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ABSTRACT 

Research on large-scale internet services requires an extensive 

evaluation prior to deployment. A good analysis must include 

tests over large networks, using real devices and a considerable 

number of users. However, how to test in these scenarios with 

many users is an open question. Network emulation can be a good 

alternative before real deployments, which are complex and 

expensive. In this paper, we examine the new ns-3 network 

simulator/emulator in order to determine its capacity in the 

evaluation of large scale services. For that purpose, a real 

client/server video service is deployed over an emulated network. 

The service is progressively scaled up by increasing the number of 

clients on a single machine. In addition, we have extended ns-3 to 

support a distributed architecture for network nodes, thus, we 

repeat the experiments with a distributed set-up. Advantages, 

disadvantages, possibilities and limitations of both approaches are 

thoroughly discussed. 

Categories and Subject Descriptors 

C.2.1 [Network Architecture and Design]. 

General Terms 

Design, Experimentation. 

Keywords 

Emulation, distributed, network-simulator, ns-3. 

1. INTRODUCTION 
The number of Internet connections has grown rapidly in recent 

years. As a consequence, new services oriented to a large number 

of users have been created. File sharing or video distribution using 

P2P or other technologies are just two examples. These services 

are conceived to reach a significant amount of users and to 

achieve a high degree of availability. Therefore, scalability must 

be a key aspect in their design. In other words, services must 

support accesses from a high number of users in order to be 

successful. Furthermore, it is important to test the maximum stress 

VXSSRUWHG� E\� D� V\VWHP¶V� DUFKLWHFWXUH� SULRU� WR� GHSOR\PHQW� LQ� WKH�

real world; otherwise there is a risk of losing potential clients due 

to malfunctions. This evaluation may include the testing of the 

applications, the network architecture or the protocols to maintain 

the service up and running. 

The performance evaluation of new services can be carried out 

using different approaches. One alternative is the simulation of the 

whole system with models of the network, equipment and 

applications. Although it is a scalable method of evaluation, it 

depends on the accuracy of the models and may require 

reimplementation of some parts before the real world deployment. 

Besides, it is not possible to test with real users, because real 

applications are not used and normally it is not performed in real 

time. In contrast, test-beds use real equipment and applications to 

reproduce reality. Hence, they can be extremely costly because 

they may require complex network architectures. Finally, this may 

be a big problem if this equipment will not be used for real world 

deployment, because the goal may be just development of the 

services, but not its deployment. Emulation is in between these 

two options. A common emulation method is the combination of 

real applications, or devices with a virtualized network topology. 

In addition, if they are real time, human users can be introduced in 

the equation. As with simulations, emulations still rely on network 

model accuracy, but the investment in network devices can be 

saved. Being cheaper than the test-beds and closer to the real 

world than simulations, emulations present a solid alternative in 

the evaluation of large-scale services. Nevertheless, the selection 

of the right emulation platform and the configuration of the 

surrounding system present difficulties. The emulation framework 

must be thoroughly studied, in order to detect limitations and 

obtain precise service performance evaluations. 

Nowadays, ns-2 is probably the most extended application for 

network simulation. In addition, it is also used for emulation 

thanks to the extension in [7]. Its natural successor, ns-3, was 

released recently and promises to outperform ns-2 in many 

aspects. Ns-3 natively supports emulation using a real time 

scheduler for simulation events and virtual network devices, taps. 

Taps can be associated with both applications and nodes in a 

virtual network. Then, applications can exchange traffic through 

an emulated topology. For example, two processes running on the 

same computer can communicate as if they are connected by a 

complex network, but without the need to deploy it. For the 

evaluation of services with more users, more applications can be 

introduced and the complexity of the network can be increased. 

However, this process is not straightforward, because there are 

constraints imposed by hardware and ns-3. On the one hand, the 

identification of these limits will help us to build adequate 

frameworks for our emulations. On the other hand, it will 

establish boundaries to the validity of our experiment results; in 

other words, when results are due to real behavior of the analyzed 

service or a malfunction of the platform. 

$Q� ³D� SULRUL´� DQDO\VLV� RI� WKH� OLPLWDWLRQV� RI� QHWZRUN� HPXODWLRQ�

reveals some constraints. First, emulations carried out on a single 

machine have limited system resources. Some of them are 

consumed by the emulator, and some are available to introduce 
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real applications or virtual machines in the virtual network. The 

resource consumption and the number of these applications are a 

constraint to perform large experiments. The distribution of 

applications in different computers partially solves this problem, 

as [7] authors did for ns-2. However, new pitfalls are generated. 

