be used to describe arbitrary 
data structures among simple and complex elements. Families of 
models may also be specified using an extensive set of elements 
with pre-defined and user-defined rules. Similarly, SES supports 
data modeling, but has a fixed set of rules that constrain how 
entities’ (objects without behavior) abstractions may be 
organized. Among these approaches, UML provides a unified 
logical and visual modeling framework. Numerous other efforts 
and tools have been proposed and undertaken, but many lack 
sound underlying principles that can empower users to visually 
develop logical models and automatically translate into 
simulation code and simulated.  

It is desirable to describe systems using logical and visual model 
types that can also lend themselves for simulation. Logical 
models can be mathematical formulations of a system’s 
structure and behavior and are important since they have precise 
syntax and semantics. Visual models, on the other hand, are 
desirable since they help simplify modeling, especially for 
domain experts who find formal specifications or programming 
difficult and not intuitive. Furthermore, it is desirable to 
represent models in standard languages that are well suited for 
databases. Models can be used as persistent repositories and 
therefore be systematically reused for multiple purposes and 
evolved over time and space during the lifecycle of simulation 
models.  

Given the unique capabilities and advantages afforded by 
logical, visual, and persistence models, it is advantageous to 
have a modeling framework that supports collective use of these 
different model types in a consistent manner. That is to say, all 
visual model development activities must be sanctioned by the 
logical models and all models that are stored in a database must 
be consistent with their logical specifications and thus their 
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visual representations. The Component-based System Modeling 
(CoSMo) framework satisfies the above requirement.  

A key disadvantage for visual modeling is limited viewing 
space. Techniques such as hierarchical modeling with zoom-in 
and zoom-out capabilities can significantly reduce the viewing 
space limitation. However, a user who is interested in 
developing models and simulating them needs to design 
experiments. For observing model components’ input and output 
data, it is useful to support visual selection of the components 
and their individual input and output variables. To support such 
a capability, the concept of visual design of experiments is 
proposed and introduced into the CoSMo framework. The 
resulting Component-based System Modeling and Simulation 
(CoSMoS) framework is used to develop the Component-based 
System Modeler and Simulator environment which integrates 
the CoSMo modeler and DEVS-Suite simulator together. The 
design of the CoSMoS has a lifecycle process in which a user 
starts with visual model development and design of experiments 
and executes simulation models that are partially generated and 
manually completed by user.  

In the remainder of this paper, we briefly present the basic 
modeling approach of CoSMo, the complementary viewing of 
model executions supported by the DEVS-Suite simulator, and 
an example that helps to illustrate integrated model development 
and simulation in CoSMoS. Next, we describe the basic design 
of CoSMoS that ensures visual model configuration for 
simulation experimentations, and automated data collection and 
viewing. In the following two sections, we present the process 
lifecycle and related work. We conclude with a summary of the 
paper and future work.    

2. BACKGROUND 
In this section, we provide a brief account of CoSMo and 
DEVS-Suite with emphasis on aspects that are important in 
integrating into the CoSMoS environment. We also describe an 
example that can illustrate the kind of end-to-end modeling and 
simulation that is supported in CoSMoS.  

2.1 CoSMo 
Component-based System Modeler (CoSMo) is a tool [1] for 
developing a family of models of a system [2][3] [5][10][11]. It 
has a unified concept for specifying general-purpose logical, 
visual, and persistent primitive and composite models (see 
Figure 1). Complex hierarchical models may be developed by 
composing modular components using their input and output 
ports. CoSMo currently supports DEVS and XML models and 
generates partial and complete source code for DEVS-Suite 
[1][6].   

