
CoSMoS: A Visual Environment for Component-Based
Modeling, Experimental Design, and Simulation

Hessam S. Sarjoughian

Arizona Center for Integrative Modeling & Simulation
Computer Science and Engineering Department
Arizona State University, Tempe, AZ 85281-8809

001-480-965-3983

sarjoughian@asu.edu

Vignesh Elamvazhuthi
Content Management and Archiving

EMC Corporation
Pleasanton, CA 94566

001-925-600-5884

elamvazhuthi_vignesh@emc.com

ABSTRACT
An integrated modeling and simulation tool called Component-
based System Modeler and Simulator (CoSMoS) is developed.
It supports visual development of families of models that have
well-defined logical specifications. The logical component-
based models persist in relational databases and may be
automatically translated into specific target simulation and
markup programming languages. The underlying system-
theoretic modeling framework of CoSMoS lends itself for the
well-known discrete-time, continuous, and discrete-event
modeling approaches. Currently, CoSMoS supports developing
parallel DEVS-compliant models which can be executed using
the DEVS-Suite simulator. The underlying process lifecycle of
the CoSMoS enables systematic transitioning from visual model
development and design of experiments to simulation execution
and experimentation. Simulation data can be used for run-time
animation and viewing of time-based trajectories or exported for
post processing. This tool helps to simplify simulation-based
system design, verification, and validation. The core capabilities
of the CoSMoS are exemplified with a conceptual model of an
anti-virus network software system.

Categories and Subject Descriptors
I.6.1 [Simulation and Modeling]: Types of Simulation –
animation, visual; I.6.5 [Simulation and Modeling]: Model
Development – modeling methodologies; I.6.7 [Simulation and
Modeling]: Simulation Support Systems – environments

General Terms
Design, Experimentation, Measurement, Theory, Verification.

Keywords
CoSMoS, M&S lifecycle, DEVS-Suite, visual modeling

1. INTRODUCTION
Complex systems are described using a set of model
abstractions and relationships. For example, the Unified
Modeling Language (UML) [9] and Discrete Event System
Specification (DEVS) [14] are primarily used for software
modeling and simulation modeling, respectively. The
abstractions and relationships offered by these allow modeling
both structures and behaviors of dynamical systems. In contrast,
other languages such as XML Schema and System Entity
Structure (SES) [13] are mainly targeted for modeling structures
of systems. XML Schema [3] can be used to describe arbitrary
data structures among simple and complex elements. Families of
models may also be specified using an extensive set of elements
with pre-defined and user-defined rules. Similarly, SES supports
data modeling, but has a fixed set of rules that constrain how
entities’ (objects without behavior) abstractions may be
organized. Among these approaches, UML provides a unified
logical and visual modeling framework. Numerous other efforts
and tools have been proposed and undertaken, but many lack
sound underlying principles that can empower users to visually
develop logical models and automatically translate into
simulation code and simulated.

It is desirable to describe systems using logical and visual model
types that can also lend themselves for simulation. Logical
models can be mathematical formulations of a system’s
structure and behavior and are important since they have precise
syntax and semantics. Visual models, on the other hand, are
desirable since they help simplify modeling, especially for
domain experts who find formal specifications or programming
difficult and not intuitive. Furthermore, it is desirable to
represent models in standard languages that are well suited for
databases. Models can be used as persistent repositories and
therefore be systematically reused for multiple purposes and
evolved over time and space during the lifecycle of simulation
models.

Given the unique capabilities and advantages afforded by
logical, visual, and persistence models, it is advantageous to
have a modeling framework that supports collective use of these
different model types in a consistent manner. That is to say, all
visual model development activities must be sanctioned by the
logical models and all models that are stored in a database must
be consistent with their logical specifications and thus their

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTools 2009, March 2–6, Rome, Italy.
Copyright 2009 ICST 978-963-9799-45-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5744
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5744

visual representations. The Component-based System Modeling
(CoSMo) framework satisfies the above requirement.

A key disadvantage for visual modeling is limited viewing
space. Techniques such as hierarchical modeling with zoom-in
and zoom-out capabilities can significantly reduce the viewing
space limitation. However, a user who is interested in
developing models and simulating them needs to design
experiments. For observing model components’ input and output
data, it is useful to support visual selection of the components
and their individual input and output variables. To support such
a capability, the concept of visual design of experiments is
proposed and introduced into the CoSMo framework. The
resulting Component-based System Modeling and Simulation
(CoSMoS) framework is used to develop the Component-based
System Modeler and Simulator environment which integrates
the CoSMo modeler and DEVS-Suite simulator together. The
design of the CoSMoS has a lifecycle process in which a user
starts with visual model development and design of experiments
and executes simulation models that are partially generated and
manually completed by user.

