
ViPER: a Lightweight Approach to the Simulation of
Distributed and Embedded Software

Jean-Luc Béchennec
IRCCyN

1, rue de la Noë
BP 92 101, 44321 Nantes

Cedex 03, France
Jean-

Luc.Bechennec@irccyn.ec-
nantes.fr

Mikaël Briday
IRCCyN

1, rue de la Noë
BP 92 101, 44321 Nantes

Cedex 03, France
Mikael.Briday@irccyn.ec-

nantes.fr

Sébastien Faucou
IRCCyN

1, rue de la Noë
BP 92 101, 44321 Nantes

Cedex 03, France
faucou@univ-nantes.fr

Florent Pavin
IRCCyN

1, rue de la Noë
BP 92 101, 44321 Nantes

Cedex 03, France
florent.pavin@irccyn.ec-

nantes.fr

Fabien Juif
IRCCyN

1, rue de la Noë
BP 92 101, 44321 Nantes

Cedex 03, France
fabien.juif@etu.univ-

nantes.fr

ABSTRACT

This paper describes a simulation platform for embedded software
named ViPER (Virtual Platform and Environment Runtime). ViPER
is oriented toward (but not limited to) systems of the automotive do-
main. It allows to model and simulate distributed embedded hard-
ware platforms in order to ease the early development stages of the
embedded software. Each node of the system is virtualized in a
process that runs an ad-hoc port of the real-time operating system
Trampoline. ViPER manages global time, hardware interrupt and
offers a quick and easy way to model hardware devices. In order to
close the loop, relevant parts of the environment can be simulated.
Once a platform is modeled, ViPER generates description files for
each node that ensure the conformance of the hardware abstraction
layer to the virtual hardware. ViPER and Trampoline are available
as free software.

Categories and Subject Descriptors

I.6.7 [Computing Methodologies]: Simulation and Modeling—
Simulation Support Systems, Environments

; D.4.8 [Software]: Operating Systems—Performance, Simulation

General Terms

Design, Verification

Keywords

simulation, virtualization, embedded software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2010 March 15–19, Torremolinos, Malaga, Spain.
Copyright 2010 ICST, ISBN 78-963-9799-87-5.

1. INTRODUCTION
An embedded system is usually composed of four main parts:

embedded software (or firmware), hardware, plant and networks.
The embedded software is executed on the networked hardware
platform to control the plant.

During the system specification and design, the system is con-
sidered as a whole. Then, each part is developed separately for a
while. When a runnable system can be assembled, integration tests
can be run. Most of the time, these tests reveal the presence of de-
sign and implementation errors and trigger a “test-and-fix” cycle.
In order to limit the duration of this cycle, integration tests shall be
run as soon as possible. A widely used approach to meet this re-
quirement consists in building preliminary versions of the system
composed of real and simulated parts. Of course, this makes sense
only if the simulated parts are quick and easy to develop.

In this paper, we introduce ViPER, a lightweight Python frame-
work dedicated to the simulation of distributed embedded platforms.
ViPER offers a quick and easy way to develop models of hard-
ware devices, networks and relevant parts of the plant in order to
build early integration testbeds for embedded software. To be in-
tegrated in the testbed, each node is virtualized in a process of the
guest operating system. The HAL1 of the embedded software of
the node communicates with ViPER through a dedicated low-level
API based on POSIX IPC.

To demonstrate the viability of the approach, a ViPER port of
the Trampoline2 RTOS3 has been developed. This port offers a
solution for the rapid prototyping of Trampoline applications on
workstations, as well as a solution to perform some tests that would
be too difficult or too costly to realize on a real implementation.

The paper is organized as follow: in section 2, the context is pre-
sented and related works are discussed; in section 3, ViPER is pre-
sented; in section 4, the port of Trampoline to ViPER is described;
in section 5, two case-studies are shown; in section 6, some con-

1HAL: Hardware Abstraction Layer
2Trampoline may be downloaded at
http://trampoline.rts-software.org/
3RTOS: Real Time Operating System

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8712
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8712

Embedded User
Application

Basic software
(RTOS,

Communication,
…)

Simulation Host

Embedded
Application

Hardware-
independent

Basic Software

Simulation Host

device drivers

Embedded
Application

Hardware-
independent

Basic Software

Simulation Host

device drivers

model of the
hardware

1 2 3

Figure 1: The three branches of SWiL approach. White rect-

angles represent the actual software of the simulated embedded

system while light grey rectangles represent the simulated soft-

ware/hardware.

cluding remarks are given.

2. CONTEXT

2.1 Using Simulation for Firmware Develop-
ment

Simulation is a faithful ally for embedded system designers. Cod-
ing and running abstract models of the components of the system
allow to start the validation and verification activities very early in
the design process. Moreover, it allows to control the development
by refining progressively these models from the specification level
down to the implementation level. As a consequence, the duration
of the system design process can be dramatically reduced [5].