All traffic exchanged by the applications must pass through the 

emulator, which introduces an extra delay. Moreover, the amount 

of traffic managed by the emulation is limited by the physical 

connection of the computers. For example, the emulation of a 

gigabit Ethernet may be impossible if they are connected in a 

10/100 Ethernet. In conclusion, distributed environments may 

have more possibilities, but there are still limits. Of course, 

powerful hardware and high capacity links are a quick solution, 

but they are normally too expensive. Thus, it is important to study 

different emulation environments in order to find suitable 

evaluation frameworks. 

This paper studies the effect on service emulation with ns-3 when 

the number of real applications is increased gradually. We have 

chosen video distribution over a local area network as a simple, 

but representative, case study. We perform ns-3 emulations on a 

single-machine and on a distributed environment. For this 

purpose, we have developed a distributed client extension. Then, 

resource consumption and service behavior are thoroughly 

examined in order to find limitations and accuracy of the results. 

The remainder of the paper is structured as follows. Section 2 

analyses related works. Goals of this work are set out in Section 3. 

The distributed emulation extension for ns-3 that we have 

developed is described in Section 4. Section 5 discusses the 

performance evaluation and explains our case study. Finally, 

Section 6 is dedicated to conclusions and future work. 

2. RELATED WORK 
Emulators are less popular than simulators in network research. 

Different works [2] focus on listing the most popular emulators, 

describing their particularities. Despite its native emulation 

support, ns-3 is not yet included among those classifications. Due 

to its novelty, there are few papers that study ns-3 or use it in their 

evaluations, either in emulation or simulation. There are works 

that deal with ns-3 features and goals or its development roadmap 

[4]. Some of them help to increase simulator models for 

experimentation, such as [1] where the implementation of a new 

model for WiMAX is described. However, few actually make 

active use of the simulator. [11] implements MANET routing 

protocols for ns-3 simulation, including up to 90 nodes in their 

experiments. On emulation, [12] compares a real deployment with 

an ns-3 experiment, using up to 35 nodes. The experiments in 

these publications give some clues about the performance of ns-3, 

although it is a collateral result.  To our knowledge, there are no 

publications that specifically focus on ns-3 constraints.  

The research of these issues is more abundant on ns-2. Interesting 

for our work here is the emulation extensions proposed in [8] and 

[7]. The former studies how to improve exactness in ns-2 real time 

emulations focusing on wireless models. The latter proposes the 

distribution of applications over different computers, alternatively 

to single-machine emulations, although distributed extension 

detailed in this solution has several drawbacks. Following the 

instructions described in [9], we tested some scenarios. We found 

that only homogeneous topologies were supported. Due to the 

specific addressing scheme in ns-2 and address manipulating in 

0DJGHEXUJ¶V� PRGHO�� KLHUDUFKLFDO� DGGUHVVLQJ� LV� QRW� DOORZHG��

which, on the other hand, is required for mixed topologies such as 

wired-to-wireless scenarios. The authors of [6] evaluate the 

performance of these proposals, also finding several additional 

limitations. They carry out emulations with up to 250 paths 

between a pair of nodes and focus their evaluation on the 

distribution layer, rather than on the emulator itself. They show 

that throughput bottlenecks, packet drops and RTT delays are 

mainly related with CPU overhead in the simulator and UDP 

tunnels implementation. The results shown have been a good 

starting point for our work with ns-3. 

Other interesting proposals try to overcome common emulator 

pitfalls. One of them is the usage of virtual time, instead of real 

time. Basically, the machine clock is slowed down for 

applications, so they work slower than in real time. Therefore, 

emulators can cope with more events using the same resources. 

Although these can be feasible solutions for some cases, it is not 

possible to mix them with human users or real devices, which can 

not be slowed down. Authors in [18] implement synchronization 

to virtual time mechanism for OMNET++ and they are currently 

working on exporting their prototype for ns-3. Another feasible 

method of increasing emulator capacity relies on parallelization 

techniques coupled with distributed systems. [15] explains this 

issue. Basically, complex networks are partitioned into simpler 

subnets and ghost nodes are placed in representation of missing 

subnets. Authors claim that protocols like these are easy to 

develop and could be straightforwardly included into any 

emulator.  According to ns-3 documentation, there are proposals 

to include these features in future ns-3 releases. Other works such 

as [3] mix both concepts, space parallelization and time 

virtualization, which could help to reach higher limits for a given 

emulator.  