In the remainder of this paper, we briefly present the basic
modeling approach of CoSMo, the complementary viewing of
model executions supported by the DEVS-Suite simulator, and
an example that helps to illustrate integrated model development
and simulation in CoSMoS. Next, we describe the basic design
of CoSMoS that ensures visual model configuration for
simulation experimentations, and automated data collection and
viewing. In the following two sections, we present the process
lifecycle and related work. We conclude with a summary of the
paper and future work.

2. BACKGROUND
In this section, we provide a brief account of CoSMo and
DEVS-Suite with emphasis on aspects that are important in
integrating into the CoSMoS environment. We also describe an
example that can illustrate the kind of end-to-end modeling and
simulation that is supported in CoSMoS.

2.1 CoSMo
Component-based System Modeler (CoSMo) is a tool [1] for
developing a family of models of a system [2][3] [5][10][11]. It
has a unified concept for specifying general-purpose logical,
visual, and persistent primitive and composite models (see
Figure 1). Complex hierarchical models may be developed by
composing modular components using their input and output
ports. CoSMo currently supports DEVS and XML models and
generates partial and complete source code for DEVS-Suite
[1][6].

The logical model specification is governed by a set of axioms
that ensure consistency among a family of alternative
hierarchical model specifications [5][10]. A system is modeled
in terms of three model types: Template Models (TM), Instance
Template Models (ITM) and Instance Models (IM). All
primitive and composite logical, visual, and persistent models
are defined in terms of these model types. The primitive and
composite models can collectively represent alternative
specifications of one or more systems. Every Instance Template
Model is defined only when it has a Template Model and every

Instance Model is defined only when it has an Instance
Template Model.

Visual

Modeling

Logical

Modeling

Persistent

Modeling

Model

Translators

Simulation�

language

Markup�

Language

Visual

Modeling

Logical

Modeling

Persistent

Modeling

Model

Translators

Simulation�

language

Markup�

Language

Figure 1. Architecture Concept for CoSMo

2.1.1 Logical Models
The Template Model is defined to include primitive and
composite models with hierarchy of length two. The
composition and specialization relationships may be used
together under some well-defined constraints (e.g., absence of
self-composition as defined in the system-theory and self-
feedback as defined in DEVS formalism) to specify strict
hierarchical tree structures of one or more models. To avoid
possible confusion, composition refers to composite/primitive
(or whole/part) relationships (i.e., a composite component can
contain one or more primitive components). The specialization
refers to parent/child relationship where a primitive or a
composite component can be specialized to a primitive or a
composite component, respectively. A model can be a
specializee component in which case it can have one or more
specialized components. There is a specialization relationship
between any specialized component and its specializee
component. With the Template Models, separate models can be
specified for systems that may or may not be related to one
another. Limited behavioral modeling (specifying input and
output variables) is supported and structural complexity metrics
(e.g., number of components for any composite model) can be
readily obtained.

The Instance Template Model, which extends the Template
Model, is defined to have hierarchies with lengths equal or
greater than two. Multiple Template Models can be combined
together to form different models of a system. The Instance
Template Model represents an instance of the Template Model
since Template models may be combined using the composition
and specialization hierarchies to specify alternative structures of
a system. Although any two Instance Template Models are
distinct, they may share one or more Template Models. The use
of the term instance is not in the sense of Object Theory where
all instances of a class have an identical specification. Two
Instance Template Models differ in terms of their specializations
and compositions. The Instance Model is defined to represent
structures that do not have any specialization relationships. An
instance model is instantiated by removing all specialization
relationships (selecting specialized components from specializee
components) that may be contained in an Instance Template
Model.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5744
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5744

Since there can be many alternative models for a system, it is
important to keep them consistent with one another. A concept
that is commonly used in specifying hierarchical models of
systems is uniformity. A model for a part of a system (i.e.,
primitive or composite model) that is used multiple times in the
system’s model hierarchy must have a unique specification (i.e.,
structure and behavior). When the structure of a model is
restricted to be a tree instead of a graph, uniformity implies that
for any sub-structure with a unique specification and name, all
of its occurrences are identical. A consequence of enforcing this
property is that changes made to the sub-structure are uniformly
applied to the complete tree structure. Another property called
non-self-reference states that a model cannot contain itself either
directly through iterative composite/primitive relationships.
Based on the above relationships (i.e., composition and
specialization) and properties (uniformity and non-self-
reference), a finite set of unique Instance Models can be
generated given the Template Models and Instance Template
Models.