This paper deals with the use of simulation to support the de-
velopment of distributed embedded software [3]. The basic idea is
to simulate the execution of the real firmwares on a model of the
platform (composed of hardware, network and plant components).
This kind of approach is known as “software-in-the-loop” (SWiL).

SWiL brings several benefits. Integration tests can be run before
the availability of the platform. Even if the simulator is not per-
fectly accurate, these tests allow to detect and remove a significant
number of errors in a fast and comfortable development environ-
ment. Moreover, it is generally possible to automate the execution
of regression test suites using one of the scripting engines of the
development platform. Another interesting point of SWiL is the
possibility to run complex scenarios, easily, safely and repeatedly.
For instance, it is possible to simulate precisely a specific failure
mode of a device without damaging the real device.

The SWiL approach can be split into three branches, as shown in
figure 1, depending on the part of real software used in the simula-
tor.

In the first branch (À in figure 1), only the application software
is used. The model of the platform is a library that maps the API
of the target RTOS and communication protocols onto the API of
the host (either a general purpose OS or a simulation framework).
Given the distance between the semantics of both API, some fea-
tures might be difficult to simulate with a satisfying degree of ac-

curacy: scheduling (of tasks on CPU, of frames on communication
channels), inputs/outputs handling (especially hardware interrupt
requests), memory protection, memory mapping, and real-time.
Unfortunately, these features are crucial for the design of embed-
ded systems.

In the second branch (Á in figure 1), all the hardware indepen-
dent parts of the firmwares are used. The model of the platform
simulates the plant, the networks and the set of devices connected
to each micro-controller. For each node, an executable file is build
conform to the format of the host OS. The simulated devices are
accessible through a dedicated API. Thus, each set of devices is
targeted as a normal development board and dedicated BSPs4 have
to be developed, including a port of the target RTOS. Solutions
of this branch can be classified as host-compiled paravirtualiza-
tion. Compared to the first branch, it is possible to achieve accurate
simulation of features such as scheduling and inputs/outputs han-
dling. Some features are still hard to take into account, like mem-
ory protection, memory mapping, and real-time. Tools like VxSim
(Wind River) or OSE Soft Kernel (ENEA) are representative of this
branch.

In the third branch (Â in figure 1), all the parts of the firmwares
are used. Moreover, they are used in the form of binary images
compatible with the targets (whereas the two other branches use
object codes or binary codes compiled for the host). The model of
the platform simulates the full system, including memories, inter-
nal buses and microprocessors. Each simulated device is accessible
through an API conform to the real programming interfaces of the
devices. The microprocessor models are capable of simulating the
execution of binary code. Solutions of this branch can be classi-
fied as full system virtualization. With these solutions, it is pos-
sible to simulate accurately nearly all the features of the platform,
except the real-time. The major difficulties encountered when us-
ing this approach is the development time of new models. Tools
like SimOS [10] (Stanford University) or Simics [8] (VirtuTech) are
representative of this branch.

2.2 Requirements for ViPER
Creating and using a SWiL environment for a project has a cost.

This cost must be reasonable compared to the benefits brought by
the environment. Therefore, the environment shall be comfortable
to use, easy to setup and to control. Of course, it must be able
to simulate the behavior of the real system with a good accuracy.
In the context of firmware development, RTOS-level API simula-
tion has to be eliminated for its weak accuracy. The choice has to
be made between host-compiled paravirtualization and full system
virtualization. The former is easier to setup and to use, while the
latter is more accurate.

The work described in this paper has been conducted in the con-
text of the development of Trampoline, an open-source RTOS in-
spired by the standards of the automotive domain (see section 4).
The main motivation for the usage of a SWiL environment is to
improve the comfort of the developers of Trampoline communica-
tion stack for compiling and testing their code. Therefore, host-
compiled paravirtualization has been preferred to full system virtu-
alization. Moreover, it has been decided that the SWiL environment
has to meet the following requirements:

• It must support the modeling of a broad range of hardware
devices, as well as the physical processes controlled or mon-
itored by these devices

• It must support the design of distributed platforms by inter-

4Board Support Package

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8712
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8712

connecting models of network controller and models of com-
munication media (e.g. buses or wireless channels).

• It must be able to synchronize the executions of the firmwares
and the virtual platform of a distributed system.

• It must be portable on different general purpose OSes and
different development environments.

• The development of a virtual platform must be easy. Models
of devices must be reusable and extensible.

No existing open-source project fulfilling these requirements has
been identified. Therefore, a dedicated solution has been devel-
oped. It is named ViPER (Virtual Processor and Environment Run-
time). It is presented in the next section.

3. VIPER

3.1 Software Architecture
A distributed embedded systems is composed of firmwares, nodes,

devices and networks. Each firmware reads (resp. writes) informa-
tions from (resp. to) the networks and devices connected to its host
node. The architecture of a ViPER testbed reproduces this organi-
zation:

• each node is mapped onto a process of the host OS. Each pro-
cess runs a program composed of the firmware of the node
built with a dedicated BSP.

