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ABSTRACT
In this paper we discuss the viability of deploying Multi-
player Online Games (MOGs) over scale-free networks. We
employ a general peer-to-peer overlay network; nodes have
a number of neighbors which follows a power law distribu-
tion, pk ∼ k−α, the usual degree distribution that character-
izes scale-free nets. Game events generated by nodes during
the game evolution are disseminated through the network,
based on some (push) gossip protocols run over the created
overlay. We experiment with different gossip protocols. Re-
sults demonstrate that the employed gossip protocol may
greatly influence the ability of disseminating the game data
through the scale-free network. In particular, when gossip
is performed using a small dissemination probability, a non-
negligible percentage of the network is not able to receive
the message. This implies that not all players might be able
to perceive the game event. Hence, parameters of gossip
protocols must be properly tuned to guarantee a full net-
work coverage. Concurrently, it is shown that, due to their
low diameter, the use of scale-free networks allows to dis-
seminate game events in very few steps. This could ensure
a high level of responsiveness on the dissemination of game
events, which is the main objective to pursue when dealing
with MOGs.

Categories and Subject Descriptors
K.8.0 [Computing Milieux]: PERSONAL COMPUTING—
General, Games; C.2.4 [COMPUTER-COMMUNICA-

TION NETWORKS]: Distributed Systems—Distributed
applications

General Terms
Algorithms, Experimentation, Performance
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1. INTRODUCTION
Multiplayer Online Games (MOGs) are characterized by

very demanding requirements, in terms of responsiveness
and scalability. The game evolution must be perceived at
players as fluent as if the game is played in the real life,
and responsiveness should not degrade when the number of
users grows [24]. Of course, several technical issues make
these requirements very difficult to be achieved, since net-
works introduce delay latencies during the transmission of
game updates that could slow down the game advancements.
Moreover, the higher the number of participants, the higher
the time to collect all messages from players and process
them to correctly compute updates of the game state [14].

Several architectures have been proposed and employed
in practice to support MOGs. The simpler (and mostly
utilized) solution is the client/server architecture. Here, a
single server is in charge of receiving the game events gen-
erated by clients (i.e. hosts where players are playing the
game), computing the game state and periodically notifying
the novel game state to all these players. The graph corre-
sponding to this architecture is a classic star network, the
server being a possible bottleneck of the system [17, 22]. To
augment the scalability of these approaches, several auxil-
iary solutions have been devised. For instance, mechanisms
allow to partition the game state and assign to different
servers different portions of the game state, hence reduc-
ing the number of players connected to the same server [3,
23, 25]. Alternatively, mirrored server architectures may be
employed which replicate the game state at different servers;
then, clients may connect to different servers (which are kept
synchronized) so as to reduce the workload at each server
for managing the interactions with clients [10, 20, 22].

On the other hand, peer-to-peer architectures may be ex-
ploited, where peers locally manage their own copy of the
game state, without the intervention of centralized servers.
In this case, peers should be organized in some overlay, and
then the dissemination of game events is performed by pass-
ing messages through the overlay [1, 13, 19, 25]. Of course,
identifying the best overlay is a crucial aspect for the success
of the game management. A typical approach is that of em-
ploying some structured peer-to-peer network, according to
which peers are organized and already know how the com-
munication among nodes should flow, once a game event has
been generated. Conversely, to the best of our knowledge,
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only few proposals considered unstructured peer-to-peer ar-
chitectures, which employ probabilistic approaches to dis-
seminate data [19, 25]. Of course, a structured network pro-
vides an (almost) constant number of hops to perform a path
between two nodes; conversely, only statistical measures can
be evaluated in unstructured nets.