Instance Models are concrete since they cannot have any
specialization relationships. The transformation relationship
(between the Instance Template Model and the Instance Model)
enables defining one or many structures that are defined by
removing all occurrences of specialization relationships that
may be contained in the Instance Template Model. Thus, a
family of unique instance models can be generated from the
Instance Template Models.

(a) Composite virus network model

(b) Primitive router and virus processor models

(c) Composite experimental frame model with specializee
generator virus model

Figure 2. Visual Template Model development in CoSMo

Figure 3. Instance Template Model for virus network model

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5744
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5744

2.1.2 Persistent and Visual Models
The CoSMo environment supports storing models in relational
databases. Model creation, storage, access and manipulation
require management of a large number of models and
determining their structural complexity metrics [9]. The visual
modeling supports developing and manipulating composite
models that are synthesized from primitive and composite
models. Specification of primitive and composite models are
based on block models that can be combined using input and
output ports and links that connect them together using specific
modeling languages such as DEVS.

2.1.3 Model Translator
The translator for CoSMo supports translating the logical
models that are stored in any of its databases to code for target
simulation and markup languages. In general, since it is
impractical to visually model arbitrary dynamical models, only
partial source can be automatically generated. Logical primitive
and composite models can be automatically translated to atomic
and coupled models for DEVS-Suite simulator. The translator
generates partial source code for DEVS atomic models from
primitive Instance Models and complete source code for DEVS
coupled models from composite models. It is for this reason the
shaded arrow is used between the Model Translators to
Simulation Languages (see Figure 1). Translators have also been
developed for generating DTD and XML schema code.

2.2 DEVS-Suite
DEVS-Suite [6] is the next generation of the DEVSJAVA
simulator [1]. It supports simulating models that can be
specified using the DEVS formalism [14]. The architecture of
the simulator is based on Model Façade View Control (MFVC)
and in particular has its animation and viewing of time
trajectories separated from the parallel DEVS abstract simulator.
Models in DEVS are classified into atomic and coupled models.
An atomic model is defined in terms of input, output, state, and
time sets with functions that determine next states and outputs
given current states and inputs at arbitrary time instances.
Together, external, internal, confluent, output, and time advance
functions define a component’s behavior over time. A coupled
model is defined in terms of atomic and/or coupled models. As
in an atomic model, a coupled model contains a set of inputs, a
set of outputs, a set of component names, a set of components,
and a set of coupling relationships among the input and output
ports of the composed model components. Atomic and coupled
models interact with one another using messages that are
exchanged via couplings that connect their input and output
ports.

The execution of the models can be viewed as the animation of
the input/output messages for coupled models and the state
changes of the atomic models. For any atomic or coupled
models, its inputs and outputs can be selected via a dialogue box
at the beginning of the simulation and time-based trajectories
generated during simulation. For atomic models, trajectories can
also be generated for pre-defined phase and sigma state
variables.

2.3 Anti-Virus Network Software System
Example
To illustrate model development and simulation in CoSMoS [1],
we have constructed a model called SimpleVirusNet for a
simple virus detection software system which is stored in a
database file called NetVirs_Net.mdb (see Figure 2(a)). The
system is intended to protect a network of computers from virus
attacks. A model of this system which is called SimpleVirusNet
consists of two coupled models called RouterVirus. The
messages arriving at the in port of the SimpleVirusNet are sent
to the in port of the first RouterVirus model. The messages
arriving at the SimpleVirusNet alertSignal are sent to the
alertSignal of both RouterVirus models.

Each RouterVirus has one RouterQ and one VirusProcQ
components (see Figure 2(b). The RouterQ acts as a processor.
If it receives a message which is not infected by a virus, the
message is sent to the out port. The type of messages arriving at
the alertSignal port is the same as the messages arriving at the in
port. A message arriving at the in port is considered to be
suspicious if its ID matches the ID of the message arriving at the
port alertSignal. The RouterQ has two queues, q and alertQ, to
store the messages and the alert messages respectively.