• another process runs ViPER. ViPER is in charge of executing
the models of the virtual platform and synchronizing the con-
current execution of the virtual platform and the firmwares
by providing a global virtual time (see section 3.2 below).

• Event channels are used between each firmware process and
the ViPER process. These channels are implemented on top
of POSIX IPCs5.

ViPER is written in Python6 and C. The core of the simulation
engine is written in Python. The event channel library is written in
C. It has been interfaced with Python thanks to SWIG7 in order to
connect models of the devices to event channels

The user uses Python to code the models of the components of
the virtual platform and to create testbeds by interconnecting in-
stances of models of components. It is expected that the firmwares
are written in C (however, other language could be used as long as
they can be interfaced with C).

This architecture is sketched on figure 2.

3.2 Providing a Global Virtual Time
In the real world, the physical time flows at the same rate in all

the parts of a distributed embedded system. In a simulator conform
to the software architecture described above, it is not the case. All
the processes of the simulator are granted an access to a computa-
tion core for a fraction of the real-time, according to the scheduling
policy of the host OS. Some processes can be blocked, waiting for
a synchronization with a concurrent process. The flow of the real-
time (external to the simulator) cannot be used as a basis to build
the flow of the time in the simulated world.

5IPC: Inter Process Communication
6Python is a high-level interpreted programming language, avail-
able on many platforms, see http://www.pyhton.org.
7http://www.swig.org

ViPER

(Process)

simulation of
devices, networks

and plant
dynamics

Node

(Process)

execution of the
firmware of the

node

Node

(Process)

execution of the
firmware of the

node

event channel
(IPC)

event channel
(IPC)

Global virtual time

Figure 2: Software architecture for the simulation of a system

with two nodes.

Thus, a virtual time has to be designed. A virtual time can be
either global (the system is synchronous: the real-time is perceived
identically by all the nodes) or local (the system is asynchronous:
the real-time is perceived differently by the different nodes). Al-
though real systems are asynchronous, this version of ViPER im-
plements a global virtual time. It is easier to implement and it is an
acceptable abstraction for the early design stages of distributed em-
bedded systems. The implementation of a local virtual time service
might be explored for future versions.

The simulation engine of ViPER is a discrete event simulator
based on a calendar (see section 3.3.3). Building a virtual time
consists in dating the virtual firing dates of the observable events
when they are inserted in the calendar.

First, let us consider the events produced by the models of the
components of the virtual platform. These models are designed
to evolve in the virtual time. The virtual firing date of an event
produced by one of these models is computed by adding the actual
virtual date and the firing latency of the event (computed at runtime
by the model).

Now, let us consider the events produced by the firmwares. First,
even if the simulated firmwares and the real firmwares are built
from the same source code (excepted the HAL), the development
chains and the processor architectures are different. Therefore, the
(real) execution time of a block of code in the simulator is not rep-
resentative of the execution time of the same block (i.e. a block
generated from the same source) in the real system. Thus, it would
make no sense to compute the virtual firing date of a firmware event
by adding the real response time8 of the task that produces this
event, to the activation date of this task. Second, the execution time
of the concurrent tasks of the real firmware on the real platform are
not known with precision at early design stages. For many systems,
it is even difficult, if not impossible, to provide an accurate estima-
tion of these execution times. Thus, the approach exposed above
for platform events can not be used.

In this version of ViPER, when a firmware event is fired, it is
timestamped with the current value of the global virtual clock. The
timestamp must be written by the producer (firmware process) in
order to cancel the unpredictable latency caused by IPCs and thread
scheduling between the production and the consumption of the event.
As a consequence, several firmware events can be timestamped
with the same value without being fired simultaneously.

On the implementation side, the ViPER process embeds a timer
thread that is used to increment the global virtual clock. The tick
of this timer shall be set at a sufficiently large value to minimize
the effect of the timesharing scheduler of the host OS. For instance,
if the time quantum used by the host OS scheduler is q, and the

8Response time: latency between the activation of the task and its
termination, taking into account interference of other tasks, user
interrupt routines and kernel activites.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8712
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8712

typical number of concurrent threads in the system is n, the timer
tick shall be at least set to n×q.

3.3 Communication Between a Firmware and
ViPER

In ViPER, a device driver communicates and the virtual device
communicate through the event channel. Thus, the event channel
must support the following communication schemes:

• hardware interrupts raised by devices;

• update of status or control registers. Notice that the behav-
ior is not the same when the firmware writes into a control
register (the device is immediately aware of this update) and
when a device writes into a status register (the firmware will
read the register on demand).

In order to be portable, the event channel is implemented us-
ing POSIX IPCs, especially signals, shared memory segment and
semaphores. This is sketched on figure 3 and explained in the fol-
lowing paragraphs.

Process
VIPER

emulation of
devices and

simulation of plant
dynamics

r/w r/w

kill (IRQ)

shared memory bank: I/O registers

shared memory variable: interrupt id

r/w r/w

Firmware

Process

execution of the
control software

Figure 3: Details of the event channel.

