
Semantics for Structured Systems
Modelling and Simulation

Matthew Collinson
HP Labs, Bristol, UK

collinson@hp.com

Brian Monahan
HP Labs, Bristol, UK

brian.monahan@hp.com

David Pym
HP Labs, Bristol, UK

University of Bath, UK
david.pym@hp.com

ABSTRACT

Simulation modelling is an important tool for exploring and reason-

ing about complex systems. Many supporting languages are avail-

able. Commonly occurring features of these languages are con-

structs capturing concepts such as process, resource, and location.

We describe a mathematical framework that supports a modelling

idiom based on these core concepts, and which adopts stochastic

methods for representing the environments within which systems

exist. We explain how this framework can be used to give a seman-

tics to a simulation modelling language, Core Gnosis, that includes

basic constructs for process, resource, and location. We include a

brief discussion of a logic for reasoning about models that is com-

positional with respect to their structure. Our mathematical analy-

sis of systems in terms of process, resource, location, and stochastic

environment, together with a language that captures these concepts

quite directly, yields an efficient and robust modelling framework

within which natural mathematical reasoning about systems is cap-

tured.

Categories and Subject Descriptors

I.6 [Simulation and modelling]: General; F.3 [Logics and mean-

ings of programs]: Miscellaneous; H.1 [Models and principles]:

Systems and information theory

General Terms

Theory, languages, experimentation, design

Keywords

Simulation, modelling, semantics, process calculus, logic

1. INTRODUCTION
Executable modelling languages are important tools in science

and engineering, providing methods for exploring systems that are

too complex to be usefully described in simple, analytical terms.

It is very often difficult to validate such models of complex sys-

tems, and there are important questions about faithfulness of repre-

sentation of the underlying system and of the degree to which such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2010 March 15–19, Torremolinos, Malaga, Spain.
Copyright 2010 ICST, ISBN 78-963-9799-87-5.

models can be predictive. A possible source of errors lies in the

modelling language itself, because (contrary to the beliefs of many)

languages are themselves complicated artifacts. It is very important

to use a modelling language which is well-understood, both by its

authors and by its users. This points towards the disciplined use

of small, expressive, languages that have a formal semantics, that

are implemented with a high-degree of integrity, and which employ

constructs that naturally support the modelling idiom.

A landmark achievement was the construction of process mod-

elling languages, particularly Simula [13] (which extends Algol for

modelling), which use the notion of concurrent processes to struc-

ture models. This was distilled into a small, expressive language

called Demos [4] by Birtwistle, which emphasizes the disciplined

use of further structure, namely resource, by the processes.

In fields such as program logic, programming language seman-

tics, and concurrency, the introduction of mathematical semantic

methods has led to significant insights in expressiveness and im-

proved reliability properties. In the field of modelling and simula-

tion, however, semantics has made relatively little impact. One sig-

nificant and elegant exception is the work of Hillston and her col-

leagues (see, for example, [16, 19, 20]), in which a process calculus

is enriched with stochastic components, together with an account

of its stochastic properties in terms of Markov chains. Hillston et

al’s framework has been explored in detail, has tool support, and

has been deployed in wide range of examples. The Markov chain

point of view is also the basis of the Möbius system [28]. Our ap-

proach differs in that we separate system semantics and modelling

language, interpreting the latter in the former.

While the notion of process has been explored in some detail by

the semantics community, concepts like resource have almost al-

ways been treated as second class. There are many advantages to

doing this, from the point-of-view of a theorist. We take the oppo-

site view. That is, we try to see what can be gained by developing

an approach in which the structures present in applied modelling

languages are given a rigorous treatment as first-class citizens in

a theory. This has allowed us to develop our own disciplined ap-

proach to applied modelling and an associated tool Core Gnosis.

It is useful to argue — see, for example, [8] — that the key struc-

tural aspects of systems are the ones discussed below. This point of

view is consistent with the classical view of distributed systems, as

described, for example, in [12].

Process. A synthetic system exists in order to deliver services,

and services can be conveniently understood as processes that exe-

cute on the system’s architecture. Typically, it will be necessary for

many services to execute, concurrently and sequentially, in order

for a service to be delivered. Similarly, natural processes execute

relative to natural substrates. Our main focus here is on synthetic

systems; in particular, large-scale information systems.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8631
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8631

For example, we might wish to model the handling of boats by

some docks. A boat arrives at the docks, is tugged to a jetty, is then

unloaded and/or loaded, and then tugged away from the jetty before

being ready to depart the docks. We can consider the boat’s passage

through the docks to be a process, understood as a sequence of

actions, that executes relative to the infrastructure (i.e., the tugs,

the jetties, the cranes, the stevedores) of the docks. The service

delivered by the docks might consist of concurrently processing

several boats, and might require a number of subsidiary processes.

There are number of familiar aspects of the intuitive notion of

process that we might naturally want our model of process, dis-

cussed mathematically below in Section 2, to capture. These in-

clude, among others, sequencing, choice, concurrency, and recur-

sion.

Resource. The infrastructure of a system, relative to which the

system’s processes execute, consists of a collection of resources

that may be utilized by the processes in order to achieve their in-

tended purposes.

For example, various resources are required to be available within

the docks in order for boats to be handled: tugs are needed to take

boats to jetties, cranes and stevedores are required to unload/load

boats, and tugs are required to take boats away from jetties.

As with processes, there are some basic properties of the intu-

itive notion of resource that we would like our model of resource to

capture. Recent work on resource semantics (see, for example, [33,

34]) suggests that capturing the idea that resource elements may be

combined and compared is sufficient for a great deal of progress to

be made. This too is developed mathematically in Section 2.

Location. In general, the architectures of systems are highly dis-

tributed, logically and/or physically. The system’s resources are

distributed around a collection of places, and these places have (di-

rected) connections between them.

For example, suppose we wish to model a system of docks that

handles both low-security boats, perhaps carrying produce or fossil

fuels, and high-security boats, perhaps carrying nuclear fuels [8].

The docks may be divided into two zones, or locations, one low-

security and one high-security. Specialized resources may be as-

sociated with each zone, high-security jetties, tugs, and stevedores

being separated from their low-security counterparts. It may, how-

ever, be the case that low-security traffic, perhaps being much more

frequent, puts a much greater burden on the low-security zone than

does less frequent high-security traffic on the high-security zone.

Accordingly, the docks’ operators may wish to be able to divert

high-security tugs and stevedores to low-security jetties in a con-

trolled fashion. So, transition from high-security to low-security

may be permitted only via an intermediate ‘debriefing’ location

that applies appropriate controls to the information flows. In this

example, we assume that direct connection from the low-security

zone to the high-security zone is permitted since no high-security

information flows in that direction.1 In Section 3, for variety, we

give a related ‘dual’ example, in which movements from low- to

high-security is controlled by a ‘vetting’ location.

The notion of location provides more than a way to understand

information flows, however. It also provides a basis for mecha-

nisms for abstraction, where a portion of the structure of locations

and connections is replaced with a less detailed version, and refine-

ment, where a portion of the structure of locations and connections

is replaced with a more detailed version. These ideas will be dis-

cussed mathematically in Section 2.