An experimental frame model called ExpFrame is defined. As
shown in Figure 2(c), this model consists of the GenrMsg,
GenrVirus, and TransdSVN models. The GenrMsg generates
messages for the in port of the SimpleVirusNet and GenrVirus
generates messages for the alertSignal port. The TransdSVN
computes statistics such as throughput for the SimpleVirusNet
model. The above models shown in the Instance Template
Model are visually developed using CoSMo. The tree structure
of the entire model (including the specialized GernFastVirus
and GenrSlowVirus models for the GenrVirus model) with
multiplicity of model components are shown in Figure 3.

All operations including creation, deletion, and modification of
simulatable and non-simulatable model components are
supported visually. Similarly, adding ports, variables names of
input and output values, and state variables are also supported
visually. Other operations are complexity measure calculation
and viewing of the generated source files and non-simulatable
models. These un-timed non-simulatable models are simple and
complex data structures and objects that are used in addition to
the simulatable primitive and composite models [11].

3. CoSMoS ENVIRONEMENT
The unified modeling and simulation environment bridges the
CoSMo and DEVS-Suite by introducing visual tags for input
and output ports of the models that can be developed in CoSMo.
The visual toggling of input and output ports for tracking during
simulation is advantageous as it eliminates the need to use
dialogue boxes that are otherwise required for DEVS-Suite. Of
particular importance is the manipulation of model components
visually for designing experiments and on-the-fly selection of
simulation data to be observed. In the following sub-sections,
we describe the basic concepts and design that were developed
for developing CoSMoS. The developed approach can be
applied to other modeling approaches and simulation engines.
For example, the rules for creating primitive and composite
models can be defined according to Simulink block (discrete-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5744
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5744

time and continuous-time) models or cellular automate models.
The basic approach described in this section can be used to
integrate solvers for these kinds of models into CoSMo and thus
have other variants of CoSMoS.

A very simple conceptualization for the CoSMoS environment
is shown in Figure 4. This integrated environment enables visual
model development, model configuration and automatic
simulation data collection, and simulation. It extends the
CoSMo design and implementation to support visual
configuration of models for experimentations and generation of
partial simulation code for DEVS-Suite. Once the behaviors of
atomic models (i.e., the external, internal, confluent, and output
functions) are completely specified, the DEVS-Suite simulator
can be invoked to simulate coupled models. Using CoSMoS
with its model development process, modelers can develop and
simulate models in an integrated visual modeling and simulation
environment.

CoSMo
DEVSr

Suite

Figure 4. CoSMoS conceptual system view

3.1 Component Selection with Automated
Data Collection and Observation
The models loaded in the DEVS-Suite are assigned default
trackers. Users can select any coupled instance model and
visualize any of its input and output ports as well as all of its
components. For atomic models, common state variables (phase
and sigma) and simulator timing variables (i.e., time of next
event and time of last event) can also be visualized. Figure 5
shows the steps that lead to tagging input and output ports of
models for tracking. (Recall that MFVC is the basic architecture
of DEVS-Suite). The Controller object is responsible for the
creation of the hooks with the View. The View object delegates
the logic for determining the data for trajectory viewers through
the TrackingControl object. Each tracker associated with the
model has a checker that enables or disables what is to be
tracked. With CoSMoS, instead of use dialogue boxes to select
trackers, the user simply toggles on any port that is to be
tracked. Figure 6 shows selection of the trackers visually for the
net-virus network and experimental frame models. Note that the
names (IDs) of the instance models are unique among
themselves as well as the names of the instance template
models. The background color of a port that is to be tracked
during simulation is set to white by clicking on it.

Figure 5. Selecting input and output ports for primitive and
composite and their tracking in DEVS-Suite TimeView

Figure 6. Input and output ports selected for tracking
during simulation

3.2 Adding Behavior to Models
The primitive models that are transformed to DEVS atomic
models must be completed before they can be simulated using
the DEVS-Suite simulator. CoSMoS assists the user in adding
behavior to generated source code. The structural specification
of these Java models (e.g., input and output port names, variable
types for messages, and skeleton code for transition and output
functions) are automatically included in the generated source
code. The source code for each model is consistent with its
logical specification – i.e., name, ports, variables, and state
variables included in the source code are the same as those that
are stored in the database. Sample tabs of source code editors
are shown in Figure 7. The editor is available as a part of the
Netbeans editor API. Its functionalities include code coloring,
line numbering, and keyword recognition. To disable the
changes to the model’s structure, the Guarded Sections property
of the editor is used. The sections that are guarded cannot be
edited. The guarded sections are shaded as shown in Figure 7.
As noted earlier, guaranteeing that every logical model and its
source code are consistent is crucial, otherwise verification of
models and validation of simulations become unnecessarily
difficult.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5744
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5744