3.3.1 Modeling Interrupts

To raise a hardware interrupt on a node, the event channel sends
a POSIX signal to the corresponding process. Only 32 POSIX sig-
nals are available, and most of them are reserved for the operations
of the host OS. To bypass this limitation, the event channel also
writes the identifier of the interrupt channel in a shared variable.
The identifier is used as a bit field and allows up to 64 interrupt
sources, thus allowing different interrupts to occur at the same date.

Three signals may be used, in function of the priority of the inter-
rupt source, thus simplifying the firmware implementation: SIG-

ALARM for non maskable interrupts (NMI), SIGUSR1 and SIGUSR2

for maskable interrupts handled by the system.
The function of the event channel library used to raise an inter-

rupt executes the following sequence of actions: it takes a mutex,
updates one bit of the shared variable used to store the pending
interrupts, sends the selected signal, and lastly releases the mutex.

Upon reception of the signal, the firmware execution is inter-
rupted and the signal handler is executed. It has to call a function
of the event channel library used to react to an interrupt. This func-
tion takes the mutex, makes a local copy of the pending interrupt
mask, resets the mask and lastly releases the mutex.

With this protocol, an interrupt request can be lost only if a de-
vice raises two requests on the same interrupt channel before that
the target firmware takes into account the first one, in the same way
than in the real hardware. It can happen in the following situations:

• the model of the device evolves without letting the time flow.
This model is wrong and must be corrected.

• the virtual global time is too fast compared to the real-time.
The virtual global time must slow down.

• the firmware is still handling previous interrupts. This may
be a firmware design error, that must be corrected.

It is possible to configure ViPER to log lost interrupt requests.
The API provided to the firmware HAL designer is quite simple.

To enable or disable interrupt categories, the designer can use the
standard POSIX functions (sigblock, sigmask, sigprocmask, etc.)
to block and unblock signals. To obtain the current value of the
pending interrupt mask, it has to call the following function:

unsigned int vp_ipc_get_interruption_id(ipc_t *x)

where x points to a global data structure of type ipc_t that con-
tains the information necessary to access the event channel (shared
memory segment and semaphores).

3.3.2 Modeling Registers

Access to devices in micro-controller is performed using specific
function registers. A register is a small chunk of memory that is
used to interact between the software and the hardware. There are
two types of registers:

• control registers that are written by the application. They
modify the behavior of the underlying hardware;

• status register are modified by the hardware and are read by
the application.

ViPER offers the ability to model different devices (timers, motor
through a PWM, network adapter, . . .), each of them containing
specific registers. This approach coincides with reality, thus facili-
tating the implementation by developpers.

As registers should be shared by ViPER and the firmware, they
are set in an array in the shared memory. Each register has a unique
index in this array. This index, that should be the same for the 2
processes, is defined at compile time (see section 3.5). The index
is based on the device identifier and the register identifier, thus al-
lowing to use multiple instances of one device.

Modeling a status register is quite simple; The firmware is not
notified when ViPER writes to status register. However the access
is protected by a semaphore to prevent the reading of data that are
not yet completely written by ViPER. In the implementation, this
is simply done in the firmware’s HAL using the method:
reg_t vp_ipc_read_reg(ipc_t *, reg_id_t r);

where r contains both device and register identifiers, reg_t is the
type of a register (32 bits unsigned integer).

Modeling control registers is more complicated, as ViPER has to
react when the firmware writes to the register. In addition to the ar-
ray of registers, a FIFO is implemented in the shared memory to no-
tify ViPER that a register was updated. Each time that the firmware
writes to a control registers, it adds an entry in the FIFO, with iden-
tifiers both the register and the device used. A reading thread in
ViPER reads the new value of the register and give the information
to the related device, using the producer/consumer model. It then
remove the FIFO entry, position an event in the logical scheduler
for the related device and waits for other notifications.

In the implementation of the firmware’s HAL, the following method
are provided, in the same approach than the reading method:
void vp_ipc_write_reg(ipc_t *, reg_id_t, reg_t);

Another method is used to explicitly signal to ViPER that registers
are updated:
void vp_ipc_signal_update(ipc_t *,dev_id_t,mask_t m);

where m is a mask that indicates which registers are updated.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8712
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8712

When configuring a timer for instance, the appropriate registers
are written (prescaler, reload value, . . .), and then the firmware in-
dicates to ViPER to take them into account. This is done to reduce
ViPER’s computation overhead.

3.3.3 Logical Scheduler

The logical scheduler is the centerpiece of ViPER because it
functionally organizes the time flow: it permits to activate devices
at the required moment. Each entry in the logical scheduler is called
an event, and is associated to a device.

In that way, a timer will position an event in the logical scheduler
at the time of the next interruption to wake up and effectively sends
the interruption, a continuous model (eg an electrical engine) will
position an event at each sampling periods to update the internal
model. When the firmware writes to a control register, the ViPER’s
reading thread inserts an entry in the logical scheduler at the current
date.