Environment. Systems exist within external environments, from

1Of course, in practice this would require strong assumptions about
the security ‘clearance’ of the resources, such as the stevedores,
involved.

which events are incident upon the system’s boundaries. Typically,

the environment is insufficiently understood and too complex to be

represented in the same, explicit, form as the system itself.

For example, when modelling the handling of the arrival, unload-

ing/loading, and departure of boats at a dock, we might choose not

to model the patterns of trade in the surrounding seas, but rather

simply represent the arrival of boats at the entrance to the docks as

a stochastic process.

In general, then, we choose to represent the impact of the en-

vironment on the system of interest just as random events that are

incident upon the system. There is, however, another important rôle

for stochastic methods in our approach. Even within the system of

interest, there may be (perhaps quite complex) components that we

do not need to model in (process, resource, location) detail. The

impact of such components on the operation of the overall system

can often be handled stochastically.

Our integration of the stochastic and structural aspects of our

models also differs from the approach of Hillston et al [16, 19, 20].

Whereas PEPA is a language within which stochastic constructs are

internalized, we reside our stochastic capability wholly within our

associated tool, Core Gnosis.2 Core Gnosis, which is described in

Section 3, also implements notions of process, resource, and loca-

tion, and its semantics is given denotationally, as in the semantics

of programming languages (see, for example, [40], and particularly

[35]), in terms of the process calculus (L)SCRP [10, 8], which in-

cludes appropriate mathematical models of resource and location,

and which is described in Section 2.

Section 4 provides a substantive sketch of the denotational se-

mantics of Core Gnosis. Here the distinction between our approach

and that of Hillston et al. is very clear. Whereas they work inten-

sionally within a process calculus that includes a stochastic com-

ponent, our approach is to give a denotational semantics to a mod-

elling language (Core Gnosis) that includes process, resource, lo-

cation, and stochastic components. A complete treatment of this

semantics would entail giving an interpretation, in (L)SCRP’s lan-

guage of processes, resources, and locations, of Core Gnosis’s event-

scheduler. Such a treatment, including a precise representation of

the timing of events, is a very substantial undertaking, beyond the

scope of this short paper. Instead, we give a substantial sketch of

a version of such a semantics in which we map Core Gnosis mod-

els (L)SCRP processes, preserving the scheduler’s order of major

events.

In Section 5, we sketch a modal logic, MBI, which is related

to SCRP in the sense of Hennessy–Milner logic [18, 38]. MBI is

a bunched logic, with both additive and multiplicative connectives

and quantifiers at the same level of abstraction [29]. As a result,

MBI provides logical characterizations of some key structural as-

pects of our (L)SCRP’s representation of system models.

2. A SEMANTIC BASIS
Each of the components of a system model that we have de-

scribed in Section 1 can be captured mathematically. Processes

are usually captured in a process calculus, such as SCCS [24], CCS

[25], or the pi-calculus [26]. Resources can be captured using re-

source monoids, as in bunched logic [29, 33] and its applications,

such as Separation Logic [21, 34]. Location can be captured using

(hyper-) graph-like structures, and all of this can be combined with

probability distributions to capture environments.

2.1 Processes and Resources
We give a brief review of the process calculus SCRP [10] of

2gnosis: Gk, knowledge to influence and control.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8631
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8631

resources and processes (which builds on and consolidates [31, 30])

and its extension to locations [8].

Our starting points are Milner’s synchronous calculus of com-

municating systems, SCCS [24], perhaps the most basic of process

calculi, and the resources semantics of bunched logic [29, 33]. The

key components for our purposes are the following:

• A monoid of actions, Act, with a composition ab of elements

a and b and unit 1;

• The following grammar of process terms, E, where a ∈ Act

and X denotes a process variable:

E ::= a : E |
X

i∈I

Ei | E × E | X | fixiX.E | (νR)E

Most of the cases here, such as action prefix, sum, concurrent prod-

uct, and recursion (in the fixi case, X and E are tuples, and we

take the ith component of the tuple), will be quite familiar to the-

orists. The term (νR)E, in which R denotes a resource, is called

hiding, is available because we integrate the notions of resource and

process. Its meaning is discussed below; it generalizes restriction.

Mathematically, our notion of resource — which encompasses

natural examples such as space, memory, and money — is based

on (ordered, partial, commutative) monoids (e.g., the non-negative

integers with addition, zero, and less-than-or-equals), and captures

the basic properties of resources discussed briefly in Section 1:

• Each type of resource is based on a basic set of resource ele-

ments;

• Resource elements can be combined (and the combination

has a unit);

• Resource elements can be compared.

Formally, we take pre-ordered, partial commutative monoids ,

(R, ◦, e,v),

where R is the carrier set of resource elements, ◦ is a partial monoid

composition, with unit e, and v is a pre-order on R.

The basic idea is that resources, R, and processes, E, co-evolve,

R, E
a

−→ R′, E′,

according to the specification of a partial ‘modification function’,

µ : (a, R) 7→ R′, that determines how an action a evolves E to E′

and R to R′.

The base case of the operational semantics is given by action

prefix:

R, a : E
a

−→ R′, E
µ(a, R) = R′.

Concurrent composition, ×, exploits the monoid composition, ◦,

on resources,

R, E
a

−→ R′, E′ S, F
b

−→ S′, F ′

R ◦ S, E × F
ab
−→ R′ ◦ S′, E′ × F ′

.

A modification function is required to satisfy some basic coherence

conditions:

• µ(1, R) = R, where 1 is the unit action, and

• if µ(a, R) ◦ µ(b, S), and R ◦ S are defined, then µ(ab, R ◦
S) ' µ(a, R) ◦ µ(b, S),

where ' is Kleene equality, for all actions a and b and all resources

R and S. In certain circumstances, additional equalities may be

required [10, 8].

Sums and recursion are formulated in familiar ways:

R, Ei
a

−→ R′, E′

R,
P

i∈I
Ei

a
−→ R′, E′

,

where I is an indexing set, and

R, Ei[E/X]
a

−→ R′, E′

R, fixiX.E
a

−→ R′, E′

,

where Ei is the ith component of the tuple E of processes.

Of more interest is hiding,

R ◦ S, E
a

−→ R′ ◦ S′, E′

R, (νS)E
(νS)a
−→ R′, (νS′)E′

,

in which the resource S becomes bound to the process E (we elide

the definition of the action (νS)a [10, 8]). This construction re-

places, and generalizes, restriction in calculi such as SCCS.

2.2 Location
If one wishes to construct models of systems with location in the

SCRP calculus, then this must be done using the resource and/or

process components. For some simple situations, the notion of lo-

cation can be treated as resource — for example, this would be

sufficient to give a process algebraic account of Separation Logic

(where location is thought of as resource). For more complex no-

tions, an encoding into the process component must be used.

This section describes how to extend SCRP to handle system

states with three components: location, resource and process. Thus

location will be treated as a first-class citizen in the formalism. We

name the resulting (family of) calculi LSCRP.

Just as our treatment of resources begins with some basic ob-

servations about some natural and basic properties of resources, so

we begin our treatment with the following basic requirements of a

useful notion of location [8, 9]:

• A collection of atomic locations — the basic places — which

generate a structure of locations;

• A notion of (directed) connection between locations — de-

scribing the topology of the system;

• A notion of sublocation (which respects connections);

• A notion of substitution (of a location for a sublocation) that

respects connections — substitution provides a basis for ab-

straction and refinement in our system models;

• A product (again, monoidal) of locations (an inessential but

useful technical property), suitably coherent with the other

products [8].