Figure 7. CoSMoS UI and the editor for adding behavior to models

3.3 Models and Namespaces
Another important need is to manage all models that are created
and used in the CoSMoS environment. These models can be
categorized into databases and flat files (see Figure 8).

A simple method is to devise a namespace. A root directory is
defined within which any number of user-defined databases may
exist in unique directories (e.g., NetVirus_Exp). Each database
directory has a Database directory for databases (e.g.,
VirusNetwork.mdb), DEVS-Suite and XML directories, and a
directory for NSM (non-simulatable) models. The DEVS-Suite
Models directory consists of the Generated directory which has
source and compiled files (e.g., VirusProcQ_0_0.java and
VirusProcQ_0_0.class). As noted above, the source code for the
primitive models (e.g., atomic DEVS model) must be completed
in order to be simulated. The separation of the directories
including the Generated and Compiled directories is useful for
creating models for different users and/or systems to be modeled
and simulated. The NSM Models directory has non-simulatable
models. The remaining XML Models directory is designated for
holding XML models).

root

MB_Models

NetVirus_Exp Name�Of�Database2

Database

NSM�Models

XML�Models

VirusNetwork.mdb

VirusProcQ_0_0.java

Model2.java

VirusProcQ_0_0.class

Model2.class

DEVSrSuite�Models

Generated

root

MB_Models

NetVirus_Exp Name�Of�Database2

Database

NSM�Models

XML�Models

VirusNetwork.mdb

VirusProcQ_0_0.java

Model2.java

VirusProcQ_0_0.class

Model2.class

DEVSrSuite�Models

Generated

Figure 8. Namespaces for logical models and code for
simulatable and non-simulatable models

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5744
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5744

4. CoSMoS PROCESS LIFECYCLE
The processes and relationships defined in Figure 9 are defined
in terms of the following three parts. The Model Development
activities are supported by CoSMo. The Experimentation
Design and Configuration is supported by the capabilities
described in Section 3. The model executions are supported by
DEVS-Suite.

A. Model Development

1. Select Database: User selects the database that
serves as a repository for the logical models. This
database has a predefined structure (ER schema).

2. Select an existing model or create a new one:
User uses an existing set of (partial or complete)
models or creates an empty template model. User
develops a family of models.

3. Select Instance Template Model: User selects
one Instance Template Models from those that
are created in Step 2. Other instance models may
be created.

4. Transform Instance Models into source code:
User instantiates one of the instance template
models. For every specializee model, the user
must choose one specialized model. User may
create a family of alternative instance models
based on the specialized models that are chosen.
Then, user can generate partial and complete
source code for all instance models of the
selected instance model.

5. Add behavior to the source code: The primitive
models are completed using the NetBeans editor.
Other IDEs may be used, but the user must
ensure the source code remains consistent with
its counterpart logical model.

B. Experimentation Design and Configuration

6. Select and load simulation models: User selects
an instance model to be simulated. The source
code for the instance model and all of its
components are loaded in the DEVS-Suite. The
loading is an iterative process between
completing the source code and automated
compiling within DEVS-Suite.

7. Select components and ports of models: User
selects models and their respective input and
output ports. These selections are stored in the
memory (JVM) in order to allow the user to
select them for tracking (i.e., input/output
trajectories, CSV export, and tabular form). The
user may skip this step if no trajectories or
tabulated data is to be viewed or no data is to be
exported into a CSV file.

8. Select visualization modes: The modeler is
given the choice of viewing the models’
simulation output data on different types of
trajectory viewers. The animation includes the
SimView and the tracking of the output is shown

in Tracking Log and TimeView.

C. Simulation Execution

9. Execute model: User starts simulation of the
model. If any model component is selected to be
viewed (see Step 7), the execution of the model
is displayed as the animation of the model
components, time-based trajectories, and
tabulated form as well as exported CSV files for
post processing, depending user’s choice.