Therefore, when using a single processor configuration, only 2
threads are used. A reading thread that is blocked on the FIFO most
of the time, and a thread that handles the scheduling of events and
wakes up devices at the desired date.

3.4 Extending ViPER to Model Distributed
Systems

ViPER extension for distributed systems is natural with the ap-
proach that was used for the model with a single firmware. Indeed,
the presence of the logical scheduler can order events from all net-
work nodes on a single logical time base. This ensures a global

virtual time base for all nodes.
As in figure 2, each firmware (a network node) has its own shared

memory and keep the same interface with ViPER (registers and
interruptions) as in the mono-processor approach. Consequently,
for a network of n nodes, there are n reading threads in ViPER
and 1 thread for the logical scheduler, providing the global time

functionality.
ViPER is adapted to provide network devices to allow the com-

munication between different nodes. At this time, basic CAN net-
work devices are implemented.

In the case of a reactive system with a low processor load (pe-
riodic behavior driven by the interrupts), the timings offered by
the simulation are close to the timings on the real target, because
of the global time approach that ensure the timing synchronization
between different nodes.

On a system with a high processor load, differences between the
real target and the host processor may lead to different timing be-
haviors because the tasks of the simulated application may miss
their deadlines and the real-time behavior would be compromised.
However, Viper allows to change the timebase of the logical sched-
uler. This slows down the pace of event processing and lowers the
host processor load.

3.5 Build Process
ViPER generates 2 files from the hardware configuration for each

network node:

• vp_ipc_devices.h is an include file that gives the order
of registers that are stored in the shared memory. The order
should be the same in both the firmware and ViPER. This
unique file ensures this aim.

• target.cfg is a file that gives symbols related to interrupt
handler. This file is not mandatory. When using ViPER
with the Trampoline RTOS, this file is used to give symbolic

names to interrupt sources to keep the application description
as readable as possible.

Figure 4 highlights the build process of the whole application.

user application
code (.c, .h)

object files
(.o, .obj, ..)

hardware
configuration

(.py)
vp_ipc_devices.h

target.cfg

C
compiler

viper

executable

viper library

linker

Figure 4: Build process of a Trampoline application using

ViPER. ViPER generates from the hardware configuration the

ordered list of registers as used in the shared memory, and gives

symbol names of interrupts for an easier description of the ap-

plication.

3.6 Modeling Hardware Components
ViPER aims at modeling the underlying hardware, in order to

ease first development steps of an embedded software. We have
seen in section 3.3 how is performed the interface between the
firmware and ViPER and we focus here on how to model the hard-
ware part.

Hardware components, as in the real world, are organized as de-

vices. They have to:

• interact with the firmware through registers (section 3.3.2).
Each device has a set of registers;

• react to events from the logical scheduler (section 3.3.3);

• insert events in the logical scheduler, in order to wake itself
up or wake another device up in the future;

• send an interrupt to the firmware;

• allow the generation of files, as described in section 3.5.

3.6.1 Implementation

Figure 5 shows the global architecture of ViPER. The Scheduler
manages an event list with dated events. The configuration gives a
set of network nodes (Ecu stands for Electronic Control Unit), all
of which containing one or more devices. The Ethers are objects
which represent a system-wide infrastructure like a network or a
simulated environment. An EtherDevice interacts with an Ether

object. For instance, a network device sends/gets messages to/from
an Ether object or a sensor may acquire the temperature from a
simulated power-plant.

Each device derives from the Device superclass. Modeling a
new device simply consists in writing a derived class, that imple-
ments:

• the constructor, in which registers used in the device should
be given.

• the start method, which is called at the beginning of the
simulation. It can be used to add events in the logical sched-
uler at startup.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8712
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8712

ViPER

event_list

Scheduler

app_path

scheduler

device_list

ipc

Ecu

1

1

1..*

ecu

interrupt_id

Device

0..*

1

Ether

1..*

1

1..*
ether

EtherDevice

...

Network

cycle

...

Timer

rpm

...

Motor

state

...

Button

text

...

LCD
......

Figure 5: Simplified UML diagram of the architecture of

ViPER.

• the event method, which is called by the logical scheduler
when an event related to this devices occurs

3.6.2 Modeling a Basic Timer

To give an example, the model of a basic timer is given with the
following characteristics:

• a configuration register is used TIMCON, where the most sig-
nificant bit is a flag to run (1) or stop (0) the timer, and the
last 31 bits give the periodicity of the timer.

• the timer should send an interrupt periodically, in function of
periodicity given in the control register.