3. GOALS 
This paper goes one step further than known related works. There 

is an existent increasing interest in network emulation for service 

evaluation. However, nobody has thoroughly studied ns-3 

limitations on emulation. Thus, we have set several goals that will 

contribute to the state of the art of the simulation/emulation 

subject. First, this document contains valuable information for 

those with the task of evaluating new services through emulation. 

Specifically, we take the perspective of services that expect a 

significant amount of clients, due to the current interest in them 

and their high resources demand. Therefore, researchers or service 

designers may use the contributions of this paper for their 

performance evaluations. 

Different setups of ns-3 have been tested and analyzed. Inspired in 

the work of [7] for ns-2, we have developed a distributed clients 

extension for ns-3. It provides the possibility of spreading 

applications inside the emulation in different computers. This 

approach has some advantages, because we are not restricted to 

using a single-machine for the emulation. However, it may have 

some drawbacks that are also analyzed. Finally, note that it is not 

a goal of this paper to judge the validity of ns-3 as a tool. 

Nevertheless, the limitations found may be used by researchers 

and developers to improve the overall performance of emulation 

platforms. 

4. DISTRIBUTED CLIENTS EXTENSION 
The aim of this section is to provide detailed description of the 

architecture developed in order to allow distributed emulation. 

The core of this approach is called the distributed clients 
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extension, where client refers to any real application that is 

introduced in the emulation. Using this new model, we are able to 

create ns-3 scenarios with nodes outside the emulator machine, 

thus, lightening its workload. Because our goal is to provide an 

extension independent to ns-3, we use UDP tunnels to transport 

Ethernet frames between the emulator and each application. 

Therefore, the distribution is transparent to the emulator. Such an 

environment may be hard to configure. Moreover, network 

scenarios may vary from simple topologies to complicated 

designs. Thus, configuration should be automated as much as 

possible, but still highly flexible. 

Next, we describe the design of the extension, some limitations 

and its configuration process.  

4.1 Design and implementation 
Ns-3 emulation features offer two different emulation classes, 

TapBridge and EmulatedNetDevice. The latter is basically 

intended to work with simulated objects through real test-beds, so 

the former suits our goal better. TapBridge operation involves 

several modes. The most relevant here are BridgedDevice mode 

and LocalDevice mode. For particular details, we refer to [13]. On 

the one hand, LocalDevice mode allows ns-3 to create virtual 

interfaces where local processes can be attached. Configuration of 

interfaces is entirely governed by the emulator itself. On the other 

hand, BridgedDevice mode uses existing virtual devices, such as 

Linux bridges and ns-3 connects to them. For example, this mode 

is specially indicated when using virtual machines, which may 

want to control the interfaces themselves. This mode is also 

convenient for our purposes, because we can take control of the 

interfaces to create our UDP tunnels. The target is therefore to 

extend ns-3 BridgedDevice scheme to disaggregate virtualized 

hosts to remote machines as shown in Figure 1. 

 

Figure 1. Overview of ns-3 emulation model evolution 

In BridgedDevice mode, the ns-3 TapBridge object is linked to an 

existing host bridge composed of two virtual network interfaces. 