Select
database

Select an existing template
model or create new

model

Select instance template
model and create its

instance models

Transform
instance models

Database

Add behavior to
simulation models

Select and load
simulation models

Select visualization
modes (SimView,

TimeView and
Tracking Log)

JVM

Select
input/output

ports of models
for tracking

Partial�

DEVSrSuite�

Models

Completed�and�

compiled�

DEVSrSuite�files

Execute

SimView Tracking Log TimeView

M
od

el
 D

ev
el

op
m

en
t

E
xp

er
im

en
ta

ti
on

 D
es

ig
n

an
d

C
on

fi
gu

ra
ti

on
Si

m
ul

at
io

n model

Select
database

Select an existing template
model or create new

model

Select instance template
model and create its

instance models

Transform
instance models

Database

Add behavior to
simulation models

Select and load
simulation models

Select visualization
modes (SimView,

TimeView and
Tracking Log)

JVM

Select
input/output

ports of models
for tracking

Partial�

DEVSrSuite�

Models

Completed�and�

compiled�

DEVSrSuite�files

Execute

SimView Tracking Log TimeView

M
od

el
 D

ev
el

op
m

en
t

E
xp

er
im

en
ta

ti
on

 D
es

ig
n

an
d

C
on

fi
gu

ra
ti

on
Si

m
ul

at
io

n model

Figure 9. Process for developing models, designing
experiments configuration, and executing simulations

5. COMPARISON WITH OTHER TOOLS
A variety of tools have been built for combined model
development and simulation execution. Some tools support
rendering source code of models as visual entities while few
others support visual model development, chiefly through use of
predefined icons or block component notations. Here, we focus
on visual model development and selecting which of them to be
monitored during execution. The behavior of the model
components can be animated (view state changes of the
components and input and output messages that are exchanged).
The input and output data can also be viewed as time-based
output trajectories.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5744
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5744

Academic tools such as CoSMoS and Ptolemy II and
commercial tools such as SimEvents support component-based
modeling and simulation. They are aimed at different goals and
differ from one another in important ways. Here we consider
their visual modeling capabilities across modeling and
simulation lifecycle. Ptolemy II [7] is a software framework
developed as a part of the Ptolemy Project. It provides a
component assembly framework which has a graphical user
interface called Vergil. The project supports modeling and
simulating of systems (e.g., real-time and embedded systems). It
has a large domain-polymorphic component library. Its visual
modeling offers pre-defined symbolic representation that can be
assembled to create hierarchical models. The animation feature
highlights the active model at any given instance of time during
the simulation. The simulation results can be monitored and
analyzed with the help of the pre-built plotters. The plotters
form part of the model layout and thus can significantly increase
the total number of the components that are displayed to users.

SimEvents is an extension of Simulink [8] and has a discrete-
event simulation with a built-in model of computation.
SimEvents interacts with the time-based dynamics of Simulink.
It also provides signals or entity changes to control the
processing of Stateflow changes. SimEvents can be used to
develop activity-based models to monitor system states such as
congestion, resource contention and processing delays. It
provides pre-built libraries for queues, servers, switches, gates,
timers, time-outs, and generators for entities, events, and
signals. The SimEvents Sinks Library has several plotters that
can be used in the models to monitor the values or the states of
the various events. These sinks are strongly typed. Similar to
Ptolemy II, the total number of components for a model can be
very large depending on the number of input and outputs that
are to be monitored.

Figure 10. Assembly Line model in CoSMoS

To compare SimEvents, Ptolemy II, and CoSMoS, we
developed a simple Assembly Line model as shown in Figure
10. This model is also developed in SimEvents and Ptolemy II
(more details can be found in [4]). As shown in Table 1, since in
CoSMoS, there is no need to include “monitoring components”,
the total number of components that are displayed to a user is
always minimal compared with SimEvents and Ptolemy II. For
a model with even a modest number of components, significant
display space is required as compared with CoSMoS.
Furthermore, while CoSMoS can support well-formed visual
modeling of a family of models, these and many other tools
must rely on a file structure provided by an operating system. In
particular, the specialization relationship between a specializee
and its specialized models are not defined in the file structures
of operating systems. Therefore, users need to define their own

scheme of organizing and managing a family of models for a
system, something that is undesirable.

