
Limitations of Network Emulation with Single-Machine and
Distributed ns-3

Alberto Alvarez, Rafael Orea, Sergio Cabrero, Xabiel G. Pañeda, Roberto García, David Melendi
Informatics department, University of Oviedo

Campus de Viesques, Gijón, Spain
{alvarezgalberto, orearafael, cabrerosergio, xabiel, garciaroberto, melendi}@uniovi.es

ABSTRACT

Research on large-scale internet services requires an extensive

evaluation prior to deployment. A good analysis must include

tests over large networks, using real devices and a considerable

number of users. However, how to test in these scenarios with

many users is an open question. Network emulation can be a good

alternative before real deployments, which are complex and

expensive. In this paper, we examine the new ns-3 network

simulator/emulator in order to determine its capacity in the

evaluation of large scale services. For that purpose, a real

client/server video service is deployed over an emulated network.

The service is progressively scaled up by increasing the number of

clients on a single machine. In addition, we have extended ns-3 to

support a distributed architecture for network nodes, thus, we

repeat the experiments with a distributed set-up. Advantages,

disadvantages, possibilities and limitations of both approaches are

thoroughly discussed.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design].

General Terms

Design, Experimentation.

Keywords

Emulation, distributed, network-simulator, ns-3.

1. INTRODUCTION
The number of Internet connections has grown rapidly in recent

years. As a consequence, new services oriented to a large number

of users have been created. File sharing or video distribution using

P2P or other technologies are just two examples. These services

are conceived to reach a significant amount of users and to

achieve a high degree of availability. Therefore, scalability must

be a key aspect in their design. In other words, services must

support accesses from a high number of users in order to be

successful. Furthermore, it is important to test the maximum stress

VXSSRUWHG� E\� D� V\VWHP¶V� DUFKLWHFWXUH� SULRU� WR� GHSOR\PHQW� LQ� WKH�

real world; otherwise there is a risk of losing potential clients due

to malfunctions. This evaluation may include the testing of the

applications, the network architecture or the protocols to maintain

the service up and running.

The performance evaluation of new services can be carried out

using different approaches. One alternative is the simulation of the

whole system with models of the network, equipment and

applications. Although it is a scalable method of evaluation, it

depends on the accuracy of the models and may require

reimplementation of some parts before the real world deployment.

Besides, it is not possible to test with real users, because real

applications are not used and normally it is not performed in real

time. In contrast, test-beds use real equipment and applications to

reproduce reality. Hence, they can be extremely costly because

they may require complex network architectures. Finally, this may

be a big problem if this equipment will not be used for real world

deployment, because the goal may be just development of the

services, but not its deployment. Emulation is in between these

two options. A common emulation method is the combination of

real applications, or devices with a virtualized network topology.

In addition, if they are real time, human users can be introduced in

the equation. As with simulations, emulations still rely on network

model accuracy, but the investment in network devices can be

saved. Being cheaper than the test-beds and closer to the real

world than simulations, emulations present a solid alternative in

the evaluation of large-scale services. Nevertheless, the selection

of the right emulation platform and the configuration of the

surrounding system present difficulties. The emulation framework

must be thoroughly studied, in order to detect limitations and

obtain precise service performance evaluations.

Nowadays, ns-2 is probably the most extended application for

network simulation. In addition, it is also used for emulation

thanks to the extension in [7]. Its natural successor, ns-3, was

released recently and promises to outperform ns-2 in many

aspects. Ns-3 natively supports emulation using a real time

scheduler for simulation events and virtual network devices, taps.

Taps can be associated with both applications and nodes in a

virtual network. Then, applications can exchange traffic through

an emulated topology. For example, two processes running on the

same computer can communicate as if they are connected by a

complex network, but without the need to deploy it. For the

evaluation of services with more users, more applications can be

introduced and the complexity of the network can be increased.

However, this process is not straightforward, because there are

constraints imposed by hardware and ns-3. On the one hand, the

identification of these limits will help us to build adequate

frameworks for our emulations. On the other hand, it will

establish boundaries to the validity of our experiment results; in

other words, when results are due to real behavior of the analyzed

service or a malfunction of the platform.

$Q� ³D� SULRUL´� DQDO\VLV� RI� WKH� OLPLWDWLRQV� RI� QHWZRUN� HPXODWLRQ�

reveals some constraints. First, emulations carried out on a single

machine have limited system resources. Some of them are

consumed by the emulator, and some are available to introduce

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIMUTools 2010 March 15±19, Torremolinos, Malaga, Spain.
Copyright 2010 ICST, ISBN 78-963-9799-87-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8630
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8630

real applications or virtual machines in the virtual network. The

resource consumption and the number of these applications are a

constraint to perform large experiments. The distribution of

applications in different computers partially solves this problem,

as [7] authors did for ns-2. However, new pitfalls are generated.