Even in presence of such uncertainty of complete net-
work coverage within a fixed time deadline (which is in-
deed a primary constraint in MOGs), there are some features
that make unstructured networks interesting for MOGs. In
fact, these mentioned approaches do not require a costly
nodes configuration at the beginning of the application, that
should be managed and maintained during the game evolu-
tion. In MOGs, players may join and leave the gaming net-
work quite dynamically. Hence, avoiding a reconfiguration
of the network each time a player joins or leaves the game
could be quite proficient. It is thus interesting to evaluate
how gossiping approaches might perform over some com-
plex network overlay, and if their behavior provides viable
performances for being utilized in MOGs. Of course, such
chosen method must guarantee that: i) each peer receives
(almost) all game data disseminated over the network, in
order to guarantee that the game state evolution may be
consistently perceived at each node participating to the dis-
tributed game; ii) game updates are received in short time
intervals, so as to make sure the game evolves quite fluently.

In this context, scale-free networks have recently gained
interest in the field of distributed systems [6, 8, 12, 11, 16].
These networks possess the distinctive feature of having no-
des which tend to link to each other, following a degree dis-
tribution (i.e. number of neighbors) that can be well approx-
imated by a power law function. Therefore, while the ma-
jority of nodes tends to have an average number of neighbors
that is relatively low, a non-negligible percentage of nodes
exists which has a high degree, i.e. a high number of neigh-
bors, quite above the average node degree. These hubs play a
fundamental role in the network, since they are those which
maintain the network connected, and contribute to keep a
small diameter of the network, thus allowing to propagate
information in a low number of hops. Such features of scale-
free networks represent interesting aspects in the context of
MOGs, and suggest that they may represent the solution for
a scalable, responsive, server-less solution. Indeed, hubs in
the network could be thought as a sort of super-peers, able
to manage a high number of connections in the distributed
game system.

Motivated by this consideration, in this work we discuss
and evaluate the viability of adopting a scale-free network
as the basis for building an efficient peer-to-peer gaming
architecture. To assess the ability of these networks to dis-
seminate game events generated at peers during the game
evolution, we utilize different push gossip protocols [11, 18].
Specifically, we run three gossip algorithms that manage
game events on top of the scale-free networks. (Then, game
events received by peers are to be locally processed based
on some suitable synchronization protocol for peer-to-peer
MOGs, e.g. [10, 13, 20].)

To perform simulations, we employ PaScaS (Parallel and
distributed Scale-free Network Simulator), a distributed sim-
ulator we built that is able to represent large scale-free net-
works, and manage them in a responsive way [11]. Simula-
tion results show that while the adoption of an underlying
scale-free network represents a viable solution to dissemi-

nate game events in peer-to-peer MOGs, the employed gos-
sip protocols may have very different outcomes in terms of
ability of delivering game events to all peers. In fact, when
the probability of gossiping is kept low, and we employ the
classic approach of constraining nodes to gossip a message
at most once, then an important percentage of nodes in the
game system may not receive all game events. This means
that those peers miss some information on the evolution of
the game; as a consequence, inconsistent game state may be
calculated, depending on the non-received game events [10,
13, 20, 22]. This outcome is explained by the fact that we use
the preferential attachment method to construct the network
[5]. It has been recognized that such types of scale-free nets
have a clustering coefficient which depends on the size of the
network, ∼ N−0.75, if N is the size of the network [4]. In our
experiments, we employed networks with a number of nodes
up to 500 (that is quite reasonable for gaming infrastruc-
tures), whose clustering results as quite low. These tree-like
structures hence require that the probability of gossiping a
message from a node to its neighbor kept as quite high, oth-
erwise it will become difficult that these nodes will receive
such messages from other peers (also because we limit the
dissemination by imposing a time-to-live limit, to not over-
whelm the network). By tuning parameters of these push
gossip approaches, such as the probability of dissemination,
the message time-to-live, the nodes’ cache size, it is possible
to cover a majority of nodes in the network.1

Of course, the work is meant to support MOGs. However,
the same considerations and final remarks can be extended
to those applications that present the following concurrent
features: i) a high number of nodes that may join and leave
the system while the application is on-going (churning); ii)
the need for a rapid dissemination of events produced at
different, distributed sources (responsiveness); iii) the need
for disseminating generated messages to all the participants
present in the system (consistency).