Virtualized clients are linked to one end of the bridge, while ns-3 

ghost node, the one in the virtual topology, is connected at the 

other end. We intend to export the virtualized client to remote 

hosts, but we still need to guarantee direct talk between ends. To 

HQVXUH� WUDQVSDUHQW� FRPPXQLFDWLRQV�� DZDUH� RI� WKH� FOLHQW¶V�

FRQILJXUDWLRQ� WKURXJK� ODE¶V� UHDO� QHWZRUN�� WUDIILF� JHQHUDWHG� E\�

virtualized clients is captured in WKH� FOLHQW¶V� YLUWXDO� QHWZRUN�

interface and encapsulated in UDP datagrams. UDP traffic is sent 

over real network towards emulator host. At their destination, 

frames are de-encapsulated to be finally delivered to the proper 

bridge structure connected to the ghost node in the emulator. One 

instance of our taptunnel process, running over each virtual 

interface, is responsible for this behavior. The concept of this 

GHVLJQ� LV� LQVSLUHG� E\�0DKUHQKRO]� DQG� ,YDQRY¶V�ZRUN� LQ� >�@� DQG�

has been tuned to match current ns-3 requirements. Unlike the 

original, it uses single UDP streams for each virtualized client and 

does not interfere with address translation. In the former work 

address mapping was mandatory due to the ns-2 addressing 

scheme, however, the ns-3 addressing scheme is fully ipv4 

FRPSOLDQW� DQG� WKHUHIRUH�� WKH�RULJLQDO� VRXUFH¶V� DGGUHVVHV� DUH�QRZ�

perfectly suitable. Besides, in contrast with the work of 

Mahrenholz et al., we use identical instances of the tunnel in both 

ends of the path, not investing efforts in modifications of ns-3 

modules source code, which may lead to a lack of compatibility 

with new or modified versions of ns-3. Therefore, this simplified 

UDP tunnel module provides us with a clean starting point to 

which enhancements can be added as long as problems are 

identified. The extension scheme is illustrated in Figure 2. In such 

a framework, clients deployed on remote hosts do not notice 

underlying processes; they act as normal clients using real ipv4 

addresses. 

 

Figure 2. Details on the emulation model extension. 

In the physical connection of equipment, each computer hosting 

client applications should now be locally connected to the 

emulator machine, preferably, using a network switch. If the 

resource consumption of evaluated applications allows it, several 

virtual clients can be deployed on each host. Therefore, we can 

decrease the number of computers needed without limiting the 

number of clients in emulations. As this extension is intended to 

support wide and diverse scenarios, it is not specified what users 

can use to run their virtualized clients. Users may choose to run 

their applications directly over native operating systems or use a 

complete virtualized OS by means of common virtualization tools 

such as VMWare or User Mode Linux. If the client runs directly 

over native OS, their applications should be able to select a proper 

outgoing network interface, among all virtualized devices. This 

can be achieved by modifying sockets option 

62B%,1'72'(9,&(� LQ� WKH� FOLHQW¶V� DSSOLFDWLRQV. However, we 

might not be able to change the source code of some applications. 

In that case, we can bind the sockets using a library like 

libsocktap, developed for the NEMAN network emulator [14]. 

Provided that each remote machine may host multiple virtualized 

clients, it is necessary to provide rules to avoid direct 

communication between local interfaces. Here we decide to 

employ the sendtoself kernel patch developed by Ben Greear [16]. 

The idea is to return the output route via external interfaces, if a 

path between two local IP addresses is requested and they are 

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8630 
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8630 



configured on different interfaces with the recently created loop 

flag set to true. The patched kernel will send packets out of the 

host. Moreover, because a set of different network interfaces share 

the same host, kernel and routing tables, routes must be set 

considering source addresses. One rule should match for inbound 

traffic and select a proper target device based on the destination 

addresses. Another rule must drive traffic through the right 

gateway depending on the source address. Thus, policy routing [5] 

rules will be configured on the client hosts.  

Even with policy routing configured and sendtoself flag active, 

there is still a problem when clients that belong to different IP 

networks are in the same host. System network procedures 

establish strict packet flow through the kernel routing tables, 

which means that the local table is consulted first. The local 

routing table is maintained by the kernel. One common use of this 

table is to keep an entry for each locally configured interface. 

When a packet is sent from one local interface to another, the 

gateway that was previously configured is ignored. As a result, 

packets reach emulated network asking ARP requests for foreign 

addresses that none of its network neighbors know. Therefore, it is 

necessary to bypass the local routing table. This table is normally 

not meant to be manipulated, so it is necessary to patch again 

kernel sources and establish higher priority value for the local 

table rule. By doing this, we are able to place policy based rules 

before local ones. Therefore, when outbound packets search for 

their route, they are able to find the expected gateway. On the 

other hand, inbound traffic must be redirected to the local routing 

table, again, by means of policy based rules. 

4.2 Known issues 
This section describes some known issues that may be interesting 

when using this extension. 

4.2.1 Dynamic Routing protocols 
Dynamic routing protocols are required in some scenarios, for 

example in mobile ad-hoc networks. In such scenarios, routes are 

constantly added and removed from the routing table, which may 

interfere with the routing policies established for our extension. 

Therefore, distributed clients and hosts can not share the same 

routing table. It is recommended to create multiple independent 

network stacks, one per client. After that, routing protocols should 

be executed in the virtualized independent environment. 

Virtualization can be achieved by using any means available, from 

complete virtual environments such as the already mentioned 

VMWare or User Mode Linux (UML), to simpler network stack 

virtualization tools like VirtNET. 