All traffic exchanged by the applications must pass through the

emulator, which introduces an extra delay. Moreover, the amount

of traffic managed by the emulation is limited by the physical

connection of the computers. For example, the emulation of a

gigabit Ethernet may be impossible if they are connected in a

10/100 Ethernet. In conclusion, distributed environments may

have more possibilities, but there are still limits. Of course,

powerful hardware and high capacity links are a quick solution,

but they are normally too expensive. Thus, it is important to study

different emulation environments in order to find suitable

evaluation frameworks.

This paper studies the effect on service emulation with ns-3 when

the number of real applications is increased gradually. We have

chosen video distribution over a local area network as a simple,

but representative, case study. We perform ns-3 emulations on a

single-machine and on a distributed environment. For this

purpose, we have developed a distributed client extension. Then,

resource consumption and service behavior are thoroughly

examined in order to find limitations and accuracy of the results.

The remainder of the paper is structured as follows. Section 2

analyses related works. Goals of this work are set out in Section 3.

The distributed emulation extension for ns-3 that we have

developed is described in Section 4. Section 5 discusses the

performance evaluation and explains our case study. Finally,

Section 6 is dedicated to conclusions and future work.

2. RELATED WORK
Emulators are less popular than simulators in network research.

Different works [2] focus on listing the most popular emulators,

describing their particularities. Despite its native emulation

support, ns-3 is not yet included among those classifications. Due

to its novelty, there are few papers that study ns-3 or use it in their

evaluations, either in emulation or simulation. There are works

that deal with ns-3 features and goals or its development roadmap

[4]. Some of them help to increase simulator models for

experimentation, such as [1] where the implementation of a new

model for WiMAX is described. However, few actually make

active use of the simulator. [11] implements MANET routing

protocols for ns-3 simulation, including up to 90 nodes in their

experiments. On emulation, [12] compares a real deployment with

an ns-3 experiment, using up to 35 nodes. The experiments in

these publications give some clues about the performance of ns-3,

although it is a collateral result. To our knowledge, there are no

publications that specifically focus on ns-3 constraints.

The research of these issues is more abundant on ns-2. Interesting

for our work here is the emulation extensions proposed in [8] and

[7]. The former studies how to improve exactness in ns-2 real time

emulations focusing on wireless models. The latter proposes the

distribution of applications over different computers, alternatively

to single-machine emulations, although distributed extension

detailed in this solution has several drawbacks. Following the

instructions described in [9], we tested some scenarios. We found

that only homogeneous topologies were supported. Due to the

specific addressing scheme in ns-2 and address manipulating in

0DJGHEXUJ¶V� PRGHO�� KLHUDUFKLFDO� DGGUHVVLQJ� LV� QRW� DOORZHG��

which, on the other hand, is required for mixed topologies such as

wired-to-wireless scenarios. The authors of [6] evaluate the

performance of these proposals, also finding several additional

limitations. They carry out emulations with up to 250 paths

between a pair of nodes and focus their evaluation on the

distribution layer, rather than on the emulator itself. They show

that throughput bottlenecks, packet drops and RTT delays are

mainly related with CPU overhead in the simulator and UDP

tunnels implementation. The results shown have been a good

starting point for our work with ns-3.

Other interesting proposals try to overcome common emulator

pitfalls. One of them is the usage of virtual time, instead of real

time. Basically, the machine clock is slowed down for

applications, so they work slower than in real time. Therefore,

emulators can cope with more events using the same resources.

Although these can be feasible solutions for some cases, it is not

possible to mix them with human users or real devices, which can

not be slowed down. Authors in [18] implement synchronization

to virtual time mechanism for OMNET++ and they are currently

working on exporting their prototype for ns-3. Another feasible

method of increasing emulator capacity relies on parallelization

techniques coupled with distributed systems. [15] explains this

issue. Basically, complex networks are partitioned into simpler

subnets and ghost nodes are placed in representation of missing

subnets. Authors claim that protocols like these are easy to

develop and could be straightforwardly included into any

emulator. According to ns-3 documentation, there are proposals

to include these features in future ns-3 releases. Other works such

as [3] mix both concepts, space parallelization and time

virtualization, which could help to reach higher limits for a given

emulator.

3. GOALS
This paper goes one step further than known related works. There

is an existent increasing interest in network emulation for service

evaluation. However, nobody has thoroughly studied ns-3

limitations on emulation. Thus, we have set several goals that will

contribute to the state of the art of the simulation/emulation

subject. First, this document contains valuable information for

those with the task of evaluating new services through emulation.

Specifically, we take the perspective of services that expect a

significant amount of clients, due to the current interest in them

and their high resources demand. Therefore, researchers or service

designers may use the contributions of this paper for their

performance evaluations.