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the main principles at the basis of scale-
free networks and delineates those characteristics that sug-
gest these nets could be adopted for supporting peer-to-peer
MOGs. The system architecture follows, based on men-
tioned considerations. Section 3 outlines some gossip al-
gorithms that could be employed on top of the network to
disseminate game events among peers. In Section 4 we re-
port on an extensive simulation we performed to assess the
proposed approach. We outline the main characteristics of
PaScaS, the distributed simulator we built to simulate scale-
free networks, and discuss the obtained results when the
mentioned gossip protocols are utilized over these simulated
networks. Finally, in Section 5 we provide some final re-
marks.

2. SCALE-FREE NETWORKS IN MOGS
In this section we review some main principles at the basis

of scale-free networks, and discuss why these may have a
good impact for the support of MOGs.

2.1 Notation
We model the network as a set of distributed nodes cor-

1Then, the use of additional pull-based gossip approaches to
obtain missing information may solve possible inconsisten-
cies.
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responding to peers participating in a distributed online
game. The topology of the network is defined as a graph
G = (Π,L), where Π = {n1 ,n2 , . . .}, |Π| = N , is the set of
peer nodes, and L denotes the set of edges among peers in
the MOG. Two peers ni ,nj are neighbors if an edge lij ∈ L

exists connecting the two peers in G. The set of neighbors
of ni is denoted with Πi .

The degree of a node is the number of neighbors of that
node. The probability that a node has k neighbors, i.e. its
degree is equal to k, is denoted as pk. The average degree
in a network is denoted with 〈k〉.

2.2 Scale-Free Networks
Scale-free networks are gaining more and more attention

in the research community [6, 11, 21]. These networks are
characterized by the fact that their nodes have a degree k
which is distributed according to a power law distribution,
i.e. pk ∼ k−α, for some constant α. Sometimes, a cutoff is
introduced to force that no node may have a degree higher
than a given threshold value kmax . This may be useful when
dealing with peer-to-peer MOGs, since in certain cases it
might be difficult to assume that some peer is in charge
of managing a huge amount of concurrent connections with
other peers, that would introduce excessive computational
and communication burdens for that node.

Basically, the structure of such kind of networks is charac-
terized by a notable (i.e. non negligible) presence of nodes,
usually referred as hubs, which have a number of edges really
higher than the average degree in the network. These peers
play a fundamental role in the network, as they contribute
in maintaining a low diameter of the network (i.e. the maxi-
mum distance between two nodes in the net). In particular,
it has been mathematically proven that when 2 < α < 3,
the diameter of the network d ∼ ln lnN , smaller even than
small world networks, which remains almost constant while
the network is growing [9]. This should have an important
consequence on the responsiveness provided to the game,
since in theory very few hops are required to disseminate a
message, independently of the size of the network (i.e. game
participants). Massive MOGs could hence take some benefit
from this feature.

The theoretical model of these networks is probabilistic.
As a consequence, in general it is not possible to assume that
the whole network is connected, especially when node fail-
ures are possible in the system. This is certainly a problem
if one wants to support a game application over such a kind
of graphs, where links between peers are created based on
a probabilistic nature. However, theoretical and empirical
results have demonstrated that in scale-free networks a ma-
jor fraction of the set of nodes remains connected (usually
of the order of Θ(N )), even when random node faults arise
in the network. In particular, it has been shown that these
networks are quite resilient to random node faults since the
presence of hubs guarantees that the network remains con-
nected. Indeed, the majority of nodes are those with smaller
degrees; thus, it is more likely that these ones will fail/leave
the network, while the probability that all hubs are elimi-
nated (during a short time interval) is almost negligible.