The logical model specification is governed by a set of axioms 
that ensure consistency among a family of alternative 
hierarchical model specifications [5][10]. A system is modeled 
in terms of three model types: Template Models (TM), Instance 
Template Models (ITM) and Instance Models (IM). All 
primitive and composite logical, visual, and persistent models 
are defined in terms of these model types. The primitive and 
composite models can collectively represent alternative 
specifications of one or more systems. Every Instance Template 
Model is defined only when it has a Template Model and every 

Instance Model is defined only when it has an Instance 
Template Model. 
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Figure 1. Architecture Concept for CoSMo 

 

2.1.1 Logical Models 
The Template Model is defined to include primitive and 
composite models with hierarchy of length two. The 
composition and specialization relationships may be used 
together under some well-defined constraints (e.g., absence of 
self-composition as defined in the system-theory and self-
feedback as defined in DEVS formalism) to specify strict 
hierarchical tree structures of one or more models. To avoid 
possible confusion, composition refers to composite/primitive 
(or whole/part) relationships (i.e., a composite component can 
contain one or more primitive components). The specialization 
refers to parent/child relationship where a primitive or a 
composite component can be specialized to a primitive or a 
composite component, respectively. A model can be a 
specializee component in which case it can have one or more 
specialized components. There is a specialization relationship 
between any specialized component and its specializee 
component. With the Template Models, separate models can be 
specified for systems that may or may not be related to one 
another. Limited behavioral modeling (specifying input and 
output variables) is supported and structural complexity metrics 
(e.g., number of components for any composite model) can be 
readily obtained.  

The Instance Template Model, which extends the Template 
Model, is defined to have hierarchies with lengths equal or 
greater than two. Multiple Template Models can be combined 
together to form different models of a system. The Instance 
Template Model represents an instance of the Template Model 
since Template models may be combined using the composition 
and specialization hierarchies to specify alternative structures of 
a system. Although any two Instance Template Models are 
distinct, they may share one or more Template Models. The use 
of the term instance is not in the sense of Object Theory where 
all instances of a class have an identical specification. Two 
Instance Template Models differ in terms of their specializations 
and compositions. The Instance Model is defined to represent 
structures that do not have any specialization relationships. An 
instance model is instantiated by removing all specialization 
relationships (selecting specialized components from specializee 
components) that may be contained in an Instance Template 
Model. 
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Since there can be many alternative models for a system, it is 
important to keep them consistent with one another. A concept 
that is commonly used in specifying hierarchical models of 
systems is uniformity. A model for a part of a system (i.e., 
primitive or composite model) that is used multiple times in the 
system’s model hierarchy must have a unique specification (i.e., 
structure and behavior). When the structure of a model is 
restricted to be a tree instead of a graph, uniformity implies that 
for any sub-structure with a unique specification and name, all 
of its occurrences are identical. A consequence of enforcing this 
property is that changes made to the sub-structure are uniformly 
applied to the complete tree structure. Another property called 
non-self-reference states that a model cannot contain itself either 
directly through iterative composite/primitive relationships. 
Based on the above relationships (i.e., composition and 
specialization) and properties (uniformity and non-self-
reference), a finite set of unique Instance Models can be 
generated given the Template Models and Instance Template 
Models.  

Instance Models are concrete since they cannot have any 
specialization relationships. The transformation relationship 
(between the Instance Template Model and the Instance Model) 
enables defining one or many structures that are defined by 
removing all occurrences of specialization relationships that 
may be contained in the Instance Template Model.  Thus, a 
family of unique instance models can be generated from the 
Instance Template Models. 

 

 

(a) Composite virus network model  

 

 

(b) Primitive router and virus processor models  

 

 

(c) Composite experimental frame model with specializee 
generator virus model 

 

Figure 2. Visual Template Model development in CoSMo 

 

 

Figure 3. Instance Template Model for virus network model 
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2.1.2 Persistent and Visual Models 
The CoSMo environment supports storing models in relational 
databases. Model creation, storage, access and manipulation 
require management of a large number of models and 
determining their structural complexity metrics [9]. The visual 
modeling supports developing and manipulating composite 
models that are synthesized from primitive and composite 
models. Specification of primitive and composite models are 
based on block models that can be combined using input and 
output ports and links that connect them together using specific 
modeling languages such as DEVS.  

2.1.3 Model Translator 
The translator for CoSMo supports translating the logical 
models that are stored in any of its databases to code for target 
simulation and markup languages. In general, since it is 
impractical to visually model arbitrary dynamical models, only 
partial source can be automatically generated. Logical primitive 
and composite models can be automatically translated to atomic 
and coupled models for DEVS-Suite simulator. The translator 
generates partial source code for DEVS atomic models from 
primitive Instance Models and complete source code for DEVS 
coupled models from composite models. It is for this reason the 
shaded arrow is used between the Model Translators to 
Simulation Languages (see Figure 1). Translators have also been 
developed for generating DTD and XML schema code.   