Different setups of ns-3 have been tested and analyzed. Inspired in

the work of [7] for ns-2, we have developed a distributed clients

extension for ns-3. It provides the possibility of spreading

applications inside the emulation in different computers. This

approach has some advantages, because we are not restricted to

using a single-machine for the emulation. However, it may have

some drawbacks that are also analyzed. Finally, note that it is not

a goal of this paper to judge the validity of ns-3 as a tool.

Nevertheless, the limitations found may be used by researchers

and developers to improve the overall performance of emulation

platforms.

4. DISTRIBUTED CLIENTS EXTENSION
The aim of this section is to provide detailed description of the

architecture developed in order to allow distributed emulation.

The core of this approach is called the distributed clients

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8630
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8630

extension, where client refers to any real application that is

introduced in the emulation. Using this new model, we are able to

create ns-3 scenarios with nodes outside the emulator machine,

thus, lightening its workload. Because our goal is to provide an

extension independent to ns-3, we use UDP tunnels to transport

Ethernet frames between the emulator and each application.

Therefore, the distribution is transparent to the emulator. Such an

environment may be hard to configure. Moreover, network

scenarios may vary from simple topologies to complicated

designs. Thus, configuration should be automated as much as

possible, but still highly flexible.

Next, we describe the design of the extension, some limitations

and its configuration process.

4.1 Design and implementation
Ns-3 emulation features offer two different emulation classes,

TapBridge and EmulatedNetDevice. The latter is basically

intended to work with simulated objects through real test-beds, so

the former suits our goal better. TapBridge operation involves

several modes. The most relevant here are BridgedDevice mode

and LocalDevice mode. For particular details, we refer to [13]. On

the one hand, LocalDevice mode allows ns-3 to create virtual

interfaces where local processes can be attached. Configuration of

interfaces is entirely governed by the emulator itself. On the other

hand, BridgedDevice mode uses existing virtual devices, such as

Linux bridges and ns-3 connects to them. For example, this mode

is specially indicated when using virtual machines, which may

want to control the interfaces themselves. This mode is also

convenient for our purposes, because we can take control of the

interfaces to create our UDP tunnels. The target is therefore to

extend ns-3 BridgedDevice scheme to disaggregate virtualized

hosts to remote machines as shown in Figure 1.

Figure 1. Overview of ns-3 emulation model evolution

In BridgedDevice mode, the ns-3 TapBridge object is linked to an

existing host bridge composed of two virtual network interfaces.

Virtualized clients are linked to one end of the bridge, while ns-3

ghost node, the one in the virtual topology, is connected at the

other end. We intend to export the virtualized client to remote

hosts, but we still need to guarantee direct talk between ends. To

HQVXUH� WUDQVSDUHQW� FRPPXQLFDWLRQV�� DZDUH� RI� WKH� FOLHQW¶V�

FRQILJXUDWLRQ� WKURXJK� ODE¶V� UHDO� QHWZRUN�� WUDIILF� JHQHUDWHG� E\�

virtualized clients is captured in WKH� FOLHQW¶V� YLUWXDO� QHWZRUN�

interface and encapsulated in UDP datagrams. UDP traffic is sent

over real network towards emulator host. At their destination,

frames are de-encapsulated to be finally delivered to the proper

bridge structure connected to the ghost node in the emulator. One

instance of our taptunnel process, running over each virtual

interface, is responsible for this behavior. The concept of this

GHVLJQ� LV� LQVSLUHG� E\�0DKUHQKRO]� DQG� ,YDQRY¶V�ZRUN� LQ� >�@� DQG�

has been tuned to match current ns-3 requirements. Unlike the

original, it uses single UDP streams for each virtualized client and

does not interfere with address translation. In the former work

address mapping was mandatory due to the ns-2 addressing

scheme, however, the ns-3 addressing scheme is fully ipv4

FRPSOLDQW� DQG� WKHUHIRUH�� WKH�RULJLQDO� VRXUFH¶V� DGGUHVVHV� DUH�QRZ�

perfectly suitable. Besides, in contrast with the work of

Mahrenholz et al., we use identical instances of the tunnel in both

ends of the path, not investing efforts in modifications of ns-3

modules source code, which may lead to a lack of compatibility

with new or modified versions of ns-3. Therefore, this simplified

UDP tunnel module provides us with a clean starting point to

which enhancements can be added as long as problems are

identified. The extension scheme is illustrated in Figure 2. In such

a framework, clients deployed on remote hosts do not notice

underlying processes; they act as normal clients using real ipv4

addresses.

Figure 2. Details on the emulation model extension.