This consideration plays a fundamental role in our con-
jecture of exploiting scale-free nets for MOGs, since it is not
unusual that players leave the game while the game session
is still ongoing. They are in the gaming network to play and
they may decide to leave the system at their best conve-

nience. Hence, mechanisms are needed to guarantee that no
partitions occur among game participants. Moreover, this
is a problem that typically arises in all peer-to-peer overlays
[27]. In fact, when the peer-to-peer overlay is managed us-
ing some structured network, e.g. a tree or a mesh, a node
failure would imply a network reconfiguration. Instead, due
to the mentioned theoretical result, we could simply assume
that the scale-free network remains connected after a node
departure; then, some (lazy) control mechanism could be
activated to manage (and repair) possible network discon-
nections.

2.3 The Preferential Attachment
A practical method to build a scale-free network was in-

troduced by Barabási and Albert in [5]. The scheme starts
with a number of nodes N0 . At each time step, a new node
is added to the network, with initial degree m. For each edge
of the new node, a neighbor is selected and a link between
the two nodes is created. The important characteristic of
such construction method is that the neighbor node is se-
lected with a probability proportional to the degree of that
vertex (preferential attachment). In other words, the higher
the degree of a node the more likely it will be selected as a
neighbor of the newly added node. Such approach models
the rich get richer phenomenon, arising when the amount
an entity gets in time, goes up with the amount it already
has [21]. Indeed, the preferential attachment is responsible
for the generation of a power law node degree distribution.
The average degree of a given node 〈k〉 ≃ 2m, for large net-
works (each link counts for two node edges). This is due
to the fact that each new node is added at each time step,
with new m links. Hence, at time t the network has N0 + t
nodes, with mt links. N0 can be considered as a negligible
term for large nets (or large times).

Such construction method creates a scale-free network,
whose degree distribution follows a power law with a pa-
rameter α ≃ 3. The diameter of such network, with this
exponent, can be approximated as ∼ ln N

ln ln N
[9]. It has been

observed that networks generated using such an approach
exhibit a coefficient clustering, i.e. a coefficient measuring
how much nodes tend to cluster together, which depends
on the network size as ∼ N−0.75 [4]. This means that the
larger the network the lower the clustering coefficient. This
is an important factor to consider, when one tries to imple-
ment some gossip approach on top of the network. In fact,
assume that a low probability of gossip is employed. This
means that it is possible that once a node ni has a message,
it does not forward it to a given neighbor nj ; in a network
with a low clustering, the probability that one of the nodes
that receive the message is also neighbor of nj is low; hence,
it is possible that nj does not receive such message from ni’s
neighborhood Πi.

3. GOSSIP PROTOCOLS FOR
GAME EVENT DISSEMINATION

In this section, we describe the protocols we consider to
gossip game events generated at peers, over a scale-free net-
work exploited as the overlay for disseminating game data.
They are all push-based approaches, meaning that nodes lo-
cally decide to forward a given game event to a set of their
neighbors, based on independent and local decisions, with-
out any coordination with these receiving nodes. The im-
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plementation of these protocols is simple. They differ from
pull-based protocols, which instead require that nodes wish-
ing receive some content randomly contact some of their
neighbors to assess if these have the desired content. We try
to exploit push gossip approaches for two reasons. First, the
aim is to distribute the whole event trace to all game par-
ticipants. Hence, the idea is to disseminate each message
as much as possible, without waiting for explicit requests
by some receiving peers. (At the same time, it should be
avoided that a message reaches a given node several times,
to avoid network congestion.) Second, each step in a push
gossip approach is generally faster than a pull approach,
since in the former case a single message is necessary, while
in the latter a message exchange is needed to let the receiver
know which game events it can ask (and then ask and receive
them).

Once a game event is generated at the application (game)
level, it is passed to the module which performs the gossip of
the message (see Algorithm 1). The message including the
game event is created and then gossiped through the net,
using a gossip() procedure (line 4 of the algorithm). The
message is also inserted in a cache (line 3).