Here is the constructor of the basic timer device:name is the name
of the device (timer1, timer2, ..), id is its internal number, used
by the logical scheduler, and signal is the type of POSIX signal
used for interruptions (see section 3.3.1):

c l a s s b a s i c T i m e r (d e v i c e . Device) :
def _ _ i n i t _ _ (s e l f , name , id ,

s i g n a l = d e v i c e . SIGUSR2) :
c o n t r o l R e g = R e g i s t e r (name + "_TIMCON")
s e l f . _ _ c o n t r o l = c o n t r o l R e g . name
s e l f . _ _ d e l a y = 0
d e v i c e . Device . _ _ i n i t _ _ (s e l f , name , id ,

s i g n a l , [c o n t r o l R e g])

The constructor instantiates a register and calls the superclass. This
way, the superclass will generate the appropriate build files (see
section 3.5).

Then, the firmware will be able to write to the control register of
the basic timer. It will generate an event, handled by the scheduler
which call the event method of the timer. If there is no register
update when calling this method, this is because the delay of the
timer elapsed:

def e v e n t (s e l f , m o d i f i e d R e g i s t e r s = None) :
i f not m o d i f i e d R e g i s t e r s : # t i m e r r u n n i n g .

s e l f . _ s c h e d u l e r . addEvent (
Event (s e l f , s e l f . _ _ d e l a y))

s e l f . s e n d I t ()
e l s e : # f i r m w a r e u p d a t e

v a l = s e l f . _ r e g i s t e r s [s e l f . _ _ c o n t r o l] .
r e a d ()

i f v a l & (1 << 31) t h e n : # run ?

s e l f . _ _ d e l a y = v a l & ((1 << 31)−1)
s e l f . _ s c h e d u l e r . addEvent (

Event (s e l f , s e l f . _ _ d e l a y))

The start method does not need to be derived here. This exam-
ple is a basic implementation and does not remove unwanted events
when the firmware updates the periodicity of the timer.

4. THE TRAMPOLINE RTOS
Trampoline [1] is an open source implementation of the OS-

EK/VDX9 ISO standard [6] and is evolving to encompass the future
AUTOSAR standard [11].

OSEK/VDX is an industry standard for RTOS used in distributed
control units in vehicles. Various parts are proposed for the stan-
dard: OS, the basic services of the real-time kernel, COM, the com-
munication services, NM, the Network Management services and
OIL, OSEK Implementation Language that is used to describe the
structure of the application.

An OSEK/VDX operating system manages many objects: tasks,
resources, events, alarms, counter and messages. A fixed priority
scheduling policy is used with FIFO as a secondary criterion to
arbitrate between tasks with the same priority. A static priority is
assigned to each task when the application is built. The scheduler
elects the highest priority ready task that runs until it blocks or
terminates or is preempted by a higher priority task.

Tasks are execution threads and may be of two kinds: basic and
extended. A basic task is activated, runs and terminates without
being able to do a blocking system call. An extended task may
block to wait for an event.

Resources are used to implement mutual exclusion using the
OSEK-PCP protocol (Priority Ceiling Protocol). OSEK-PCP pro-
tocol is more simple than original PCP [9] [7], it is also known as
Highest Locker protocol. When a task gets a resource, its priority is
immediately raised to the resource priority (which is the maximum
priority of the tasks that share the resource). So other tasks that
share the same resource cannot get the CPU.

Events allow tasks to synchronize. A task may wait for a set
of event and blocks if it has not been set until another task sets it.
Events are private. There is no time-out built in the event mecha-
nism but alarms (see below) may be used for this purpose.

Alarms and Counters are designed to implement recurring pro-
cessing like periodic tasks. Any interrupt source may be used to
increment a counter: timer, signal from mechanical organs of a car
engine (camshaft, crankshaft). When a predefined counter value is
reached, the associated alarm expires and the corresponding action
is done (task activation, event setting or execution of a routine). An
alarm may be one-shot or cyclic.

Communication services of OSEK/VDX are built around the
message object. Two types of messages are offered: those using the
blackboard model (Unqueued Message, single place buffer); those
using a FIFO (Queued Message). The communication services are
the same whatever the communication is local or distant.

OSEK/VDX is a statically configured operating system: all ob-
jects are known at compile time and no object may be created dur-
ing the lifetime of an application. On one hand this can be seen
as a limitation but on the other hand this greatly improves the pre-
dictability of a real-time application and helps to work out its mem-
ory footprint too.

9OSEK/VDX: Offene Systeme und deren Schnittstellen für die
Elektronik im Kraftfahrzeug / Vehicle Distributed eXecutive

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8712
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8712

The development of Trampoline has started in 2005 and tar-
gets many hardware platforms like Freescale/IBM PowerPC, ARM,
Freescale S12, Atmel AVR, NEC v850e and Infineon C166 now.
From the start, a port targeting a Posix operating system and the
support provided by ViPER has been considered to ease the de-
velopment. The Posix port works using a portable multithreading
engine [4].

5. CASE STUDIES
In order to demonstrate the simplicity of the configuration and

the usefulness of ViPER, 2 case studies are presented hereafter.
The first one is a mono-ECU10 application that introduces how a
simulated ECU and its devices are instantiated. The second one is
a distributed system where each ECU controls a robot. Both ap-
plications are included in the Trampoline distribution which can be
downloaded at http://trampoline.rts-software.org.