The notions of sublocation and substitution are intimately related,

the former being a prerequisite for the latter. We will not develop

or implement substitution in this paper (except for brief comments

in examples) rather deferring it as a next step.

Treating location as a first-class citizen in this way does not lead

to a process calculus with operational behaviour that is more ex-

pressive in absolute terms. It does, however, lead to greater prag-

matic expressiveness: we claim that it simplifies the construction of

models of a wide range of systems. It also makes it easier to write

specifications about located resource in the logical language. In

some circumstances, such as those that obtain in Separation Logic

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8631
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8631

[34, 21], location can be treated as a form of resource (in such set-

tings, the topology of locations plays no role).

The resulting calculus has transition systems with dynamic be-

haviour of the following form:

L, R, E
a

−→ L′, R′, E′,

where a is an action (in the usual process sense), L, L′ are loca-

tion environments, R, R′ are resource environments and E, E′ are

processes used to control the evolution. Following the approach

sketched above, we define a modification function, µ, which, for

each action a, location L, and resource R, determines the evolved

location L′ and resource R′. In a state L, R, E, the component L
carries the relevant information about the topology of the model

and R carries the relevant information about the distribution of the

resources around the model’s topology.

The operational semantics of LSCRP extends that of SCRP in

the evident way. Modification functions are extended to include lo-

cations, µ : (a, L, R) 7→ (L′, R′), with corresponding versions of

the coherence conditions. Then the following is the rule for action

prefix:

L, R, E
a

−→ L′, R′, E′
Action

where (L′, R′) = µ(a, L, R).

The following quite general form of the product rule in the pres-

ence of locations makes use of a notion of product of locations:

L, R, E
a

−→ L′, R′, E′ M, S, F
b

−→ M ′, S′, F ′

L • M, R ◦ S, E × F
a·b
−→ L′ • M ′, R′ ◦ S′, E′ × F ′

Product

where • is the product of locations. Various simpler forms, such

as taking a fixed location, make sense in absence of a product of

locations [8, 9]. We can also take a Frame rule (with respect to

resources):

L, R, E
a

−→ L′, R′, E′

L, R ◦ S, E
a

−→ L′, R′ ◦ S′, E′

provided µ(a, L, R ◦ S)) is defined.

Alternative semantic approaches to systems modelling, in addi-

tion to the work of Hillston et al., include the work of Milner on bi-

graphs [27], in which, essentially, a single language is used to cap-

ture process, resource, and location. A detailed comparison with

our approach is beyond the scope of this short paper.

2.3 Environment
We have explained that, in our approach, the environment —

that is, those aspects of the environment that we do not wish to

model explicitly — is handled stochastically. Yet neither SCRP

nor LSCRP is a stochastic calculus. How does this work? In con-

trast to the intensional approach of, for example, Hillston et al., our

approach is in the spirit of the denotational semantics of program-

ming languages (see, for example, [40]). We develop our semantic

structures in parallel with our modelling language, Core Gnosis, the

two being related by an interpretation of the modelling language in

the structures, about which we seek to establish certain properties.

We describe such an interpretation in some detail in Section 4.

The interpretation of the structural components — process, resource,

and location — is relatively direct. The interpretation of Core Gno-

sis’ stochastic capabilities is, however, essential to the semantics of

control in this context.

2.4 Basic Meta-theory
This is not a paper about the mathematical theory of processes,

resources, and locations. That has been presented at length else-

where [10, 8, 11]. Rather, it is an overview of how that mathemat-

ics provides a rigorous basis for systems modelling. Nevertheless,

it seems worthwhile to give a brief indication of the key properties

that are require to support its use both as a conceptual framework

and as a semantic domain for the Core Gnosis modelling language.

In a process algebra, it is desirable to have a notion of equal-

ity that goes beyond syntactic identity and identifies processes with

similar behaviour. The usual notion is that of an equivalence re-

lation called bisimulation. In (L)SCRP, where the decomposition

of state into the three components introduces a degree of delicacy,

there are two natural notions of equivalence: a local one and a

global one.

The local equivalence is on states, and is written L, R, E ≈
L, R, F . It is a bisimulation relation that takes account of the re-

source and its location. The global relation, written E ∼ F , quan-

tifies the equivalence over all locations and resources. The global

equivalence is a congruence, but the local equivalence is not. Nev-

ertheless, the local equivalence has many useful conceptual and

theoretical properties [30, 31] (but see the erratum). We shall re-

turn to this point in Section 5. The details of these equivalences and

their key theoretical properties may be found in [10, 8].

In the sequel we make use of a few additional pieces of notation.

Rather than using the fix notation, we use an equivalent formu-

lation using process constants for recursive definitions. Thus for

example, processes E0, . . . , En may be defined by a sequence of

equations Ci := Fi, for 0 ≤ i ≤ n, where each Fi is a pro-

cess term (but possibly containing Cj , for 0 ≤ j ≤ n). We fur-

ther abbreviate by simply writing the equations for Ei in the form

Ei := . . . Ej As a first example, there is the unit or tick pro-

cess 1, given by 1 = 1 : 1. For a second example, for any process

E, there is the delayed process δ(E), given by δ(E) := E +1 : E.

The asynchronous prefix operator ‘.’ may be defined from the delay

operator δ, by taking a.E to be a : δ(E), for all a and E.

3. THE CORE GNOSIS LANGUAGE
We introduce the Core Gnosis modelling language via a series

of examples to illustrate the disciplined approach to modelling dis-

cussed above. Core Gnosis is a strict subset of Gnosis, a larger,

more expressive language possessing more extensive, but conven-

tional, data representation capabilities.3 Core Gnosis (and Gnosis)

are developments building on experience from Birtwistle’s Demos

[4], on Demos2k [14], and Located Demos2k [6, 7, 8], and the

rigorous mathematical framework described herein.

Core Gnosis includes constructs for describing processes, re-

sources, and locations that capture many (though, at this stage, not

quite all) aspects of the mathematical structures described in Sec-

tion 2. Core Gnosis also provides a good degree of stochastic ca-

pability. Events (actions) may be drawn from the following prob-

ability distributions: uniform, normal, negative exponential, and

Weibull; for example, these allow us to model stochastic queuing

and Markov chain process phenomena. Experience suggests (see,

for example, [3, 2, 1, 41]) that this choice provides a range of ex-

pressivity that is sufficient for a very wide range of examples whilst

keeping the tool conceptually and pragmatically compact.4

Our starting point is a classic example from the work of Birtwistle

[4]: the docking of boats in a harbour with various jetties and tugs,

which we extend to include secure docking of boats. Here is the

first version in Gnosis:

3Gnosis is at an advanced stage of development at HP Labs [17].
4The full Gnosis tool [17] will, in common with Demos and De-
mos2k, for example, include a very wide range of distributions.
See, for example, [15, 22] for explanations of how this is done.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8631
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8631