In the physical connection of equipment, each computer hosting

client applications should now be locally connected to the

emulator machine, preferably, using a network switch. If the

resource consumption of evaluated applications allows it, several

virtual clients can be deployed on each host. Therefore, we can

decrease the number of computers needed without limiting the

number of clients in emulations. As this extension is intended to

support wide and diverse scenarios, it is not specified what users

can use to run their virtualized clients. Users may choose to run

their applications directly over native operating systems or use a

complete virtualized OS by means of common virtualization tools

such as VMWare or User Mode Linux. If the client runs directly

over native OS, their applications should be able to select a proper

outgoing network interface, among all virtualized devices. This

can be achieved by modifying sockets option

62B%,1'72'(9,&(� LQ� WKH� FOLHQW¶V� DSSOLFDWLRQV. However, we

might not be able to change the source code of some applications.

In that case, we can bind the sockets using a library like

libsocktap, developed for the NEMAN network emulator [14].

Provided that each remote machine may host multiple virtualized

clients, it is necessary to provide rules to avoid direct

communication between local interfaces. Here we decide to

employ the sendtoself kernel patch developed by Ben Greear [16].

The idea is to return the output route via external interfaces, if a

path between two local IP addresses is requested and they are

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8630
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8630

configured on different interfaces with the recently created loop

flag set to true. The patched kernel will send packets out of the

host. Moreover, because a set of different network interfaces share

the same host, kernel and routing tables, routes must be set

considering source addresses. One rule should match for inbound

traffic and select a proper target device based on the destination

addresses. Another rule must drive traffic through the right

gateway depending on the source address. Thus, policy routing [5]

rules will be configured on the client hosts.

Even with policy routing configured and sendtoself flag active,

there is still a problem when clients that belong to different IP

networks are in the same host. System network procedures

establish strict packet flow through the kernel routing tables,

which means that the local table is consulted first. The local

routing table is maintained by the kernel. One common use of this

table is to keep an entry for each locally configured interface.

When a packet is sent from one local interface to another, the

gateway that was previously configured is ignored. As a result,

packets reach emulated network asking ARP requests for foreign

addresses that none of its network neighbors know. Therefore, it is

necessary to bypass the local routing table. This table is normally

not meant to be manipulated, so it is necessary to patch again

kernel sources and establish higher priority value for the local

table rule. By doing this, we are able to place policy based rules

before local ones. Therefore, when outbound packets search for

their route, they are able to find the expected gateway. On the

other hand, inbound traffic must be redirected to the local routing

table, again, by means of policy based rules.

4.2 Known issues
This section describes some known issues that may be interesting

when using this extension.

4.2.1 Dynamic Routing protocols
Dynamic routing protocols are required in some scenarios, for

example in mobile ad-hoc networks. In such scenarios, routes are

constantly added and removed from the routing table, which may

interfere with the routing policies established for our extension.

Therefore, distributed clients and hosts can not share the same

routing table. It is recommended to create multiple independent

network stacks, one per client. After that, routing protocols should

be executed in the virtualized independent environment.

Virtualization can be achieved by using any means available, from

complete virtual environments such as the already mentioned

VMWare or User Mode Linux (UML), to simpler network stack

virtualization tools like VirtNET.

4.2.2 Shared Channel
There are network topologies where several nodes share the

communication channel, such as wireless networks or several

computers connected to a hub. Due to the UDP tunneling

mechanism implemented in this extension, an effect is produced

which is worth mentioning. In the real world, when a node sends a

message, all nodes in its range (broadcast domain) receive it, but

the channel is occupied only once. However, in the emulation

platform, if a node sends a packet, it is first sent to the emulator

that forwards a copy to every node in the same broadcast domain.

Because every Ethernet frame is encapsulated in a UDP datagram,

one datagram is sent to each node. In other words, traffic

generated by one node is multiplied by the number of neighbors.

This collateral effect of our extension must be taken into account

in the dimensioning of the emulation framework. Bandwidth of

the network connecting emulator and host machines must be

sufficient to support the traffic of the emulated network and the

overhead produced. Finally, note that this issue could be solved

checking every packet or frame and sending it only to its

destination, similar to how it is done in [7]. However, we have not

considered this, because it modifies the behavior of the real

network. For example, a wireless node would not hear packets

from its neighbors and would sense the channel as free.

Figure 3. One message sent in the emulated (a) network

implies several messages in the real network supporting the

emulation (b)

4.3 Environment configuration
The extension configuration does not involve complex operations

by researchers; however, some data is extremely delicate to slight

mistakes. Each host implicated in a model should have, first of all,

the right version of the kernel. For those machines hosting

applications, the kernel has been customized as detailed in

previous sections. Computer hosting ns-3 emulator can be running

in standard kernel version. In order to create an emulated

environment several steps must be followed. First, XML files

contain configuration details of both hosts and topology. These

files can be centrally stored in one computer and accessed by our

configuration scripts. One configuration file per machine plus one

global file that keeps track of the whole topology are required.