Algorithm 1 Generation of a Game Event

1: function generate(event)
2: msg ← createMessage(event)
3: cache(msg)
4: gossip(msg)

Algorithm 2 Reception of a Message

1: function receive(msg)
2: if (notCached(msg) ∧ msg .ttl > 0) then

3: cache(msg)
4: msg .ttl ← msg .ttl − 1
5: gossip(msg)
6: end if

Upon reception of a given message (see Algorithm 2), the
receiving node forwards the message to its neighbors using
the gossiping protocol by calling the gossip() function (line
5 in the algorithm). This is accomplished only if the message
is not already in the node’s cache. The idea is that if the
message is in cache, it has already been gossiped; hence,
the node has nothing to do with the message msg (line 2).
Conversely, msg is gossiped and cached (line 3 of Algorithm
2). Note that, when gossiped, we avoid that a message is
sent through the link it has been previously received. Based
on the protocol, the game event has only one chance to be
gossiped by the considered node; as we will show, this has
an important influence on the ability/difficulty shown by
gossip protocols to disseminate game events. Needless to
say, due to the possible memory constraints of a node, the
cache is limited in size (cache.size). Hence, upon insertion of
a message in the cache, a control is performed on the cache;
if it is full, an old message is removed. We do not provide
here the complete description of the cache() procedure; we
simply implemented an aging policy to free memory in cache.

A time-to-live parameter is inserted within each message
(i.e. msg .ttl in the algorithm), in order to avoid that old
messages are indefinitely propagated among peers, due to
the limited size of the cache which cannot contain the com-

plete list of messages forwarded in the past. Such ttl is
progressively decreased (line 4) until it reaches a 0 value;
in this case the message is not forwarded (see the second
part of the condition in line 2). Needless to say, it is im-
portant to assess if the particular choice of the time-to-live
allows to disseminate the game event among all players in
the network.

We consider three different algorithms which implement
the gossip() procedure. These are shown in Algorithms 3,
4 and 5. All algorithms require the definition and initializa-
tion of a parameter at each peer, defined through the ini-
tialization() procedure reported at the beginning of these
algorithms.

3.1 Gossip #1: Fixed Probability of Dissemi-
nation

The first gossip protocol is shown in Algorithm 3. Based
on it, the node ni executing the protocol randomly selects
those edges through which the message msg must be prop-
agated [16, 26]. Specifically, all ni ’s neighbors (i.e. Πi) are
considered and a threshold value v ≤ 1 is maintained, which
determines the probability that msg is gossiped to the neigh-
bor (when v = 1 we obtain a flooding algorithm).

At each step the game event is propagated from ni to v |Πi |
other nodes. (In a scale-free network, on average a given
node will propagate the message to v〈k〉 ≃ 2vm nodes.)
Hubs will send a higher number of messages to their neigh-
bors, with respect to others. This is in perfect accordance
with the nature of scale free networks, since each node con-
tributes to disseminate the game message in accordance with
its degree. This also means that the work (in terms of com-
putation and communication) performed at hubs is higher
than at other nodes.

Algorithm 3 Gossip: Fixed Prob. of Dissemination (at ni)

1: function initialization()
2: v ← chooseProbability()
3:
4: function gossip(msg)
5: for all nj ∈ Πi do

6: if random() < v then

7: send(msg,nj )
8: end if

9: end for

It is clear that the probability of dissemination v plays a
fundamental role here, since after the gossip ni will never
reconsider msg for dissemination. For instance, let say a
node with a single neighbor generates a novel game event.
It passes such event to its single neighbor that decides not
to disseminate the game event. This means that no further
players will be enabled to receive and process the game event
corresponding to msg. Moreover, when such an approach is
employed over a tree-like structure, the gossip may exclude
some branches that would never receive the message. In
these cases, a gossip probability near 1 should be exploited
(i.e. flooding).