-- title : Boats example : time units = hours

-- seed = 426724262

param runTime = (24 * 7) // 7 days

param numJetty = 2; param numTug = 3

param dockTime = negexp(2.0)

param undockTime = negexp(1.5)

param unloadTime = uniform(1.0, 4.0)

param boatMeanArrival = 10.3

param boatDelay = negexp(boatMeanArrival)

share jetty numJetty

share tug numTug

process boat = {

claim 1 jetty

claim 2 tug; hold(dockTime); release 2 tug

hold(unloadTime)
claim 1 tug; hold(undockTime); release 1 tug

release 1 jetty

hold (boatDelay); launch boat

}

launch boat

hold (runTime)

close

The model first defines a series of constants and distributions, fol-

lowed by two shared resource elements, jetties and tugs. A single

process corresponding to a relevant abstraction of the boat’s activ-

ities is then defined. This process defines a number of sequential

activities performed by the boat: getting a jetty, getting some tugs,

docking, unloading, and so on. Note that there are many activities

associated with the boat that are not modelled (e.g., navigation). Fi-

nally, a boat instance is (immediately) launched and the simulation

then runs for 168 (= 24 × 7) (simulated) hours before closing.

Notice how the boat process launches a further boat process after

a randomized time delay, boatDelay, ensuring a random sequence

of boat arrival instances. Core Gnosis checks at runtime whether

process instances terminate whilst owning some shared resource,

and fails if any are found.

3.1 Adding located resource: secure boats
We illustrate location by adding security properties to the simple

boats example. The idea is that there are two kinds of dock, Basic

and Secure, plus a Guard area to check tugs entering the Secure

docking area. There are some number of basic and secure jetties

(which remain in place) to which boats can be docked. There is also

a pool of tugs that can be moved to and from Basic and Guard, and

also from Guard to Secure and and back to Basic. We present the

extended model in sections. The first section gives the parameters:

param runTime = (24 * 7) // 7 days

param numJetty = 2; param numTug = 3

param numSecureJetty = 1; param numSecureTug = 3

param dockTime = weibull(2.0, 1.5)

param undockTime = weibull(1.5, 1.5)

param unloadTime = uniform(1.0, 4.0)

param checkTime = weibull (2.0, 3.0)

param passCheck = normal (1, 0.5)

param passLevel = 0.5

param boatMeanArrival = 10.3

param boatDelay = negexp (boatMeanArrival)

param secureBoatMeanArrival = 18.9

param secureBoatDelay = negexp (secureBoatMeanArrival)

param checkInterval = 3.5

param checkDelay = negexp (checkInterval)

We now have parameters not only for the standard boats but also,

for instance, those defining the stream of secure boats as well (e.g.,

secureBoatMeanArrival).

Using these parameters, we now introduce locations and links

(connections) between locations. The links are generally used to

constrain moving resources from one location to another. We then

define the shared, located resources we need:

location Basic, Guard, Secure

link Basic ↔ Guard → Secure → Basic

share jetty@Basic numJetty

share jetty@Secure numSecureJetty

share tug@Basic numTug

share tug@Secure numSecureTug

More generally, although we only use simple locations in this pa-

per, the locations can also be hierarchically addressed (cf. URLs):

Resource@Loc1/Loc2/ . . . /Locn

This hierarchical structure also extends to the way that linkage is

defined.

There are now two kinds of boat, a standard boat and a secure

boat. Standard (i.e, low-security) boats can only use the Basic jet-

ties whereas secure (i.e., high-security) boats can only use the Se-

cure jetties. Each tug can be used to dock/undock the boats in either

docking area. However, tugs may need to change their rôle/location

and move from one to the other as circumstance demands.

Here is the standard boat process:

process boat = {

claim 1 jetty@Basic

select [claim 2 tug@Basic] {

hold(dockTime)
release 2 tug@Basic

}

or [claim 2 tug@Guard] {

move share (2) tug@Guard → tug@Basic

hold(dockTime)
release 2 tug@Basic

}

or [claim 2 tug@Secure] {

move share (2) tug@Secure → tug@Basic

hold(dockTime)
release 2 tug@Basic

}

hold(unloadTime)

select [claim 1 tug@Basic] {

hold(dockTime)
release 1 tug@Basic

}

or [claim 1 tug@Guard] {

move share (1) tug@Guard → tug@Basic

hold(dockTime)
release 1 tug@Basic

}

or [claim 1 tug@Secure] {

move share (1) tug@Secure → tug@Basic

hold(dockTime)
release 1 tug@Basic

}

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8631
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8631

release 1 jetty@Basic

hold (boatDelay); launch boat

}

Note how tugs are initially claimed from either the Basic, Guard, or

Secure pools and, if necessary, moved into the Basic pool. Our ver-

sion of move can only move resources already owned by the pro-

cess (i.e., claimed) from one location to another. To do the move,

there must be a valid link between the two locations. Once a re-

source is moved to a destination, it must also be released back to

that location and not from where it was claimed.

Here is the secure boat process:

process secureBoat = {

claim 1 jetty@Secure

select [claim 2 tug@Secure] {

hold(dockTime)
release 2 tug@Secure

}

or [claim 2 tug@Guard] {

move share (2) tug@Guard → tug@Secure

hold(dockTime)
release 2 tug@Secure

}

hold(unloadTime)

select [claim 1 tug@Secure] {

hold(undockTime)
release 1 tug@Secure

}

or [claim 1 tug@Guard] {

move share (1) tug@Guard → tug@Secure

hold (undockTime)

release 1 tug@Secure

}

release 1 jetty@Secure

hold(secureBoatDelay); launch secureBoat

}

Again, note how the tug resources can be claimed and used from

only the Guard and Secure locations, and then moved as necessary.

This ensures that only potentially vetted tugs can be used within

the secure docking area.

The next process performs the ‘randomized inspection’ of tugs

— the check process takes either one or two tugs in Basic and ‘de-

cides’ (via a distribution) whether or not to inspect. The tugs al-

ways end up in the Guard area:

process check = {

select [claim 1 tug@Basic] {

move share (1) tug@Basic → tug@Guard

if [passCheck > passLevel] {hold(checkTime)} or else {}

release 1 tug@Guard

}

or [claim 2 tug@Basic] {

move share (2) tug@Basic → tug@Guard

if [passCheck > passLevel] {hold(checkTime)} or else {}

release 1 tug@Guard

if [passCheck > passLevel] {hold(checkTime)} or else {}

release 1 tug@Guard

}

hold(checkDelay); launch check

}

Finally, we launch all three processes, boat, secureBoat, and check,

to perform the overall simulation:

launch boat

launch secureBoat

hold(checkDelay); launch check

hold (runTime)

close

The evolution of the Core Gnosis abstract machine determines the

observable change of state recorded by the trace (history).

The language also allows for statements of the form forget(l, l′)
and recall(l, l′), where l and l′ are simple locations. These state-

ments make the topology of the system dynamic, in that processes

may not be able to use the declared links at all points in time. The

forget(l, l′) statement changes the system state by dropping the link

from l to l′. Note that move statements taking resources from l to

l′ will block when the link is thus broken. A recall(l, l′) statement

re-connects the link from l to l′. A process which is blocked on a

move from l to l′ will be un-blocked when this link is recalled. For

example, one may wish to consider enriching the Secure Boats ex-

ample, so that the tugs kept at the Guard location are, periodically,

distrusted. This may be represented by having the link from Guard

to Secure forgotten and recalled periodically.