The files contain information required to create and configure all

virtual interfaces, bridges and routes that are needed for

connecting all distributed clients to the emulator machine. Once

the framework configuration is finished, standard ns-3 emulation

scenario can be instantiated. Configuration files generation is

currently done manually. However, a graphical tool for design

framework architecture has been designed, as part of the future

work. This application should ease the process by allowing users

to describe virtual and real topologies. In other words, it should

help in the allocation of hosts in the environment and of

applications in hosts.

5. PERFORMANCE EVALUATION
In this section, we describe the performance evaluation of

different ns-3 emulation setups. We have selected a simple case

study that is described in the next subsection. This case study has

been implemented on single-machine based emulations and

distributed emulations. In subsequent subsections, results are

presented and discussed.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8630
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8630

5.1 Case study: video distribution service

Figure 4. Case Study topology.

We have selected a simple case study to carry out the performance

evaluation of different emulation setups. Our experiments

reproduce audio/video (a/v) streaming over a local area network

(LAN). Specifically, there is one a/v server, connected to a

variable number of a/v clients through two levels of switches and

all links are 10/100 Mbps Ethernet, see Figure 4. In ns-3 we

model these links as CSMA channels with a delay of 16 ns and

100 Mbps throughput, which represents a 3 meter UTP 5e

Category wire.

A strong reason for selecting this case study is that there can be

real implementations of services similar to this one. For example,

a business may wish to show training videos to its employees. If

the number of employees is high, the service becomes large-scale,

therefore it is important to know whether the network will support

it or not. Hence, network managers may desire to emulate it

before deployment. Apart from its feasibility, there are many

other reasons to choose this scenario. First, a/v is a demanding

service that consumes many network and system resources. Thus,

it is faster to find limitations on the emulation framework than

using other services. Second, it is feasible to deploy a real test-bed

to compare real service behavior with emulations. In addition,

resource consumption can be easily scaled up by increasing the

number of clients. Provided that all clients consume similar

resources, we can increase them gradually to find limitations. The

scaling can be done in two ways, either by including more clients

in each switch or by including more switches. Finally, the

measurement of different parameters can be done easily, because

of the clear topology of the network.

In this paper, this case study is emulated using two different

approaches. First, a single-machine setup is used to carry out

experiments with an increasing number of clients. Second, our

distributed client extension is used to configure a new emulation

platform. Again, the number of clients is increased gradually. It is

expected that the former will outperform the latter, because

resource consumption is shared among more computers. In both,

resources are monitored and a/v transmission analyzed. The

software used for the experiments is ns-3 (v3.5) as network

emulator, openRTSP as a/v client and live555 as server. All three

of them are open source and accessible to anyone who wants to

reproduce the experiments. In addition, client and server work

using the standard protocols RTSP/RTP, which facilitate service

analysis. We have used two different sample videos, as a result of

the codification of a single raw video source using MPEG-2 video

codec and without audio stream. Hence, later analysis is

simplified by the existence of one single stream. The video source

sample is highway_qcif.yuv from a well known samples library

[17]. The first video has a bit rate of 250Kbps and is referenced as

low quality video hereinafter. The second video is a 1Mbps

sample consequently referenced as high quality video. Both of

them have a total length of 79 seconds. These videos are requested

simultaneously by N clients in each experiment run. In order to

avoid resource consumption from video displaying, video frames

are dropped by the client. Therefore, we can increase the number

of clients and so the traffic to stress the emulator. Finally, every

experiment is repeated 3 times and the duration of each one is 120

seconds.

5.2 Single-machine
Single-machine environment supports all applications: emulator,

clients and servers in the same machine. This is a Dell PowerEdge

860 with an Intel Xeon Processor Dual Core 2.40 Ghz, 1 GB of

DDR2 RAM and 2 Gigabit Ethernet network interfaces. The

operating system is Ubuntu Server 8.04 (32 bits). The process for

these experiments is the following. First, the emulator is launched

and the virtual tap interfaces created. Then, client processes are

attached to their corresponding interface, one tap each. On the tap

that represents the server machine in the topology; one server

process is created for each client. We use one server process for

each client, instead of one for all, to avoid bottlenecks produced

by the server. Then, clients and servers connect through the

emulated network and, hopefully, stream the video. After 120

seconds, the emulation is finalized and all processes killed. The

full process is monitored using network sniffers (tcpdump) and

resource analyzers (sar, pidstat). Figure 5 represents the

connection of real applications through the emulator.

Figure 5. Single-machine testbed

5.3 Distributed ns-3
This environment spreads client and server applications in

different machines. For that purpose, we use our distributed

clients extension to connect the emulator with the server and client

processes running in different computers. Ns-3 is hosted in the

same computer used for single-machine emulations. Clients run

over Pentium III computers with 512 MB of DIMM RAM and an

Ethernet network interface. Their operating system is Ubuntu

Server 8.04 (32bits). A/V servers are also in a different computer.