4.2.2 Shared Channel 
There are network topologies where several nodes share the 

communication channel, such as wireless networks or several 

computers connected to a hub. Due to the UDP tunneling 

mechanism implemented in this extension, an effect is produced 

which is worth mentioning. In the real world, when a node sends a 

message, all nodes in its range (broadcast domain) receive it, but 

the channel is occupied only once. However, in the emulation 

platform, if a node sends a packet, it is first sent to the emulator 

that forwards a copy to every node in the same broadcast domain. 

Because every Ethernet frame is encapsulated in a UDP datagram, 

one datagram is sent to each node. In other words, traffic 

generated by one node is multiplied by the number of neighbors. 

This collateral effect of our extension must be taken into account 

in the dimensioning of the emulation framework. Bandwidth of 

the network connecting emulator and host machines must be 

sufficient to support the traffic of the emulated network and the 

overhead produced. Finally, note that this issue could be solved 

checking every packet or frame and sending it only to its 

destination, similar to how it is done in [7]. However, we have not 

considered this, because it modifies the behavior of the real 

network. For example, a wireless node would not hear packets 

from its neighbors and would sense the channel as free. 

 

 

Figure 3. One message sent in the emulated (a) network 

implies several messages in the real network supporting the 

emulation (b) 

4.3 Environment configuration 
The extension configuration does not involve complex operations 

by researchers; however, some data is extremely delicate to slight 

mistakes. Each host implicated in a model should have, first of all, 

the right version of the kernel. For those machines hosting 

applications, the kernel has been customized as detailed in 

previous sections. Computer hosting ns-3 emulator can be running 

in standard kernel version. In order to create an emulated 

environment several steps must be followed. First, XML files 

contain configuration details of both hosts and topology. These 

files can be centrally stored in one computer and accessed by our 

configuration scripts. One configuration file per machine plus one 

global file that keeps track of the whole topology are required. 

The files contain information required to create and configure all 

virtual interfaces, bridges and routes that are needed for 

connecting all distributed clients to the emulator machine. Once 

the framework configuration is finished, standard ns-3 emulation 

scenario can be instantiated. Configuration files generation is 

currently done manually. However, a graphical tool for design 

framework architecture has been designed, as part of the future 

work. This application should ease the process by allowing users 

to describe virtual and real topologies. In other words, it should 

help in the allocation of hosts in the environment and of 

applications in hosts. 

5. PERFORMANCE EVALUATION 
In this section, we describe the performance evaluation of 

different ns-3 emulation setups. We have selected a simple case 

study that is described in the next subsection. This case study has 

been implemented on single-machine based emulations and 

distributed emulations. In subsequent subsections, results are 

presented and discussed. 
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5.1 Case study: video distribution service 

 

Figure 4. Case Study topology. 

We have selected a simple case study to carry out the performance 

evaluation of different emulation setups. Our experiments 

reproduce audio/video (a/v) streaming over a local area network 

(LAN). Specifically, there is one a/v server, connected to a 

variable number of a/v clients through two levels of switches and 

all links are 10/100 Mbps Ethernet, see Figure 4. In ns-3 we 

model these links as CSMA channels with a delay of 16 ns and 

100 Mbps throughput, which represents a 3 meter UTP 5e 

Category wire. 

A strong reason for selecting this case study is that there can be 

real implementations of services similar to this one. For example, 

a business may wish to show training videos to its employees. If 

the number of employees is high, the service becomes large-scale, 

therefore it is important to know whether the network will support 

it or not. Hence, network managers may desire to emulate it 

before deployment. Apart from its feasibility, there are many 

other reasons to choose this scenario. First, a/v is a demanding 

service that consumes many network and system resources. Thus, 

it is faster to find limitations on the emulation framework than 

using other services. Second, it is feasible to deploy a real test-bed 

to compare real service behavior with emulations. In addition, 

resource consumption can be easily scaled up by increasing the 

number of clients. Provided that all clients consume similar 

resources, we can increase them gradually to find limitations. The 

scaling can be done in two ways, either by including more clients 

in each switch or by including more switches. Finally, the 

measurement of different parameters can be done easily, because 

of the clear topology of the network.  