As we have already pointed out at the semantic level, examples

such as secure boats, and other far more complex examples, can

evidently be coded in modelling languages, such as Demos [4],

which lack a concept of location. Two possible approaches are the

following: use the imperative structure of the code to capture the

distinctions between implicit locations; and encode a data type of

locations and employ it whenever a distinction between locations

is required. The first choice is clearly very limited in the extent to

which it can be employed. The second, whilst quite flexible, leads

to models within which there is a great deal of code whose only

purpose is to capture the necessary data type, and is not otherwise

related to the meaning of the model, as captured by the mathemat-

ical framework. Experience suggests that such models are difficult

to conceptualize, prone to error, and computationally inefficient.

4. THE SEMANTICS OF CORE GNOSIS

4.1 The Approach
The semantics we give is a translation of Core Gnosis into the

more foundational setting of the process calculus LSCRP. The trans-

lation is partial, in the sense that we restrict our attention to models

that have been written with a particular discipline — we refer to

such models as restricted Core Gnosis models. Furthermore, the

translation is forgetful, in the sense that some of the structure of the

original model is lost in translation. A similar approach was taken

for Demos2k [14] in [5].

Critical features of the original model are, however, preserved

under the translation. Specifically, certain critical aspects of control

flow and the orderings of certain kinds of important event. From

this we can argue that (most of) the aspects of control flow that are

written by a modeller using declarations of concurrent processes in

Core Gnosis are meaningful in the simpler setting of LSCRP, where

behaviour is easier to reason about.

The reader may reasonably ask why we do not give a complete

semantics to the entire Core Gnosis language that preserves all as-

pects of the original model. Such a semantics has been the tradi-

tional goal of the semantics community. Furthermore, any prop-

erty that one wanted to prove about a Core Gnosis model could be

proved instead for the LSCRP translation, where analysis is easier,

and formal methods for proofs are available. There are two reasons

why we do not attempt this. The first is that such a translation is

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8631
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8631

a huge task — the complexity of even a relatively small language

like Core Gnosis should not be underestimated. The second is that

such a translation would help the applications modeller very little.

In particular, one would be forced to encode all aspects of the Core

Gnosis language and abstract machine into the process calculus.

In common with many other simulation languages, the abstract

machine used for the execution of Core Gnosis models is based

around the notion of scheduler. The essential idea behind this is,

that at any (simulation) time there are a finite number of live pro-

cess instances, but that there will always be one of these which

performs its action first. This is linked to the discrete nature of evo-

lution captured by such tools. Concurrency is represented by the

fact that actions may (and often do) occur at the same simulation

time, even though they are given an ordering. The scheduling is, in

part, dependent upon draws from probability distributions relating

to hold-statements. Apart from such (pseudorandom) draws, the

scheduling is entirely deterministic.

The scheduling algorithm makes use of two principal data struc-

tures, the process-queue and the blocked-list, as well as some other

global parameters including the current (simulation) time, the cur-

rent model-topology, and the currently available model-resources.

The process-queue is a list of process-actions, each of which con-

sists of an identifier (for a process instance) and a representation

of the control stage in its declaration that it has so far reached (the

continuation corresponding to that instance). The element at the

head of the queue is the next process-instance that may proceed

with its next action, unless some elements from the blocked-list

may unblock. The blocked-list consists of a list of processes that

are currently suspended (blocked) because their leading action has

been issued, but cannot yet be satisfied (e.g., a claim on insuffi-

cient resource. At any stage, each identifier occurs at most once in

the union of the process-queue with the blocked-list. Morally, this

union represents the current synchronous product of live processes

that we would have in LSCRP, but ordered using the additional in-

formation of time (and the scheduler’s notion of priority).

Describing the evolution of the abstract machine in LSCRP es-

sentially involves giving the evolution of an interpreter for the au-

tomatic execution of processes in LSCRP itself. The particular

semantics given here elides timing constraints (which are mostly

stochastic). Although a detailed treatment of timing constraints

can be given within our framework, we argue that these are better

treated as model properties than as control constructs to be relied

upon. The result of all this would be a formalization very much

less comprehensible than the original completely functional (and

hence referentially transparent) implementation. The experience of

the semantics community is that such interpreters are best written

in purely functional languages, as we have done for (Core) Gnosis.

A framework for providing a logic programming-style semantics

for Core Gnosis would be the Event Calculus (see, for example,

[37]). Such an approach would fix the semantics at a slightly lower

level of abstraction, with a consequent loss of natural representa-

tional choices, corresponding less directly and conceptually to the

intended modelling paradigm, as described in Section 1.

4.2 Concrete LSCRP
The process calculus of Section 2 is deliberately abstract. It is

intended that it may be instantiated in many different ways, de-

pending on the application domain, just as different simulation lan-

guages are well-suited to different modelling problems. In this sec-

tion, we present a concrete realization of LSCRP, that is appropriate

for providing a simple but instructive translation of Core Gnosis

models. The key steps in this realization are: to ground the no-

tion of location; to ground the notion of resource with respect to

location; to ground the set of actions with respect to location and

resource; to define the modification and hiding functions, used to

govern the evolution of LSCRP-states.

Suppose that some directed graph G = (V, E), with vertices V
and (unlabelled) edges E has been given, as has a set RNm , called

the set of resource names.

A location is a subgraph of G. Let L be the set of such locations.

Let the distinguished element ` of L be the empty subgraph. A

simple choice of location composition, which is adequate for our

purposes here, takes for all locations L and L′: L ◦ ` = L =
` ◦ L = L ◦ L are defined; for L 6= ` 6= L′, the composite L ◦ L′

is defined if and only if L = L′. For any L, let VL be the set of

vertices and EL be the set of edges.

A resource is a function R : V × RNm −→ N, where N is the

set of natural numbers (including zero). Let R be the set of such

resources. Let the distinguished element e of R be the map which

takes every pair (v, r) ∈ V ×RNm to 0. Composition of locations

is pointwise sum: that is, (R ◦ R′)(v, r) = R(v, r) + R′(v, r) for

all R, R′, v and r. Note that resources can also be written as sets

of triples of the form (v, r, n), such that n 6= 0.

The set Act of actions is generated freely from a set of atomic

actions. Thus a general action a satisfies a = α1 · · ·αn, where

the sequence of atoms α1, . . . , αn is determined uniquely, up to

re-ordering. The identity action 1 is given by the case n = 0.

The atoms take the forms get(v, r, n), put(v, r, n), forget(v, v′),

move(v, v′, r, n), and recall(v, v′), the parameters v, v′ ranging

over V , r ranges over RNm , and n ranges over N. Thus our atoms

are simple operations on a graph populated with resources, and are

sharply divided into two kinds: those that manipulate resource, and

those that change the underlying topology.

Define a corresponding family of parametrized partial functions.