This computer has the same characteristics as the Dell PowerEdge

used to run ns-3. Figure 6a shows how the environment is

configured physically. Computers for clients, servers and

emulator are connected through a 10/100 network. Figure 6b

illustrates the configuration from the point of view of the virtual

network. Because resource consumption of the clients is not very

high, one machine can host several processes. On the one hand,

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8630
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8630

we introduce more clients with the same amount of computers. On

the other hand, clients in the same computer share the same real

network interface. For that reason, we have modeled the network

interface of each computer as a switch. In conclusion, the

topology emulated by ns-3 now is just a switch, because second

level switches are the interfaces of the client hosting computers.

Figure 6. Distributed real (a) and emulated (b) configuration

Experiments on the distributed environment should be as similar

as possible to the single-machine and real case. Therefore,

machines have been synchronized to follow a similar starting

sequence, although there are some differences. First, applications

in different computers communicate with the emulator through a

taptunnel process. In addition, resource monitors must be placed

in different places. Nevertheless, results from both environments

should be comparable.

5.4 Discussion
In this section, we compare results obtained with the single-

machine (s-m) and the distributed (dist.) approaches with an

increasing number of a/v clients in the scenario. Both video

qualities examined, low and high, are considered. First, we

identify common patterns detected on the experiments. For that

purpose, we analyze a representative run. Then, we present an

overview of the full set of experiments. We observe interesting

effects as a result of the increase of the number of clients. For that

purpose, we have chosen three main metrics. First, we analyze

CPU consumption of both the ns-3 process and the whole machine

emulator. In addition, network traffic generated by the server is

measured. Finally, the service performance is evaluated using the

jitter of RTP packets at one random client.

First of all, we have found two instances of undesirable behavior

of ns-3 during our experiments. First, when the number of clients

increases, it is more likely that a scenario will not run. Random

errors start to occur with more than 30 clients. They become more

frequent with the increase in number of clients until it is almost

impossible to obtain valid runs. The maximum number is around

60. The explanation of this may be the management of resources

carried out by the emulator. One thread is created for each

TapBridge, which may be overloading the system. However, the

errors are obtained while building the scenario, without

introducing traffic. At that time, ns-3 activity should be very little.

Thus, experiments are breaking down before needing any

resources. Figure 7 shows a typical error extracted from an ns-3

scenario debug. Another interesting effect is that although ns-3

creates many threads, during our evaluation all of them use one of

the two CPUs available in the computer. This is a clear

impediment to achieving optimal performance. These factors

prevent us from finding clear boundaries on the ns-3 performance,

which could be solved with a more deterministic behavior. To get

a better view of these pitfalls, other execution environments

should be studied, for example, modifying available resources, ns-

3 compilation or operating system configuration. Moreover, ns-3

is a novel product and improvements can be expected. Indeed, the

ns-3 community is aware of the issue related to multithreading

implementation and there is a public project addressing it [10].

Figure 7. Sample error shown by ns-3

,Q�RUGHU�WR�JHW�D�YLHZ�RI�WKH�H[SHULPHQW¶V�EHKDYLRU��ZH�DQDO\]H�D�

single run of a scenario with 20 clients requesting the high quality

video (1 Mbps). Figure 8 shows the CPU utilization of the ns-3

process and Figure 9 shows the throughput of the video server, i.e.

sent traffic. A clear relationship between CPU consumption and

traffic managed is deduced. Furthermore, CPU utilization is lower

in the distributed setup. This pattern has been found in all the

other runs examined and will be discussed later on. Despite the

difference in mean, evolution of the CPU is very similar and

related to video encoding. However, there is a peak of traffic

observed at the beginning of the experiment, around second 8.

This is not an expected value in a real service and it is often

present on single-machine realizations. The reason may be that the

CPU utilization of ns-3 is close to 70% and that affects the ability

of the server to send packets. Server process can not get CPU time

to send its packets, so they are accumulated. Then, it has to do all

the work at once. In conclusion, above a certain level of CPU,

service metrics may not be fully reliable.

Figure 10 represents the average CPU utilization of the ns-3

process against the number of clients in the experiment. This

average is calculated using the consumption along three runs of

the same setup. Several comments can be noted. First, there seems

to be an almost linear relationship between CPU consumption and

the number of clients. This could be expected, because each new

client increases the traffic that ns-3 must manage. Second, there is

a significant reduction of ns-3 CPU utilization in the distributed

setup, although the traffic managed for each scenario is almost the

same, as shown in Figure 11. The reason behind this seems to be

ns-3 management of tap interfaces. In single-machine scenarios,

ns-3 takes care of the taps, which seems a high load for the

process. In other words, it is more efficient when the traffic has to

be eventually sent to a real network. Ns-3 is just linked to the

virtual interfaces and not owning them, which is less resource

consuming. For that reason, the maximum number of clients

achieved by the distributed setup is slightly higher. In a single-

machine, the mentioned errors were more frequent and it was not

possible to obtain valid runs. In addition, we can observe a

saturation of the server throughput when reaching 50 clients with

both video qualities. Once again, this effect is not expected in a

real service, which should increase the traffic proportionally.