The Assembly Line model was simulated using CoSMoS,
Ptolemy II, and SimEvents to evaluate the execution speeds of
their simulators. For the Assembly Line model, the execution
speed for Ptolemy II and DEVS-Suite are comparable and faster
than the speed of SimEvents. With regard to the speed plotting
of the trajectories, Ptolemy II and SimEvents performance can
be much more efficient that DEVS-Suite depending on the
number of plots and choice of programming language and
implementation details.

Table 1. Visual display complexity metrics for component-
based modeling tools

 SimEvents Ptolemy CoSMoS

Logical
components

11 9 5

Ports 29 15 10

Couplings 14 11 4

Monitoring
components

4 2 0

Trajectory
viewers

4 2 4

Total no. of
components

62 39 23

6. CONCLUSIONS
For studying complex and large-scale systems, it is desirable to
have a unified modeling and simulation framework and tool that
can reduce effort and help develop better models. Increasingly it
is necessary to develop a family of models for a system and thus
useful to enable not only developing models visually,
automatically translating them to programming code, and
making viewing of simulation of models simpler and more
accessible to domain experts, but also to help automate
management of multiple models of a system. The CoSMoS
framework and its tool helps to address some of the challenges
faced in developing models that are easier to verify and
simulations that can be validated. As noted earlier, the key
limitation for CoSMoS and all other tools that we are aware of
is the inability for complete behavior specification. Toward
greater support and ease, advances in domain-specific modeling
are promising and could lead to a new generation of tools that
can go beyond the current use of software engineering
techniques and in particular depend on use of models with pre-
fabricated behavior. Another interesting research direction for
CoSMoS is to extend it to support common modeling
approaches including cellular automata. The basic goal of the
current and future research is to make modeling and simulation
more accessible while strengthening the core verification and
validation activities.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5744
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5744

7. ACKNOWLEDGMENTS
This research is partially supported by NSF grant #BCS-
0140269 and Intel Research Council.

8. REFERENCES
[1] Arizona Center for Integrative Modeling and Simulation.

2007. http://www.acims.arizona.edu.

[2] Bendre, S. and Sarjoughian, H. S. 2005. Discrete-Event
Behavioral Modeling in SESM: Software Design and
Implementation, Advanced Simulation Technology
Symposium, p. 23-28, San Diego, CA, USA.

[3] Bradley, N. 2004. The XML Schema Companion, Addison
Wesley.

[4] Elamvazhuthi, V. 2008. Visual Component-Based System
Modeling with Automated Simulation Data Collection and
Observation, Department of Computer Science and
Engineering, Arizona State University: Tempe, AZ, USA.
p. 1-115.

[5] Fu, T.-S. 2002. Hierarchical Modeling of Large-Scale
Systems Using Relational Databases, Department of
Electrical and Computer Engineering, University of
Arizona: Tucson, AZ, USA. p. 1-114.

[6] Kim, S., Sarjoughian, H. S. and Elamvazhuthi, V. 2009.
DEVS-Suite: A Component-based Simulation Tool for
Rapid Experimentation and Evaluation. Spring Simulation
Multi-conference, San Diego, CA, USA.

[7] Lee, E. A. 2003. Overview of the Ptolemy Project (No.
UCB/ERL M03/25), Department of Electrical and
Computing Engineering, University of California,
Berkeley, USA.

[8] MathWorks, 2007. http://www.mathworks.com/.

[9] Mohan, S. 2003. Measuring Structural Complexities of
Modular, Hierarchical Large-scale Models, Department of
Computer Science and Engineering, Arizona State
University: Tempe, AZ, USA. p. 1-112.

[10] OMG. 2004. Unified Modeling Language,
http://www.omg.org/technology/documents/formal/uml.ht
m

[11] Sarjoughian, H. S. 2005. A Scaleable Component-based
Modeling Environment Supporting Model Validation,
Interservice/Industry Training, Simulation, and Education
Conference, p. 1-11 Orlando, FL. USA.

[12] Sarjoughian, H. S. and Flasher, R. 2007. System Modeling
with Mixed Object and Data Models. DEVS Symposium,
Spring Simulation Multi-conference, Norfolk, VA, USA.

[13] Zeigler, B. P. and Hammonds, P. E. 2008. Modeling &
Simulation-Based Data Engineering: Introducing
Pragmatics into Ontologies for Net-Centric Information
Exchange, Elsevier.

[14] Zeigler, B. P., Praehofer, H. and Kim T. G. 2000. Theory
of Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems, Second
Edition, Academic Press.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2009.5744
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5744