Each such function takes an argument consisting of a location L
and a resource R. Fix the parameters v, v′, r, and n. For get-

actions, µget(v,r,n)(L, R) ' L, R − {(v, r, n)} (− here is the

partially defined cancellation operation for this monoid). For put-

actions, the modification µput(v,r,n)(L, R) is defined iff v ∈ VL,

and µput(v,r,n)(L, R) = L, R ◦ {(v, r, n)}, if defined. For move-

actions, we have µmove(v,v′,r,n)(L, R) is defined iff (v, v′) ∈ EL

and R(v, r) ≥ n, and µmove(v,v′,r,n)(L, R) = L, (R−{(v, r, n)})◦
{(v′, r, n)}, if defined. For forget-actions, µforget(v,v′)(L, R) '
(VL, EL − {(v, v′)}), R. For recall-actions, µrecall(v,v′)(L, R) is

defined iff v, v′ ∈ VL, and µrecall(v,v′)(L, R) = (VL, EL∪{e}), R,

if defined.

Let a be an action, which may be given using atoms as α1 · · ·αn.

For each atom αi, there is a unique least resource Ri such that there

is some L with µ(αi, L, Ri) defined. A well-defined modification

is generated by taking µ(α1 · · ·αn, L, R) to be given by

µ(α1, L, R1) ◦ · · · ◦ µ(αn, L, Rn) ◦ (`, R − (R1 ◦ · · · ◦ Rn))

for n > 0 and µ(1, L, R) = L, R, for all L and R.

This provides all the information required to generate processes,

states, and transitions in LSCRP, as indicated in Section 2, above.

4.3 Restricted Core Gnosis Models
Part of the Core Gnosis syntax is described in Section 3 above.

We do not attempt to translate all models that may be written in the

language. For the purposes of this section, we restrict the class of

models in order to make a meaningful translation. For simplicity,

we use an (evident) abbreviated syntax for Core Gnosis’s resource-

manipulating operations. The first restriction is that the guards in

(all branches of) select statements contain only sequences of claim

statements. The second restriction concerns the way in which the

move action is used. In particular, we impose a tight discipline on

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8631
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8631

the way in which resources are claimed and released, before and

after being moved. Any move statement in a process declaration is

allowed to occur in one of two ways: in a sequence (called a CMR-

sequence), or in a sequence (called a SCMR-sequence) at the head

of a branch of a select statement.

A CMR-sequence is a sequence of the form B1; B2; hold t; B3,

where B1 contains only claims, B2 contains only moves and B3

contains only releases. For every move(r, l, l′, n) in B2 there is

precisely one claim(r, l, n) in B1, and precisely one release(r, l′, n)
in B3, and there are no other claims or releases in these sequences.

An SCMR-sequence is the same as a CMR-sequence, except that

all of the claim statements occur inside the guard of a branch of a

select statement. A simple SCMR-sequence may look like:

select[claim(r, l, n)]{move(r, l, l′, n); release(r, l, l′, n)

The point of this restriction is that CMR- and SCMR-sequences

may be translated directly into concurrent compounds of move ac-

tions. However, this imposes a genuine restriction on the class of

models. For example, we have lost the ability to write models with

move-actions which start simultaneously (in simulation time) but

finish at different times.

We further simplify here by assuming that conditionals have only

Boolean guards.

4.4 A Translation
We now sketch a translation of programs of restricted Core Gno-

sis models into LSCRP-states. This is done using a partial func-

tion τ defined below. Let M be a Core Gnosis model, subject

to the restrictions above. This is translated into the LSCRP-state

τ(M) = τL(M), τR(M), τP (M).

The location τL(M) is the graph determined by the location and

link declarations in the preamble of M.

The resource τR(M) is the resource determined by the distribu-

tion of shares declared in the premable of M.

It remains to describe the translation of the process declaration

and launch phase of M into an LSCRP-process τP (M). This

translation breaks down into three phases. First, to each ith pro-

cess declaration Pi in M associate a process constant, say Ei, and

to the launch phase associate a process constant E0, and let E be

this sequence of processes. Second, make a preliminary translation

τ ′(Bi) of the body Bi of all process declarations. Third, identify

the images of the CMR- and SCMR-sequences in each τ ′(Bi), and

then collapse these into composites of move actions.

Let σ be any simple statement (claim, release, move, forget, recall,

hold). Define a mapping from such σ to LSCRP actions:

τS(σ) =

8

>

>

>

>

>

<

>

>

>

>

>

:

get(l, r, n) if σ = claim(l, r, n)
put(l, r, n) if σ = release(l, r, n)
move(l, l′, r, n) if σ = move(r, l, l′, n)
forget(l, l′) if σ = forget(l, l′)
recall(l, l′) if σ = recall(l, l′)
1 if σ = hold .

For the first part τ ′ of the translation the simple statements are

translated straightforwardly into atomic actions, or else forgotten

by translating to the tick action. In particular, timing constraints

imposed by holds are not preserved.

If the sequence of statements is empty, then we translate it to the

unit process 1 under τ ′. Suppose that a sequence Bi takes the form

σ; B′

i. Define, where γis are guards and bis are booleans,

τ ′(σ; B′

i) =
τS(σ).τ ′(B′

i) if σ is simple

Ej × τ ′(B′

i) if σ = launch Pj

(τS(γ1).τ
′(B1; B′

i))+
(τS(γ2).τ

′(B2; B′

i)) if σ = select[γ1]{B1}or[γ2]{B2}
(τ ′(B1; B′

i)) + (τ ′(B2; B′

i)) if σ = if[b1]{B1}or else{B2}

This translation takes both CMR- and SCMR-sequences into se-

quences of gets, moves and puts (possibly with a tick action be-

fore the move). Furthermore, any move action is contained in such

a sequence. Let us call such a sequence a GMP-sequence. The

GMP-sequences may be automatically identified.

Define a further translation τ ′′ taking the family of τ ′(Bi) to a

new family of LSCRP-terms, by collapsing each GMP-sequence

down to a single action consisting of a concurrent composite of

all the move actions in that sequence. This gives a new recursive

definition for the family of constants E. Define τP (M) = E0.

This completes the determination of the initial state τ(M) of the

model M. An example of this translation in action is given in the

following section. The evolution of the model τ(M) is determined

by the SOS-rules for LSCRP, similar to the versions in [8].

It is important to compare the behaviour of the model M with

its translation τ(M), in order to give credence to the suggestion

that this translation is helpful for thinking about M. Let us call

the claims, releases, forgets, recalls, CMR- and SCMR-sequences

the substantial events of Core Gnosis. Let us call the gets, puts,

moves, forgets and recalls the substantial events of LSCRP. For

the purpose of the following discussion, let a CMR- or SCMR-

sequence be referred to as a move. The first important point to note

about the translation is that substantial events of M are mapped to

substantial events of τ(M) of the same kind. On the other hand,

specific timing constraints have been forgotten. However, note that

within any process the ordering of the substantial events is pre-

served. That is, if σ and σ′ are simple events in a process declara-

tion Pi, such that σ occurs before σ′, then the associated LSCRP

constant Ei will contain an instance of (the translation of) σ before

an instance of σ′. Any trace of M in which an instance of Pi suc-

cessfully performs both of the instances, will be such that σ occurs

before σ′, if both occur. Similarly, any path through the transi-

tion system generated by τ(M) will be such that if both instances

of (the translations of) σ and σ′ are present, then σ occurs before

σ′, if both occur. Of course, there may be additional instances of

similar simple events generated by translations of other instances.