3.2 Gossip #2: Fixed Fanout
The second gossip scheme we consider is reported in Al-

gorithm 4. In this case, a message is sent to a fixed number
of nodes (i.e. a fixed fanout is exploited), selected at ran-
dom among the ni ’s neighbors, Πi [16]. This means that the
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higher the degree of ni , the more unlikely a ni ’s neighbor
will receive a gossip message at each step.

A constant fanout is chosen and shared among all nodes in
the network, during the initialization() procedure. When
a message msg is to be gossiped, ni selects a number of
neighbors equal to the fanout. A list of nodes (toSend in the
algorithm) is filled up by iteratively selecting a node among
the neighbors not already in the list (see lines 8-12).2 If the
number of neighbors is lower than the selected fanout, the
message is sent to all the ni ’s neighbors, see lines 5-6).

Algorithm 4 Gossip: Fixed Fanout (at ni)

1: function initialization()
2: fanout ← retrieveSharedFanout()
3:
4: function gossip(msg)
5: if fanout ≥|Πi | then

6: toSend ← Πi

7: else

8: toSend ← ∅
9: for i = 1 to fanout do

10: select nj ∈ Πi ∩ toSend , i 6= j
11: toSend ← toSend ∪ nj

12: end for

13: end if

14: for all nj ∈ toSend do

15: send(msg,nj )
16: end for

As mentioned for gossip #1, fixed probability, also this
approach may present some inefficiencies regarding the full
coverage of the network, depending on the type of the net-
work.

3.3 Gossip #3: Probabilistic Broadcast
The third distribution protocol we consider is a probabilis-

tic broadcast scheme (see Algorithm 5). Once the gossip()
procedure is called, the possible receivers of the message
are computed, i.e. all the node’s neighbors except the node
which has sent the message msg to be gossiped (in case msg
has been generated at the considered node, neighborThat-
Sent(msg) should return a null node, line 5). Then, if the
message has been locally generated at the node and msg still
needs to be spread to the network (we assume this check is
performed in firstTransmission(), line 6), msg is sent to
all node’s neighbors (lines 7-9).

Conversely, if msg has been received from someone else,
the node decides to forward msg with a certain probability
pb (defined at the beginning of the protocol, line 6). In the
positive case, the message is sent to all node’s neighbors
(excepted the node that sent msg to it, line 5).

4. SIMULATION ASSESSMENT
This section is devoted to present the simulation study we

performed to assess the efficacy of exploiting gossip protocols
over scale-free nets, for the support of MOGs.

4.1 PaScaS
The simulations have been performed by exploiting PaS-

caS (Parallel and distributed Scale-free Network Simulator),

2toSend represents the complement of the set toSend .

Algorithm 5 Probabilistic Broadcast

1: function initialization()
2: pb ← probabilityBroadcast()
3:
4: function gossip(msg)
5: recvs = Πi\ neighborThatSent(msg)
6: if (random() < pb ∨ firstTransmission()) then

7: for all nj ∈ recvs do

8: send(msg,nj )
9: end for

10: end if

a tool specifically designed for the modeling of scale-free
networks [11]. It offers the possibility to implement both
sequential and parallel/distributed simulations, using the

ARTÌS simulation middleware [2] and GAIA adaptive frame-
work [7, 15]. Specifically for this simulation study, some new
features have been developed and integrated in the tool, to
efficiently analyze the simulation results and compute the
metrics of interest. PaScaS is going to be made freely avail-
able as part of the ARTÌS software distribution [2].