Although CPU is not overloaded in this case, this effect may be

caused by thread context switching management. There are too

many threads in the process, so the system expends more time

switching threads than executing them.

Program received signal SIGSEGV, Segmentation

fault.

[Switching to Thread 1216416080 (LWP 31319)]

0x00002aae1ffd2491 in

std::_Rb_tree_rebalance_for_erase ()

 from /usr/lib/libstdc++.so.6

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8630
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8630

Figure 8. ns-3 CPU utilization: HQ video with 20 clients

Figure 9. Server throughput: HQ video with 20 clients

Figure 10. Average CPU utilizations of ns-3 process

Figure 11. Average video server throughput

Figure 12. Average CPU utilizations of the computer

Figure 13. Average packets jitter in one a/v client

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8630
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8630

Figure 12 shows the CPU utilization in the whole machine. It is

important information, because it reflects the consumption of a/v

applications in the single-machine and the taptunnel processes in

the distributed case. Selected a/v client and server are lightweight.

In addition, video is not displayed or stored in the client, but

dropped. On the contrary, taptunnel forwards a significant amount

of traffic, which requires a significant CPU load. For the low

quality video, the consumption of taptunnels keeps the total CPU

utilization of the distributed case above the single-machine case.

However, for the high quality video, the big difference in the

consumption of ns-3 pays for the expected consumption of the

taptunnels. Thus, if the amount of traffic in the network is kept

low, a single-machine emulation may be better than a distributed

emulation. Nevertheless, the whole situation would be reversed, if

emulated applications were not lightweight. The emulation of

heavy applications would show a bigger outperformance of the

distributed model, at least in terms of total CPU consumption.

RTP packets jitter is a significant metric in the analysis of a/v

services. For that reason, we have analyzed it in order to measure

the influence that the emulation environment has on the service

performance. Given a fixed number of clients, Figure 13 shows

the average jitter in the multimedia sessions for one of them. This

client is selected randomly at the beginning, but is always the

same in the following experiments (e.g. client number 3). The first

noticeable effect is that there are no results from some single

machine video setups, which indicates that the client did not

receive packets. Due to the overload suffered by the emulation

machine, the a/v client was not able to take part in the multimedia

session successfully. It is also worth pointing out that jitter is

always lower in the distributed environment, independently of the

video quality used or the number of clients. This would not be

expected beforehand, because of the external network introduced.

The distribution of applications into different machines connected

by a network should introduce an extra, although small, delay.

The jitter could also be affected, so worse results could be

expected for the distributed case. However, the low CPU

utilization in the distributed environment compensates the effect

of the external network. In addition, jitter increases with the

number of clients in both situations. Although more experiments

are necessary to establish the exact progression, the general

tendency indicates bigger increments in the single-machine setup.

In conclusion, the higher the resource consumption of the machine

hosting ns-3 is, the less accuracy is achieved in the results.

Finally, provided that jitter in a real deployment of this service is

expected to be very low, we can asseverate that results from the

distributed environment are more accurate.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented an in-depth study of emulation

alternatives with ns-3. Emulation of services has been identified

as an interesting option for evaluation with other possibilities than

test-beds or simulations. For example, real applications can be

used so saving investment on network equipment as with test-

beds. However, the configuration of an emulation environment is

not a trivial question, especially if we aim to evaluate services

with many users. For that purpose, we have analyzed the

possibilities and limitations of the recently released

simulator/emulator ns-3. To go beyond single-machine

emulations, we have developed a distributed clients extension,

which allows the distribution of real applications in different

computers. This different setup presents certain advantages, such

as less resource consumption by ns-3, but also some pitfalls, such

as the introduction of processes external to emulation, taptunnels,

or synchronization difficulties. Both alternatives have been

studied by increasing the number of a/v clients streaming a video

from a server while keeping a fixed emulated network, simple

enough so as to avoid unexpected behaviors caused by larger

emulated topologies. Furthermore, two video qualities were

employed to see the possible implications.

As a general conclusion extracted from our evaluation, a

distributed environment optimizes resource consumption. High

resource consumption implies unexpected behavior of the

emulator and less accuracy in the results. Thus, a distributed

environment is a feasible possibility to emulate larger services and

still maintain results accuracy. Although we have scaled the

clients up to 50, it was not possible to go above this number. This

was mainly due to resource consumption of ns-3. It is not clear

whether this is a limitation by ns-3 itself or by the hardware

platform. Future tests over a more powerful hardware are being

programmed to examine more deeply this constraint. From the

usage of two different video qualities, we can also comment that

there is a maximum of 50 nodes. Thus, the limiting factor is not

directly related with the amount of traffic, but with the number of

nodes. This highlights an inefficient management of the

TapBridge objects. For the emulation of large-scale services, a

solution for these limitations must be proposed.