2.2 DEVS-Suite 
DEVS-Suite [6] is the next generation of the DEVSJAVA 
simulator [1]. It supports simulating models that can be 
specified using the DEVS formalism [14]. The architecture of 
the simulator is based on Model Façade View Control (MFVC) 
and in particular has its animation and viewing of time 
trajectories separated from the parallel DEVS abstract simulator. 
Models in DEVS are classified into atomic and coupled models. 
An atomic model is defined in terms of input, output, state, and 
time sets with functions that determine next states and outputs 
given current states and inputs at arbitrary time instances. 
Together, external, internal, confluent, output, and time advance 
functions define a component’s behavior over time. A coupled 
model is defined in terms of atomic and/or coupled models. As 
in an atomic model, a coupled model contains a set of inputs, a 
set of outputs, a set of component names, a set of components, 
and a set of coupling relationships among the input and output 
ports of the composed model components. Atomic and coupled 
models interact with one another using messages that are 
exchanged via couplings that connect their input and output 
ports.  

The execution of the models can be viewed as the animation of 
the input/output messages for coupled models and the state 
changes of the atomic models. For any atomic or coupled 
models, its inputs and outputs can be selected via a dialogue box 
at the beginning of the simulation and time-based trajectories 
generated during simulation. For atomic models, trajectories can 
also be generated for pre-defined phase and sigma state 
variables.   

2.3 Anti-Virus Network Software System 
Example 
To illustrate model development and simulation in CoSMoS [1], 
we have constructed a model called SimpleVirusNet for a 
simple virus detection software system which is stored in a 
database file called NetVirs_Net.mdb (see Figure 2(a)). The 
system is intended to protect a network of computers from virus 
attacks. A model of this system which is called SimpleVirusNet 
consists of two coupled models called RouterVirus. The 
messages arriving at the in port of the SimpleVirusNet are sent 
to the in port of the first RouterVirus model. The messages 
arriving at the SimpleVirusNet alertSignal are sent to the 
alertSignal of both RouterVirus models.  

Each RouterVirus has one RouterQ and one VirusProcQ 
components (see Figure 2(b). The RouterQ acts as a processor. 
If it receives a message which is not infected by a virus, the 
message is sent to the out port. The type of messages arriving at 
the alertSignal port is the same as the messages arriving at the in 
port. A message arriving at the in port is considered to be 
suspicious if its ID matches the ID of the message arriving at the 
port alertSignal. The RouterQ has two queues, q and alertQ, to 
store the messages and the alert messages respectively. 

An experimental frame model called ExpFrame is defined. As 
shown in Figure 2(c), this model consists of the GenrMsg, 
GenrVirus, and TransdSVN models. The GenrMsg generates 
messages for the in port of the SimpleVirusNet and GenrVirus 
generates messages for the alertSignal port. The TransdSVN 
computes statistics such as throughput for the SimpleVirusNet 
model. The above models shown in the Instance Template 
Model are visually developed using CoSMo. The tree structure 
of the entire model (including the specialized GernFastVirus 
and GenrSlowVirus models for the GenrVirus model) with 
multiplicity  of model components are shown in Figure 3.   

All operations including creation, deletion, and modification of 
simulatable and non-simulatable model components are 
supported visually. Similarly, adding ports, variables names of 
input and output values, and state variables are also supported 
visually. Other operations are complexity measure calculation 
and viewing of the generated source files and non-simulatable 
models. These un-timed non-simulatable models are simple and 
complex data structures and objects that are used in addition to 
the simulatable primitive and composite models [11]. 