For the creation of the scale-free network, PaScaS runs
the preferential attachment method proposed by Barabási
and Albert in [5], starting with an initial number of nodes
N0 = 1; when not differently stated, once generated each
node attaches to 2 nodes. Once built the network, PaScaS
allows to simulate communications among nodes in the net-
work. We hence tested different gossip communication pro-
tocols among nodes of the network, being considered here
as peers in a peer-to-peer architecture for MOGs. Specifi-
cally, during the simulations, gossip protocols were run up
to a simulation time s∗ needed to generate a given, predeter-
mined amount of game events at different nodes. After that
time, the simulation continued for other ttl (time-to-live)
steps, while no message generation was allowed during these
final simulation steps. This way, we gave chance to game
events generated at simulation time s∗ to be distributed till
reaching their maximum number of hops. Indeed, no gossip
procedure would have been possible after s∗ + ttl.

In the following performance evaluation, the simulation
time was set to 1000 timesteps and each node in the network
was generating new events following an exponential distri-
bution with mean 50. In the simulated scenarios, we varied
the number of nodes present in the network and for each
configuration 9 different runs were executed. The reported
outcomes are obtained by averaging these results.

4.2 Performance Metrics
We analyze two specific metrics, that clearly characterize

the viability of adopting gossip protocols over scale-free net-
works for supporting MOGs. The first metric is the ability
of the tested gossip protocols to cover the whole scale-free
network. We already stressed the fact that in general it is
important that all nodes involved in the game receive the
whole list of game events, so that they may consistently up-
date their local game state as the game evolves in time.3 It
is indeed true that some game data may become obsolete in

3We remind that the considered model is a peer-to-peer ar-
chitecture where each node locally manages its own copy of
the game state which is updated using some synchronization
algorithm, based on game events received during the game
evolution.
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Figure 1: Network coverage using the gossip proto-

cols; v = 0.5, fanout = 5, pb = 0.5.

time, and hence such obsolete information can be dropped
[13, 22], but the underlying dissemination protocol must be
nevertheless able to reliably distribute a given message to all
game participants, so that “important” game information is
spread through the whole network.

The other metric to consider is of course how fast mes-
sages are disseminated through the network. This in fact
regulates the pace of advancements of the game. Since the
dissemination protocols are executed in discrete steps, we
measured the number of hops needed (on average) to dis-
tribute a game event to all nodes in the architecture. This
is a general measure for the assessing the latency introduced
by the network.

4.3 Results
Figure 1 reports the percentage of nodes that receive, on

average, all game events generated during the game evolu-
tion. For these nodes, no holes are present in the game event
list. The probability of gossiping where set as follows. As
to the scheme fixed probability, v = 0.5; as to fixed fanout,
fanout = 5; as to probabilistic broadcast, pb = 0.5. A first
important consideration is that, with these settings for the
gossip probability, the protocols are not able to fully dis-
tribute to the whole network all the game events. Rather,
an important percentage of nodes has holes in the event list.
It is possible to observe that fixed fanout results as quite in-
effective, since less than the 20% of nodes is able to receive
the whole event trace. Moreover, the other two schemes
probabilistic broadcast and fixed probability seem to behave
differently as the number of nodes varies; hence, under these
settings they do not seem to scale with the network growth.

Figure 2 reports the average number of steps required
to disseminate a given message, when varying the number
of nodes. Results demonstrate that game events may be
quickly gossiped to the network. Indeed, a very low number
of steps is required, that grows with the number of nodes
in a logarithmic (or even less) way; hence, a high level of
responsiveness may be obtained.

These two preliminary results may lead to different con-
clusions. Indeed, the choice of using a scale-free network
surely leads to a quick dissemination of game events, hence
confirming that a high level of responsiveness may be guar-
antee for the support of MOGs. On the other hand, the
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Figure 2: Network delay using the gossip protocols;

v = 0.5, fanout = 5, pb = 0.5.
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Figure 3: Number of messages using the gossip pro-

tocols; v = 0.5, fanout = 5, pb = 0.5.

gossip protocols must be carefully selected since they may
not be able to propagate the data to all the nodes partici-
pants.