In this paper, this case study is emulated using two different 

approaches. First, a single-machine setup is used to carry out 

experiments with an increasing number of clients. Second, our 

distributed client extension is used to configure a new emulation 

platform. Again, the number of clients is increased gradually. It is 

expected that the former will outperform the latter, because 

resource consumption is shared among more computers. In both, 

resources are monitored and a/v transmission analyzed. The 

software used for the experiments is ns-3 (v3.5) as network 

emulator, openRTSP as a/v client and live555 as server. All three 

of them are open source and accessible to anyone who wants to 

reproduce the experiments. In addition, client and server work 

using the standard protocols RTSP/RTP, which facilitate service 

analysis. We have used two different sample videos, as a result of 

the codification of a single raw video source using MPEG-2 video 

codec and without audio stream. Hence, later analysis is 

simplified by the existence of one single stream. The video source 

sample is highway_qcif.yuv from a well known samples library 

[17]. The first video has a bit rate of 250Kbps and is referenced as 

low quality video hereinafter. The second video is a 1Mbps 

sample consequently referenced as high quality video. Both of 

them have a total length of 79 seconds. These videos are requested 

simultaneously by N clients in each experiment run. In order to 

avoid resource consumption from video displaying, video frames 

are dropped by the client. Therefore, we can increase the number 

of clients and so the traffic to stress the emulator. Finally, every 

experiment is repeated 3 times and the duration of each one is 120 

seconds. 

5.2 Single-machine  
Single-machine environment supports all applications: emulator, 

clients and servers in the same machine. This is a Dell PowerEdge 

860 with an Intel Xeon Processor Dual Core 2.40 Ghz, 1 GB of 

DDR2 RAM and 2 Gigabit Ethernet network interfaces. The 

operating system is Ubuntu Server 8.04 (32 bits). The process for 

these experiments is the following. First, the emulator is launched 

and the virtual tap interfaces created. Then, client processes are 

attached to their corresponding interface, one tap each. On the tap 

that represents the server machine in the topology; one server 

process is created for each client. We use one server process for 

each client, instead of one for all, to avoid bottlenecks produced 

by the server. Then, clients and servers connect through the 

emulated network and, hopefully, stream the video. After 120 

seconds, the emulation is finalized and all processes killed. The 

full process is monitored using network sniffers (tcpdump) and 

resource analyzers (sar, pidstat). Figure 5 represents the 

connection of real applications through the emulator. 

 

Figure 5. Single-machine testbed 

5.3 Distributed ns-3 
This environment spreads client and server applications in 

different machines. For that purpose, we use our distributed 

clients extension to connect the emulator with the server and client 

processes running in different computers. Ns-3 is hosted in the 

same computer used for single-machine emulations. Clients run 

over Pentium III computers with 512 MB of DIMM RAM and an 

Ethernet network interface. Their operating system is Ubuntu 

Server 8.04 (32bits). A/V servers are also in a different computer. 

This computer has the same characteristics as the Dell PowerEdge 

used to run ns-3. Figure 6a shows how the environment is 

configured physically. Computers for clients, servers and 

emulator are connected through a 10/100 network. Figure 6b 

illustrates the configuration from the point of view of the virtual 

network. Because resource consumption of the clients is not very 

high, one machine can host several processes. On the one hand, 
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we introduce more clients with the same amount of computers. On 

the other hand, clients in the same computer share the same real 

network interface. For that reason, we have modeled the network 

interface of each computer as a switch. In conclusion, the 

topology emulated by ns-3 now is just a switch, because second 

level switches are the interfaces of the client hosting computers. 

 

Figure 6. Distributed real (a) and emulated (b) configuration 

Experiments on the distributed environment should be as similar 

as possible to the single-machine and real case. Therefore, 

machines have been synchronized to follow a similar starting 

sequence, although there are some differences. First, applications 

in different computers communicate with the emulator through a 

taptunnel process. In addition, resource monitors must be placed 

in different places. Nevertheless, results from both environments 

should be comparable. 

5.4 Discussion 
In this section, we compare results obtained with the single-

machine (s-m) and the distributed (dist.) approaches with an 

increasing number of a/v clients in the scenario.  Both video 

qualities examined, low and high, are considered. First, we 

identify common patterns detected on the experiments. For that 

purpose, we analyze a representative run. Then, we present an 

overview of the full set of experiments. We observe interesting 

effects as a result of the increase of the number of clients. For that 

purpose, we have chosen three main metrics. First, we analyze 

CPU consumption of both the ns-3 process and the whole machine 

emulator. In addition, network traffic generated by the server is 

measured. Finally, the service performance is evaluated using the 

jitter of RTP packets at one random client. 

First of all, we have found two instances of undesirable behavior 

of ns-3 during our experiments. First, when the number of clients 

increases, it is more likely that a scenario will not run. Random 

errors start to occur with more than 30 clients. They become more 

frequent with the increase in number of clients until it is almost 

impossible to obtain valid runs. The maximum number is around 

60. The explanation of this may be the management of resources 

carried out by the emulator. One thread is created for each 

TapBridge, which may be overloading the system. However, the 

errors are obtained while building the scenario, without 

introducing traffic. At that time, ns-3 activity should be very little. 