3. CoSMoS ENVIRONEMENT 
The unified modeling and simulation environment bridges the 
CoSMo and DEVS-Suite by introducing visual tags for input 
and output ports of the models that can be developed in CoSMo. 
The visual toggling of input and output ports for tracking during 
simulation is advantageous as it eliminates the need to use 
dialogue boxes that are otherwise required for DEVS-Suite. Of 
particular importance is the manipulation of model components 
visually for designing experiments and on-the-fly selection of 
simulation data to be observed. In the following sub-sections, 
we describe the basic concepts and design that were developed 
for developing CoSMoS. The developed approach can be 
applied to other modeling approaches and simulation engines. 
For example, the rules for creating primitive and composite 
models can be defined according to Simulink block (discrete-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5744 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5744 



time and continuous-time) models or cellular automate models. 
The basic approach described in this section can be used to 
integrate solvers for these kinds of models into CoSMo and thus 
have other variants of CoSMoS.  

A very simple conceptualization for the CoSMoS environment 
is shown in Figure 4. This integrated environment enables visual 
model development, model configuration and automatic 
simulation data collection, and simulation. It extends the 
CoSMo design and implementation to support visual 
configuration of models for experimentations and generation of 
partial simulation code for DEVS-Suite. Once the behaviors of 
atomic models (i.e., the external, internal, confluent, and output 
functions) are completely specified, the DEVS-Suite simulator 
can be invoked to simulate coupled models. Using CoSMoS 
with its model development process, modelers can develop and 
simulate models in an integrated visual modeling and simulation 
environment. 

 

  

CoSMo
DEVSr

Suite

 

Figure 4. CoSMoS conceptual system view 

 

3.1 Component Selection with Automated 
Data Collection and Observation  
The models loaded in the DEVS-Suite are assigned default 
trackers. Users can select any coupled instance model and 
visualize any of its input and output ports as well as all of its 
components. For atomic models, common state variables (phase 
and sigma) and simulator timing variables (i.e., time of next 
event and time of last event) can also be visualized. Figure 5 
shows the steps that lead to tagging input and output ports of 
models for tracking. (Recall that MFVC is the basic architecture 
of DEVS-Suite). The Controller object is responsible for the 
creation of the hooks with the View. The View object delegates 
the logic for determining the data for trajectory viewers through 
the TrackingControl object. Each tracker associated with the 
model has a checker that enables or disables what is to be 
tracked. With CoSMoS, instead of use dialogue boxes to select 
trackers, the user simply toggles on any port that is to be 
tracked. Figure 6 shows selection of the trackers visually for the 
net-virus network and experimental frame models. Note that the 
names (IDs) of the instance models are unique among 
themselves as well as the names of the instance template 
models. The background color of a port that is to be tracked 
during simulation is set to white by clicking on it. 

 

Figure 5. Selecting input and output ports for primitive and 
composite and their tracking in DEVS-Suite TimeView  

 

 

Figure 6. Input and output ports selected for tracking 
during simulation 

 

3.2 Adding Behavior to Models  
The primitive models that are transformed to DEVS atomic 
models must be completed before they can be simulated using 
the DEVS-Suite simulator. CoSMoS assists the user in adding 
behavior to generated source code. The structural specification 
of these Java models (e.g., input and output port names, variable 
types for messages, and skeleton code for transition and output 
functions) are automatically included in the generated source 
code. The source code for each model is consistent with its 
logical specification – i.e., name, ports, variables, and state 
variables included in the source code are the same as those that 
are stored in the database. Sample tabs of source code editors 
are shown in Figure 7. The editor is available as a part of the 
Netbeans editor API. Its functionalities include code coloring, 
line numbering, and keyword recognition. To disable the 
changes to the model’s structure, the Guarded Sections property 
of the editor is used. The sections that are guarded cannot be 
edited. The guarded sections are shaded as shown in Figure 7. 
As noted earlier, guaranteeing that every logical model and its 
source code are consistent is crucial, otherwise verification of 
models and validation of simulations become unnecessarily 
difficult. 
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Figure 7. CoSMoS UI and the editor for adding behavior to models 

 

3.3 Models and Namespaces 
Another important need is to manage all models that are created 
and used in the CoSMoS environment. These models can be 
categorized into databases and flat files (see Figure 8).  