This analysis extends to statements which occur in distinct process

instances, where one is called by the other. In short, the sequenc-

ing aspect of control flow, and the ordering of substantial events

is preserved under the translation. There is a caveat in that not all

aspects of control-flow are preserved. In particular, the translations

of the select and if statements are not completely faithful. For select,

this should be rectifiable in a weighted extension [39] of LSCRP,

since then the priority between branches may be preserved. For if, a

faithful translation can be made by taking τP (M) to be a map from

resources to processes. Finally, we remark that, for the other im-

perative constructs of Core Gnosis, not interpreted here, the Hiding

operator of LSCRP will be required (see [10] for details).

4.5 Example
We now consider how the example from Section 3 is translated.

Let this model be M. The location component of τ(M) is the

graph τL(M). The vertices of τL(M) are Basic, Guard and

Secure. The pairs of locations, (Basic, Guard), (Guard, Secure),

(Secure, Basic), and (Guard, Basic), give the edges. The re-

source τR(M) is given (as a set) by the set consisting of four triples

of locations, resources, and quantities, (Basic, tug, 3),

(Basic, jetty, 2), (Secure, tug, 3), and (Secure, jetty, 1).

Four process constants are used to translate the process declara-

tions of M. Let E0 be the process constant that corresponds to the

main process (launch phase), let E1 correspond to secureBoat,

E2 correspond to boat and E3 correspond to check. The process

E1 is given (using auxilliary process constants E′

1 and E′′

1 for the

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8631
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8631

sake of readability) by:

get(Secure, jetty, 1).
((get(Secure, tug, 2).1.put(Secure, tug, 2).E′

1)
+(move(Guard, Secure, tug, 2).E′

1))

where E′

1 is given by

1.((get(Secure, tug, 1).1.put(Secure, tug, 1).E′′

1)
+(move(Guard, Secure, tug, 1).E′′

1))

and where E′′

1 is given by put(Secure, jetty, 1).1.(E1 × 1).

The boat process is translated in much the same way. The trans-

lation of the check process is equally straightforward, but note that

it contains an if statement and so the caveat above applies.

We then take τP (M) = E0 := E2 × (E1 × (1.E3)).

5. REASONING ABOUT MODELS; A LIT-

TLE MORE META-THEORY
Process calculi such as SCCS, CCS, and the pi-calculus come

along with associated modal logics [18, 25, 38]. Similarly, the cal-

culus (L)SCRP has an associated modal logic, MBI [10, 31, 30].

The basic idea — deriving from Hennessy-Milner logic [18, 38] —

is to work with a logical judgement of the form

R, E |= φ,

read as ‘relative to the available resources R, the process E has

property φ’. Building on the ideas of bunched logic [29, 33, 32]

and its application to Separation Logic [34, 21], MBI has, in addi-

tion to the usual additive connectives, >, ∧, →, ⊥, ∨, a multiplica-

tive conjunction, ∗, and a multiplicative implication. Similarly, in

addition to the usual additive quantifiers and modalities, MBI has

multiplicative quantifiers and modalities.

The relationship between truth and action is captured by the

clauses of the satisfaction relation for the (additive) modalities,

given essentially as follows (recall that R′ = µ(a, R)):

R, E |= 〈a〉φ iff there exists E′ such that R, E
a

−→ R′, E′

and R′, E′ |= φ

R, E |= [a]φ iff for all E′ such that R, E
a

−→ R′, E′,

R′, E′ |= φ.

In this setting, however, the multiplicative conjunction, ∗, that is

available in bunched logic provides a characterization of this judge-

ment that is rather finer that which is available in basic Hennessy-

Milner logic. Specifically, we obtain the following characterization

of the concurrent structure of models:

R, E |= φ1 ∗ φ2 iff there are R1 and R2 such that

R1 ◦ R2 v R and there are E1 and E2

such that E1 × E2 ∼ E, and

R1, E1 |= φ1 and R2, E2 |= φ2.

Here the truth condition for the multiplicative conjunction requires

the combination of resources from the truth conditions for its com-

ponent formulae. Hiding can also be characterized [10].

These characterizations provide tools for reasoning about secu-

rity properties such as joint-access (control), where two agents must

both provide some resource for access to be granted, and autho-

rization by delegation, where Hiding is used to establish a private

channel; see [11] for the details of these and other examples.

With locations, a similar logical judgement is available [8]:

L, R, E |= φ,

where the property φ of the process E holds relative to resources R
at location L; that is, if a is an action guarding (the rest of) E, then

µ(a, L, R) is defined.

We have talked a little about security and access control in the

context of the processing of low-security and high-security boats

by a system of docks. In such a setting, it is important to consider

questions about the control of processes’ (e.g., boats’) access to

resources. For example, eliding many details for the brevity of a

short paper, consider a logical judgement

L, R, E |= φ1 ∗ φ2,

where L, R, E is a suitable description of state of the docks exam-

ple and where φ1 is ‘there are two free low-security tugs’ and φ2

is ‘there are two free high-security tugs’. The fact that the model

will satisfy such a multiplicative conjunction is one of the reasons

why it allows low- and high-security boats to dock simultaneously.

There are, however, states L′, R′, E′ that, for example, have no

get(Secure, tug, 2)-transition, because, say, insufficient tugs are

available at the given location. For such a state,

L′, R′, E′ 6|= 〈get(Secure, tug, 2)〉>.

Returning again briefly to the meta-theory, it is important to have

a useful relationship between a process calculus and its associated

modal logic. The key idea originates with Hennessy, Plotkin, and

Milner [18], and sets up a correspondence between process bisim-

ulation and logical equivalence. In our setting, the strength of the

available correspondence depends on the choice of process equiv-

alence, but useful results are available, for significant fragments of

MBI, for both the local and global equivalences. Details in [10, 8].

As currently formulated, MBI does not concern itself with stoch-

astic properties of models. In contrast, Probabilistic Computation

Tree Logic (see, for example, [36]) is intimately related to Markov

chains, but lacks the structural analysis afforded by MBI. Consider-

ation of adding stochastic properties to MBI represents challenging

further work. A degree of model checking is available for MBI [9].

In contrast with PRISM [23], for example, stochastic issues are not

considered, the focus being structural decompositions of models

via the multiplicative connectives, such as ∗. Again, further work.

6. DISCUSSION
We have explained, at least informally, how semantic methods

can be used to relate a conceptual modelling framework to a prac-

tical modelling language that is used to handle large-scale appli-

cations. We believe, with support from a good deal of experience

(see, for example, [3, 2, 1, 41]), that the modelling discipline so en-

gendered supports the construction of models having high integrity

with respect to the system of interest. In addition to the further

work mentioned above, there are two current foci of our work: one

is the provision of better I/O, visualization, and experimental tools

for the Gnosis engine; the other is exploring the application of our

approach to topologically rich examples.

7. REFERENCES
[1] A. Beautement, R. Coles, J. Griffin, C. Ioannidis,

B. Monahan, D. Pym, A. Sasse, and M. Wonham. Modelling

the Human and Technological Costs and Benefits of USB

Memory Stick Security. In M. Eric Johnson, editor,

Managing Information Risk and the Economics of Security,

pages 141–163. Springer, 2008.