Thus, experiments are breaking down before needing any 

resources. Figure 7 shows a typical error extracted from an ns-3 

scenario debug. Another interesting effect is that although ns-3 

creates many threads, during our evaluation all of them use one of 

the two CPUs available in the computer. This is a clear 

impediment to achieving optimal performance. These factors 

prevent us from finding clear boundaries on the ns-3 performance, 

which could be solved with a more deterministic behavior. To get 

a better view of these pitfalls, other execution environments 

should be studied, for example, modifying available resources, ns-

3 compilation or operating system configuration. Moreover, ns-3 

is a novel product and improvements can be expected. Indeed, the 

ns-3 community is aware of the issue related to multithreading 

implementation and there is a public project addressing it [10]. 

 

Figure 7. Sample error shown by ns-3 
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single run of a scenario with 20 clients requesting the high quality 

video (1 Mbps). Figure 8 shows the CPU utilization of the ns-3 

process and Figure 9 shows the throughput of the video server, i.e. 

sent traffic. A clear relationship between CPU consumption and 

traffic managed is deduced. Furthermore, CPU utilization is lower 

in the distributed setup. This pattern has been found in all the 

other runs examined and will be discussed later on. Despite the 

difference in mean, evolution of the CPU is very similar and 

related to video encoding. However, there is a peak of traffic 

observed at the beginning of the experiment, around second 8. 

This is not an expected value in a real service and it is often 

present on single-machine realizations. The reason may be that the 

CPU utilization of ns-3 is close to 70% and that affects the ability 

of the server to send packets. Server process can not get CPU time 

to send its packets, so they are accumulated. Then, it has to do all 

the work at once. In conclusion, above a certain level of CPU, 

service metrics may not be fully reliable. 

Figure 10 represents the average CPU utilization of the ns-3 

process against the number of clients in the experiment. This 

average is calculated using the consumption along three runs of 

the same setup. Several comments can be noted. First, there seems 

to be an almost linear relationship between CPU consumption and 

the number of clients. This could be expected, because each new 

client increases the traffic that ns-3 must manage. Second, there is 

a significant reduction of ns-3 CPU utilization in the distributed 

setup, although the traffic managed for each scenario is almost the 

same, as shown in Figure 11. The reason behind this seems to be 

ns-3 management of tap interfaces. In single-machine scenarios, 

ns-3 takes care of the taps, which seems a high load for the 

process. In other words, it is more efficient when the traffic has to 

be eventually sent to a real network. Ns-3 is just linked to the 

virtual interfaces and not owning them, which is less resource 

consuming. For that reason, the maximum number of clients 

achieved by the distributed setup is slightly higher. In a single-

machine, the mentioned errors were more frequent and it was not 

possible to obtain valid runs. In addition, we can observe a 

saturation of the server throughput when reaching 50 clients with 

both video qualities. Once again, this effect is not expected in a 

real service, which should increase the traffic proportionally. 

Although CPU is not overloaded in this case, this effect may be 

caused by thread context switching management. There are too 

many threads in the process, so the system expends more time 

switching threads than executing them.  

Program received signal SIGSEGV, Segmentation 

fault. 

[Switching to Thread 1216416080 (LWP 31319)] 

0x00002aae1ffd2491 in 

std::_Rb_tree_rebalance_for_erase () 

   from /usr/lib/libstdc++.so.6 
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Figure 8. ns-3 CPU utilization: HQ video with 20 clients 

 

 

Figure 9. Server throughput: HQ video with 20 clients 

 

 

Figure 10. Average CPU utilizations of ns-3 process 

 

 

Figure 11. Average video server throughput 

 

 

Figure 12. Average CPU utilizations of the computer 

 

 

Figure 13. Average packets jitter in one a/v client 
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Figure 12 shows the CPU utilization in the whole machine. It is 

important information, because it reflects the consumption of a/v 

applications in the single-machine and the taptunnel processes in 

the distributed case. Selected a/v client and server are lightweight. 

In addition, video is not displayed or stored in the client, but 

dropped. On the contrary, taptunnel forwards a significant amount 

of traffic, which requires a significant CPU load. For the low 

quality video, the consumption of taptunnels keeps the total CPU 

utilization of the distributed case above the single-machine case. 