This paper is a first step in the state-of-the-art of ns-3 emulations.

Although some interesting contributions have been exposed, more

could be achieved with some future work. In order to obtain a

complete view, we see three main lines: service, network and

platform. First, other services could be evaluated, as their

behavior may cause different performance of ns-3 and discover

new constraints of the extension. Furthermore, more complex

network topologies, which include larger number of emulated

nodes and other technologies, could be analyzed. Our current and

future work on this subject includes the distribution of ns-3

processes into different machines. Finally, the influence of the

hardware used for the emulation could be better defined testing

other architectures. Not only different machines for the emulator

or the hosts, but also other network structures or technologies to

connect them, for example, gigabit Ethernet.

7. ACKNOWLEDGMENTS
This work has been funded by the Spanish National Research

Program (FUTURMEDIA Project TSI2007-60474).

8. REFERENCES
[1] Farooq, J. and Turletti T. 2009. Wimax Module for NS-3.

ACM SIMUTools, 2nd Conference on Simulation Tools and

Techniques.

[2] Göoktürk E. 2005. Emulating ad hoc networks: Differences

from simulations and emulation specific problems. New

Trends in Computer Networks Conference.

[3] Grau A., Maier S., Herrmann K., and Rothermel K. 2008.

Time Jails: A Hybrid Approach to Scalable Network

Emulation pads. 22nd Workshop on Principles of Advanced

and Distributed Simulation.

[4] Henderson T. R., Lacage M., and Riley G. F. 2008. Network

Simulations with the ns-3 Simulator. Demo paper at ACM

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8630
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8630

SIGCOMM. Association for Computing Machinery's Special

Interest Group.

[5] Hubert B., Graf T., Maxwell G., Van Mook R., Van

Oosterhout M., Schroeder P.B., Spaans J., and Larroy P.

2003. Linux Advanced Routing && Traffic Control How-to.

[6] Kristiansen S., and Plagemann T. 2009. ns-2 Distributed

Clients Emulation: Accuracy and Scalability. SIMUTools

2009, 2nd Conference on Simulation Tools and Techniques

[7] Mahrenholz D., and Ivanov S. 2004. Real-time network

emulation with ns-2. Distributed Simulation and Real-Time

Applications, Eighth IEEE International Symposium on,

pages 29±36.

[8] Mahrenholz D., and Ivanov S. 2006. Adjusting the ns-2

Emulation Mode to a Live Network. Kommunikation in

Verteilten Systemen (KiVS).

[9] Mahrenholz D., and Ivanov S. 2004. How-to: Wireless

Network Emulation using NS2 and Distributed Applications.

University of Magdeburg, Germany.

[10] Multithreaded implementation for multicore .

http://www.nsnam.org/wiki/index.php/Current_Development

#Multi-threaded_simulation_implementation_for_multicore

Last Visited January 21, 2010.

[11] Muthukumar S.C., Li X., Liu C., Kopenay J. B., Oprea M.,

and Loo B.T. 2009. Declarative Toolkit for Rapid Network

Protocol Simulation and Experimentation. SIGCOMM,

Association for Computing Machinery's Special Interest

Group.

[12] Muthukumar S.C., Li X., Liu C., Kopenay J. B., Oprea M.,

Correa R., Loo B.T., Basu P. 2009. RapidMesh: Declarative

Toolkit for Rapid Experimentation of Wireless Mesh

Networks. 4th ACM International Workshop on Wireless

Network Testbeds, Experimental Evaluation and

Characterization (WiNTECH 2009), in conjunction with

ACM MobiCom.

[13] NS-3. http://www.nsnam.org/, Last Visited January 21, 2010.

[14] PuZar M., Plagemann T. 2005. NEMAN: A Network

Emulator for Mobile Ad-Hoc Networks. 8th Int. Conf. on

Telecommunications.

[15] Riley G. F., Jaafar T.M., Fujimoto R.M., and Ammar M. H.

2004. Space-Parallel Network Simulations using Ghosts.

Proceedings of the 18th workshop on Parallel and Distributed

Simulation, IEEE.

[16] Sendtoself patch. http://www.ssi.bg/~ja/#loop. Last Visited

January 21, 2010.

[17] Video traces: http://trace.eas.asu.edu/yuv/index.html. Last

Visited January 21, 2010.

[18] Wingärtner W., Schmidt F., Heer T., and Wehrle K. 2008.

Synchronized Network Emulation: Matching prototypes with

complex simulations. Workshop session: The first workshop

on hot topics in metrics.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8630
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8630