Figure 3 reports the number of messages which are sent
through the network, required to disseminate the game events
generated during the simulations. It is possible to observe
that as the number of nodes grows, also the number of
sent messages grows. Such growth is quite limited for fixed
fanout, and this corresponds to its incapacity of distribut-
ing all messages to all nodes in the network. This behav-
ior is quite reasonable. Indeed, such gossip does not take
into account the degree distribution of nodes; rather, a fixed
amount of nodes is selected. As the number of nodes grows
in a scale-free net, also the number of hubs augments, to-
gether with their degrees. This is a direct consequence of
the preferential attachment method for creating the network.
The other two schemes, instead, show an important growth
of sent messages though the network, as the number of nodes
in the system increases. In these cases, in fact, the degree
of the nodes i s taken into consideration when a node dis-
seminates a message. We already discussed that in fixed
probability gossip, the game event is propagated from ni to
v |Πi | other nodes, on average. As to probabilistic broadcast,
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Figure 4: Network delay using the gossip protocols;

v = 0.8, v = 1, pb = 0.8, pb = 1.
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Figure 5: Number of hops using the gossip protocols;

v = 0.8, v = 1, pb = 0.8, pb = 1.

instead, all neighbors are involved in the gossip, once a node
decides to distribute the message.

The unsatisfactory results obtained using previously de-
scribed gossip protocols are influenced by the configuration
settings of the protocols themselves. If we indeed augment
the probability of gossiping, then the coverage augments,
yet exponentially augmenting the number of messages sent
throughout the network.

Figure 4 shows the different behaviors of Conditional Broad-
cast and Fixed Probability with different settings. In partic-
ular, the probability of gossip is raised up to pb = v = 0.8
and then 1. As a first consideration, it is possible to observe
that the the two schemes have very similar performances.
When pb = v = 0.8 it is possible to appreciate a high cov-
erage of the network, over 95%. Needless to say, when the
dissemination probability is kept equal to 1, a full coverage
is obtained using both schemes. Such high number of nodes
is reached in very few hops (less than 5, even when large nets
are considered), as demonstrated in Figure 5. As expected,
the number of messages grows with the network size (Figure
6).

As a final consideration, these results demonstrate that
when resorting to push based gossip algorithms, a high gos-
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Figure 6: Messages sent using the gossip protocols;

v = 0.8, v = 1, pb = 0.8, pb = 1.

sip probability must be exploited in order to cover the whole
network. Of course a flood of the network allows to reach the
whole peer set Π, yet at the cost of augmenting the number
of messages.

5. CONCLUSIONS
In this paper we assessed the possibility of exploiting scale-

free networks as models for organizing peer-to-peer MOGs.
To disseminate the game events generated during the game
evolution, we assessed how traditional gossip protocols may
behave, when run on top of these networks. We obtained
very clear results. Indeed, the very low diameter of gen-
erated scale-free networks allows to disseminate messages
in very few hops. This means that a high level of respon-
siveness may be provided when resorting to these kinds of
overlays. This is an important result, as responsiveness is
the main goal to pursue when dealing with MOGs. How-
ever, we showed through simulation that gossip protocols
may not be able to disseminate the whole event trace, when
low gossip probabilities are exploited. In fact, situations
may arise when some node is the unique host that received
a given message and it decides not to propagate that mes-
sage, which is then discarded (without being propagated by
other nodes).

The conclusion of these outcomes is that smart gossip-
ing strategies should be utilized to disseminate information,
so as to guarantee that all nodes may receive the whole
game event trace. We exploited here push gossip protocols,
without considering pull mechanisms, where nodes may ask
others for certain events. Probably, a viable strategy may
consist in exploiting both push and pull approaches. For in-
stance, a push gossip may be exploited to disseminate game
messages, while concurrently allowing peers to directly ask
for some contents they miss (pull gossip). This solution
would add an important benefit for the provision of MOGs
over scale-free networks.
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