A simple method is to devise a namespace. A root directory is 
defined within which any number of user-defined databases may 
exist in unique directories (e.g., NetVirus_Exp). Each database 
directory has a Database directory for databases (e.g., 
VirusNetwork.mdb), DEVS-Suite and XML directories, and a 
directory for NSM (non-simulatable) models. The DEVS-Suite 
Models directory consists of the Generated directory which has 
source and compiled files (e.g., VirusProcQ_0_0.java and 
VirusProcQ_0_0.class). As noted above, the source code for the 
primitive models (e.g., atomic DEVS model) must be completed 
in order to be simulated. The separation of the directories 
including the Generated and Compiled directories is useful for 
creating models for different users and/or systems to be modeled 
and simulated. The NSM Models directory has non-simulatable 
models. The remaining XML Models directory is designated for 
holding XML models). 
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Figure 8. Namespaces for logical models and code for 
simulatable and non-simulatable models  
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4. CoSMoS PROCESS LIFECYCLE 
The processes and relationships defined in Figure 9 are defined 
in terms of the following three parts. The Model Development 
activities are supported by CoSMo. The Experimentation 
Design and Configuration is supported by the capabilities 
described in Section 3. The model executions are supported by 
DEVS-Suite.  

A. Model Development 

1. Select Database: User selects the database that 
serves as a repository for the logical models. This 
database has a predefined structure (ER schema). 

2. Select an existing model or create a new one: 
User uses an existing set of (partial or complete) 
models or creates an empty template model. User 
develops a family of models. 

3. Select Instance Template Model: User selects 
one Instance Template Models from those that 
are created in Step 2. Other instance models may 
be created. 

4. Transform Instance Models into source code: 
User instantiates one of the instance template 
models. For every specializee model, the user 
must choose one specialized model. User may 
create a family  of alternative instance models 
based on the specialized models that are chosen. 
Then, user can generate partial and complete 
source code for all instance models of the 
selected instance model.  

5. Add behavior to the source code: The primitive 
models are completed using the NetBeans editor. 
Other IDEs may be used, but the user must 
ensure the source code remains consistent with 
its counterpart logical model. 

 

B. Experimentation Design and Configuration 

6. Select and load simulation models: User selects 
an instance model to be simulated. The source 
code for the instance model and all of its 
components are loaded in the DEVS-Suite. The 
loading is an iterative process between 
completing the source code and automated 
compiling within DEVS-Suite. 

7. Select components and ports of models: User 
selects models and their respective input and 
output ports. These selections are stored in the 
memory (JVM) in order to allow the user to 
select them for tracking (i.e., input/output 
trajectories, CSV export, and tabular form). The 
user may skip this step if no trajectories or 
tabulated data is to be viewed or no data is to be 
exported into a CSV file. 

8. Select visualization modes: The modeler is 
given the choice of viewing the models’ 
simulation output data on different types of 
trajectory viewers. The animation includes the 
SimView and the tracking of the output is shown 

in Tracking Log and TimeView. 
 

C. Simulation Execution 

9. Execute model: User starts simulation of the 
model. If any model component is selected to be 
viewed (see Step 7), the execution of the model 
is displayed as the animation of the model 
components, time-based trajectories, and 
tabulated form as well as exported CSV files for 
post processing, depending user’s choice. 
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Figure 9. Process for developing models, designing 
experiments configuration, and executing simulations 

 

5. COMPARISON WITH OTHER TOOLS 
A variety of tools have been built for combined model 
development and simulation execution. Some tools support 
rendering source code of models as visual entities while few 
others support visual model development, chiefly through use of 
predefined icons or block component notations. Here, we focus 
on visual model development and selecting which of them to be 
monitored during execution. The behavior of the model 
components can be animated (view state changes of the 
components and input and output messages that are exchanged).  
The input and output data can also be viewed as time-based 
output trajectories.   
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Academic tools such as CoSMoS and Ptolemy II and 
commercial tools such as SimEvents support component-based 
modeling and simulation. They are aimed at different goals and 
differ from one another in important ways. Here we consider 
their visual modeling capabilities across modeling and 
simulation lifecycle. Ptolemy II [7] is a software framework 
developed as a part of the Ptolemy Project. It provides a 
component assembly framework which has a graphical user 
interface called Vergil. The project supports modeling and 
simulating of systems (e.g., real-time and embedded systems). It 
has a large domain-polymorphic component library. Its visual 
modeling offers pre-defined symbolic representation that can be 
assembled to create hierarchical models. The animation feature 
highlights the active model at any given instance of time during 
the simulation. The simulation results can be monitored and 
analyzed with the help of the pre-built plotters. The plotters 
form part of the model layout and thus can significantly increase 
the total number of the components that are displayed to users.  