5.1 Analog Signal Generator
The goal of this application is to generate a rectified waveform

signal on an oscilloscope while displaying the elapsed time from
application startup on a LCD. This application is used in real-time
labs on the actual target (Infineon C167 microcontroller) in Univer-
sity of Nantes.

2 tasks (processes), Time and Wave, and 2 alarms, AlarmTime

and AlarmWave, are used. Time is activated every second by Alarm-

Time. It updates the elapsed time and display it on the LCD. Wave

is activated every 5 ms by AlarmWave and sends the Y coordinates
of the Waveform signal (the curve is broken in 10 segments) to a
Digital Analog Converter (DAC). In addition, 2 push buttons are
used to change the period of the signal. Each button sends an inter-
rupt which triggers an ISR11. Each ISR decreases or increases the
period of AlarmWave and display the new period on the LCD. Fig-
ure 6 shows the design of the whole application using the MCSE
formalism [2].

Task Wave

Task Time

ISR

Inc

ISR

Dec

Resource

Waveperiod

Resource

LCD

LCD1

DAC0

BPPlus

BPMinus

Alarm

AlarmWave

Alarm

AlarmTime

LCD2

TIMER0

Figure 6: Design of the Analog signal generator application.

Each cloud shape represents an environment or hardware en-

tity. Other shapes are software entities. Arcs with an ‘I’ shape

represents the update of a variable. When more that one pro-

ducer exists for a variable, a resource is added to insure mutual

exclusion. dashed arcs are events: hardware interrupts, task

activation, . . .

10Electronic Control Unit. A set of electronic devices and their as-
sociated software fulfilling a function in the automotive industry
jargon

11Interrupt Service Routine

The following hardware devices have to be modeled: 2 push but-
tons, a DAC and a LCD. In addition, a timer (TIMER0) is needed
to send interrupts to the Alarms. In the actual application, the DAC
output is sent to an oscilloscope. In the simulated one, it is drawn
on the screen in a oscilloscope-like view. In the same way, the but-
tons are simulated by button widgets. The following listing shows
how the hardware models are instantiated and figure 7 shows the
resulting graphical user interface.

a l l E c u s = [
Ecu (

" . . / App−GBF / t r a m p o l i n e " ,
s c h e d u l e r ,
[

Timer ("TIMER0" ,
1 ,
t y p e = t i m e r .AUTO,
d e l a y = 0 . 0 1) ,

DAC("DAC0" , 2) ,
LCD("LCD1" , 3) ,
LCD("LCD2" , 4) ,
BP (" BPPlus " , 1 0) ,
BP (" BPMinus " , 1 1) ,

]
)

]

The first parameter of the ECU is the binary file of the application,
the second is the scheduler of Viper and the third one is a list of
devices. These devices correspond to the cloud shapes of figure 6.
Each device has a least 2 parameters: its name and the interrupt id
it uses. Some may have more parameters like the timer: its type
(one shot or automatic) and its period.

Figure 7: Viper hardware components simulation interface.

Components that interact with the user may have a graphical

interface. Here, the DAC value is displayed on an oscilloscope.

Both LCDs are displayed too and buttons may be clicked.

5.2 Wireless Robots Ballet
The second application is a wireless robots ballet. Each robot

is moved by two motors driving two wheels, one on the left and
one on the right. A robot turns by driving the motors at different
speed. One of the robots is the ballet master. It is controlled by the
operator using a four buttons pad to accelerate, slow down and turn.
Each time interval (each 100 ms for example), the ballet master
reads its rotary encoders and determines its position (knowing its
starting position) by odometry. For each trajectory modification
by the user, the robot sends its movement vector (for now, directly

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8712
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8712

LCD

Left

Motor

Right

Motor

ISR

NewControl

Task

SendVector

Task

MotorControl

Alarm

AlrSendVector

TIMER0

From pad

To slave
robotsNET1

NET0

Figure 8: Design of the Ballet Master application. Double line

arrows are messages (variables with an associated event) in the

MCSE formalism.

motors commands) to the other robots wirelessly. The other robots
follow the movements of the ballet master.

The Ballet Master application uses 2 tasks and 1 ISRs. ISR New-

Control is triggered by the incoming command message from the
pad. It activates Task MotorControl that changes the speed of the
motors according to the command. Task SendVector is activated
by the mean of the alarm AlrSendVector triggered by a timer ev-
ery 100ms. It reads the positions of the motors, sends the motor
positions to other robots using the wireless network and display
the position on the LCD. Figure 8 shows the design of the Ballet

Master application.
The Slave application have a similar design, the difference being

that task Display reads the positions of the motors and displays
them only. Figure 9 shows the design of the Slave application.