[2] Y. Beres, J. Griffin, S. Shiu, M. Heitman, D. Markle, and

P. Ventura. Analysing the performance of security solutions

to reduce vulnerability exposure window. In Proc. 2008

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8631
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8631

Annual Computer Security Applications Conference, 33–42.

IEEE Computer Society, 2008.

[3] Y. Beres, D. Pym, and S. Shiu. Decision support for systems

security investment. Manuscript, HP Labs, 2009.

[4] G. Birtwistle. Demos — discrete event modelling on Simula.

Macmillan, 1979.

[5] G. Birtwistle and C. Tofts. A denotational semantics for a

process-based simulation language. ACM ToMaCS, 8(3):281

– 305, 1998.

[6] M. Collinson, B. Monahan, and D. Pym. Located Demos2k

— towards a tool for modelling processes and distributed

resources. Technical Report HPL-2008-76, Hewlett-Packard

Laboratories, 2008.

[7] M. Collinson, B. Monahan, and D. Pym. An update to

Located Demos2k. Technical Report HPL-2008-205,

Hewlett-Packard Laboratories, 2008.

[8] M. Collinson, B. Monahan, and D. Pym. A logical and

computational theory of located resource. Journal of Logic

and Computation 19(6), 1207–1244, 2009.

doi:10.1093/logcom/exp021.

[9] M. Collinson, B. Monahan, and D. Pym. A discipline of

mathematical systems modelling. To appear: College

Publications, London, 2010.

[10] M. Collinson and D. Pym. Algebra and logic for

resource-based systems modelling. Mathematical Structures

in Computer Science, 19:959–1027, 2009.

doi:10.1017/S0960129509990077.

[11] M. Collinson and D. Pym. Algebra and logic for access

control. Formal Aspects of Computing, 2010. To appear.

Erratum also to appear. Preprint (incorporating erratum):

http://www.hpl.hp.com/techreports/2008/

HPL-2008-75R1.html.

[12] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed

Systems: Concepts and Design. Addison Wesley, 2005.

[13] O.-J. Dahl, E.W. Dijkstra, and C.A.R. Hoare. Structured

Programming. Academic Press, 1972.

[14] Demos2k. http://www.demos2k.org.

[15] L. Devroye. Non-Uniform Random Variate Generation.

Springer-Verlag, 1986.

[16] S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to

Support a Process Algebra-based Approach to Performance

Modelling. In Proc. of the Seventh Int. Conf. on Modelling

Techniques and Tools for Computer Performance Evaluation,

LNCS 794, 352–368, 1994. Springer-Verlag.

[17] Gnosis. http://www.hpl.hp.com/research/

systems_security/gnosis.html.

[18] M. Hennessy and G. Plotkin. On observing nondeterminism

and concurrency. In Proc. 7th ICALP, LNCS 85, 299–309,

1980. Springer-Verlag.

[19] J. Hillston. Compositional Markovian modelling using a

process algebra. In W. Stewart, editor, Proceedings of the

Second International Workshop on Numerical Solution of

Markov Chains: Computations with Markov Chains. Kluwer

Academic Press, 1995.

[20] J. Hillston. A Compositional Approach to Performance

Modelling. Cambridge University Press, 1996.

[21] S.S. Ishtiaq and P. O’Hearn. BI as an assertion language for

mutable data structures. In 28th ACM-SIGPLAN Symposium

on Principles of Programming Languages, London, pages

14–26. Association for Computing Machinery, 2001.

[22] R. Jain. The Art of Computer Systems Performance Analysis.

Wiley, 1991.

[23] M. Kwiatkowska, G. Norman, and D. Parker. PRISM:

Probabilistic Model Checking for Performance and

Reliability Analysis. ACM SIGMETRICS Performance

Evaluation Review, 36(4):40–45, 2009.

[24] R. Milner. Calculi for synchrony and asynchrony.

Theoretical Computer Science, 25(3):267–310, 1983.

[25] R. Milner. Communication and Concurrency. Prentice Hall,

New York, 1989.

[26] R. Milner. Communicating and mobile systems: the

π-calculus. Cambridge University Press, 1999.

[27] R. Milner. The Space and Motion of Communicating Agents.

Cambridge University Press, 2009.

[28] Möbius. http://www.mobius.illinois.edu.

[29] P.W. O’Hearn and D.J. Pym. The logic of bunched

implications. Bull. of Symb. Logic, 5(2):215–244, 1999.

[30] David Pym and Chris Tofts. A calculus and logic of

resources and processes. Formal Aspects of Computing,

18(4):495–517, 2006. Erratum (with Collinson, M.) Formal

Aspects of Computing (2007) 19: 551-554.

[31] David Pym and Chris Tofts. Systems Modelling via

Resources and Processes: Philosophy, Calculus, Semantics,

and Logic. In L. Cardelli, M. Fiore, and G. Winskel, editors,

Electronic Notes in Theoretical Computer Science

(Computation, Meaning, and Logic: Articles dedicated to

Gordon Plotkin), volume 107, pages 545–587, 2007.

Erratum (with Collinson, M.) Formal Aspects of Computing

(2007) 19: 551-554.

[32] D.J. Pym. The Semantics and Proof Theory of the Logic of

Bunched Implications, volume 26 of Applied Logic Series.

Kluwer Academic Publishers, 2002. Errata and Remarks

maintained at: http://www.cs.bath.ac.uk/~pym/

BI-monograph-errata.pdf.

[33] D.J. Pym, P.W. O’Hearn, and H. Yang. Possible worlds and

resources: The semantics of BI . Theoretical Computer

Science, 315(1):257–305, 2004. Erratum: p. 285, l. -12: “,

for some P ′, Q ≡ P ; P ′ ” should be “P ` Q”.

[34] J.C. Reynolds. Separation Logic: A Logic for Shared

Mutable Data Structures. In Proc. LICS ’02, pages 55–74.

IEEE Computer Society Press, 2002.

[35] B. Ross. An Algebraic Semantics of Prolog Control. PhD

thesis, University of Edinburgh, 1992.

[36] J.J.M.M. Rutten, M. Kwiatkowska, G. Norman, and

D. Parker. Mathematical Techniques for Analyzing

Concurrent and Probabilistic Systems, volume 23 of CRM

Monograph Series. American Mathematical Society, 2004.

[37] M.P. Shanahan. The event calculus explained. In Artificial

Intelligence Today, LNAI 1600, 409–430, 1999.

Springer-Verlag.

[38] Colin Stirling. Modal and Temporal Properties of Processes.

Springer Verlag, 2001.

[39] C. Tofts. Processes with probability, priority and time.

Formal Aspects of Computing, 6(5):536–564, 1994.

[40] G. Winskel. The Formal Semantics of Programming

Languages: An Introduction. The MIT Press, Cambridge,

Mass., and London, England, 1993.

[41] M. Yearworth, B. Monahan, and D. Pym. Predictive

modelling for security operations economics (extended

abstract). In Proc. I3P Workshop on the Economics of

Securing the Information Infrastructure, 2006. Proceedings

at http://wesii.econinfosec.org/workshop/.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8631
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8631