SimEvents is an extension of Simulink [8] and has a discrete-
event simulation with a built-in model of computation. 
SimEvents interacts with the time-based dynamics of Simulink. 
It also provides signals or entity changes to control the 
processing of Stateflow changes. SimEvents can be used to 
develop activity-based models to monitor system states such as 
congestion, resource contention and processing delays. It 
provides pre-built libraries for queues, servers, switches, gates, 
timers, time-outs, and generators for entities, events, and 
signals. The SimEvents Sinks Library has several plotters that 
can be used in the models to monitor the values or the states of 
the various events. These sinks are strongly typed. Similar to 
Ptolemy II, the total number of components for a model can be 
very large depending on the number of input and outputs that 
are to be monitored.  

 

Figure 10. Assembly Line model in CoSMoS 

 

To compare SimEvents, Ptolemy II, and CoSMoS, we 
developed a simple Assembly Line model as shown in Figure 
10. This model is also developed in SimEvents and Ptolemy II 
(more details can be found in [4]). As shown in Table 1, since in 
CoSMoS, there is no need to include “monitoring components”, 
the total number of components that are displayed to a user is 
always minimal compared with SimEvents and Ptolemy II. For 
a model with even a modest number of components, significant 
display space is required as compared with CoSMoS. 
Furthermore, while CoSMoS can support well-formed visual 
modeling of a family of models, these and many other tools 
must rely on a file structure provided by an operating system. In 
particular, the specialization relationship between a specializee 
and its specialized models are not defined in the file structures 
of operating systems. Therefore, users need to define their own 

scheme of organizing and managing a family of models for a 
system, something that is undesirable.  

The Assembly Line model was simulated using CoSMoS, 
Ptolemy II, and SimEvents to evaluate the execution speeds of 
their simulators. For the Assembly Line model, the execution 
speed for Ptolemy II and DEVS-Suite are comparable and faster 
than the speed of SimEvents. With regard to the speed plotting 
of the trajectories, Ptolemy II and SimEvents performance can 
be much more efficient that DEVS-Suite depending on the 
number of plots and choice of programming language and 
implementation details.   

Table 1. Visual display complexity metrics for component-
based modeling tools  

 SimEvents Ptolemy CoSMoS 

Logical 
components 

11 9 5 

Ports 29 15 10 

Couplings 14 11 4 

Monitoring 
components 

4 2 0 

Trajectory 
viewers 

4 2 4 

Total no. of 
components 

62 39 23 

 

6. CONCLUSIONS 
For studying complex and large-scale systems, it is desirable to 
have a unified modeling and simulation framework and tool that 
can reduce effort and help develop better models. Increasingly it 
is necessary to develop a family of models for a system and thus 
useful to enable not only developing models visually, 
automatically translating them to programming code, and 
making viewing of simulation of models simpler and more 
accessible to domain experts, but also to help automate 
management of multiple models of a system. The CoSMoS 
framework and its tool helps to address some of the challenges 
faced in developing models that are easier to verify and 
simulations that can be validated. As noted earlier, the key 
limitation for CoSMoS and all other tools that we are aware of 
is the inability for complete behavior specification. Toward 
greater support and ease, advances in domain-specific modeling 
are promising and could lead to a new generation of tools that 
can go beyond the current use of software engineering 
techniques and in particular depend on use of models with pre-
fabricated behavior. Another interesting research direction for 
CoSMoS is to extend it to support common modeling 
approaches including cellular automata. The basic goal of the 
current and future research is to make modeling and simulation 
more accessible while strengthening the core verification and 
validation activities.   
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