However, for the high quality video, the big difference in the 

consumption of ns-3 pays for the expected consumption of the 

taptunnels. Thus, if the amount of traffic in the network is kept 

low, a single-machine emulation may be better than a distributed 

emulation. Nevertheless, the whole situation would be reversed, if 

emulated applications were not lightweight. The emulation of 

heavy applications would show a bigger outperformance of the 

distributed model, at least in terms of total CPU consumption. 

RTP packets jitter is a significant metric in the analysis of a/v 

services. For that reason, we have analyzed it in order to measure 

the influence that the emulation environment has on the service 

performance. Given a fixed number of clients, Figure 13 shows 

the average jitter in the multimedia sessions for one of them. This 

client is selected randomly at the beginning, but is always the 

same in the following experiments (e.g. client number 3). The first 

noticeable effect is that there are no results from some single 

machine video setups, which indicates that the client did not 

receive packets. Due to the overload suffered by the emulation 

machine, the a/v client was not able to take part in the multimedia 

session successfully. It is also worth pointing out that jitter is 

always lower in the distributed environment, independently of the 

video quality used or the number of clients. This would not be 

expected beforehand, because of the external network introduced. 

The distribution of applications into different machines connected 

by a network should introduce an extra, although small, delay. 

The jitter could also be affected, so worse results could be 

expected for the distributed case. However, the low CPU 

utilization in the distributed environment compensates the effect 

of the external network. In addition, jitter increases with the 

number of clients in both situations. Although more experiments 

are necessary to establish the exact progression, the general 

tendency indicates bigger increments in the single-machine setup. 

In conclusion, the higher the resource consumption of the machine 

hosting ns-3 is, the less accuracy is achieved in the results. 

Finally, provided that jitter in a real deployment of this service is 

expected to be very low, we can asseverate that results from the 

distributed environment are more accurate. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we have presented an in-depth study of emulation 

alternatives with ns-3. Emulation of services has been identified 

as an interesting option for evaluation with other possibilities than 

test-beds or simulations. For example, real applications can be 

used so saving investment on network equipment as with test-

beds. However, the configuration of an emulation environment is 

not a trivial question, especially if we aim to evaluate services 

with many users. For that purpose, we have analyzed the 

possibilities and limitations of the recently released 

simulator/emulator ns-3. To go beyond single-machine 

emulations, we have developed a distributed clients extension, 

which allows the distribution of real applications in different 

computers. This different setup presents certain advantages, such 

as less resource consumption by ns-3, but also some pitfalls, such 

as the introduction of processes external to emulation, taptunnels, 

or synchronization difficulties. Both alternatives have been 

studied by increasing the number of a/v clients streaming a video 

from a server while keeping a fixed emulated network, simple 

enough so as to avoid unexpected behaviors caused by larger 

emulated topologies. Furthermore, two video qualities were 

employed to see the possible implications. 

As a general conclusion extracted from our evaluation, a 

distributed environment optimizes resource consumption. High 

resource consumption implies unexpected behavior of the 

emulator and less accuracy in the results. Thus, a distributed 

environment is a feasible possibility to emulate larger services and 

still maintain results accuracy. Although we have scaled the 

clients up to 50, it was not possible to go above this number. This 

was mainly due to resource consumption of ns-3. It is not clear 

whether this is a limitation by ns-3 itself or by the hardware 

platform. Future tests over a more powerful hardware are being 

programmed to examine more deeply this constraint. From the 

usage of two different video qualities, we can also comment that 

there is a maximum of 50 nodes. Thus, the limiting factor is not 

directly related with the amount of traffic, but with the number of 

nodes. This highlights an inefficient management of the 

TapBridge objects. For the emulation of large-scale services, a 

solution for these limitations must be proposed. 

This paper is a first step in the state-of-the-art of ns-3 emulations. 

Although some interesting contributions have been exposed, more 

could be achieved with some future work. In order to obtain a 

complete view, we see three main lines: service, network and 

platform. First, other services could be evaluated, as their 

behavior may cause different performance of ns-3 and discover 

new constraints of the extension. Furthermore, more complex 

network topologies, which include larger number of emulated 

nodes and other technologies, could be analyzed. Our current and 

future work on this subject includes the distribution of ns-3 

processes into different machines. Finally, the influence of the 

hardware used for the emulation could be better defined testing 

other architectures. Not only different machines for the emulator 

or the hosts, but also other network structures or technologies to 

connect them, for example, gigabit Ethernet.  
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