A least 3 ECU have to be modeled: The Pad, the Ballet Master
robot and 1 of the Slaves robots. ViPER configuration is an ECU
list shown below and the resulting graphical user interface is shown
at figure 10.

a l l E c u s = [
Ecu (

" . . / App−Pad / t r a m p o l i n e " ,
s c h e d u l e r ,
[

LCD

Left

Motor

Right

Motor

ISR

NewControl

Task

Display

Task

MotorControl

From master
robot

Alarm

AlrDisplay

TIMER0

NET1

Figure 9: Design of the Slave application.

Network (ne twork_mas t e r , "NET0" , 0) ,
Timer ("TIMER0" ,

1 ,
t y p e = t i m e r .AUTO,
d e l a y = 1) ,

BP (" B P F a s t e r " , 5) ,
BP (" BPSlower " , 6) ,
BP (" BPLeft " , 7) ,
BP (" BPRight " , 8) ,

]
) ,
Ecu (

" . . / App−Maste r / t r a m p o l i n e " ,
s c h e d u l e r ,
[

Network (ne twork_mas t e r , "NET0" , 0) ,
Timer ("TIMER0" ,

1 ,
t y p e = t i m e r .AUTO,
d e l a y = 0 . 1) ,

LCDServer ("LCD1" , 2 , d i s p l a y _ s e r v e r) ,
Motor ("MOTOR1_1" , 3) ,
Motor ("MOTOR1_2" , 4) ,
Network (n e t w o r k _ s l a v e , "NET1" , 5) ,

]
) ,
Ecu (

" . . / App−S l a v e / t r a m p o l i n e " ,
s c h e d u l e r ,
[

Network (n e t w o r k _ s l a v e , "NET1" , 0) ,
Timer ("TIMER0" ,

1 ,
t y p e = t i m e r .AUTO,
d e l a y = 0 . 1) ,

LCDServer ("LCD2" , 2 , d i s p l a y _ s e r v e r) ,
Motor ("MOTOR2_1" , 3) ,
Motor ("MOTOR2_2" , 4) ,

]
. . .

)
]

The first ECU is the Pad with 6 hardware devices: the communi-
cation network interface used to send commands to the ballet mas-
ter, a timer and 6 buttons to accelerate, to slow down and to turn
left and right. The second ECU is the Ballet Master with 6 devices:
the network interface used to get commands from the Pad, a Timer,
a LCD, 2 motors and a network interface used to send the position
of the master to the slaves. The last ECU is one of the Slaves with
5 devices: the network interface to get the position of the master, a
Timer, a LCD and 2 motors. Parameters network_master and net-

work_slave are objects which implement the physical layer of the
network.

6. CONCLUSION
This paper has presented ViPER, a SWiL environment allowing

to simulate a distributed embedded application on a POSIX oper-
ating system. ViPER offers an easy to use object oriented API to
model devices and to manage a global virtual time allowing to syn-
chronize observable events among the system.

ViPER may be used to develop a firmware either from scratch or
based on the dedicated port of the real-time operating system Tram-

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8712
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8712

Figure 10: Wireless robots ballet components simulation inter-

face. Here, the only hardware components displayed are the

buttons of the Pad. A graphical view displays the positions of

the robots and their trajectory in the world. The informations

displayed in this view are got from the motors of all the robots.

The topmost robot is the ballet master, the other two are slave

robots. This kind of view is easy to implement in simulation but

a headache on a real hardware.

poline to combine host-compiled para-virtualization with hardware
devices models and plant models. The resulting simulation support
system offers a good trade-off between the accuracy of the simula-
tion and the development cost of hardware models and their related
drivers. However, on a heavily loaded system, the user may have to
slow down the simulation to keep the results accurate.

Beside the development of a library of ready to use devices and
tools to observe and trace the behavior of the node, future work
includes a support for fault injection in the nodes to automate tests
of robustness.

7. REFERENCES

[1] J.-L. Béchennec, M. Briday, S. Faucou, and Y. Trinquet.
Trampoline: An Open Source Implementation of the
OSEK/VDX RTOS Specification. In IEEE Conference on

Emerging Technologies and Factory Automation (ETFA),
pages 62–69. IEEE Industrial Electronics Society, September
2006.

[2] J. P. Calvez and D. Isidoro. A codesign experience with the
mcse methodology. In CODES ’94: Proceedings of the 3rd

international workshop on Hardware/software co-design,
pages 140–147, Los Alamitos, CA, USA, 1994. IEEE

Computer Society Press.

[3] J. Engblom. Using simulation tools for embedded software
development. In Embedded System Conference, San Jose,
CA, USA, April 2008.

[4] R. S. Engelschall. Portable multithreading - the signal stack
trick for user-space thread creation. In In Proc. USENIX

Tech. Conf, pages 239–250, 2000.

[5] P. Giusto, A. Ferrari, L. Lavagno, J.-Y. Brunel, E. Fourgeau,
and A. Sangiovanni-Vincentelli. Automotive Virtual
Integration Platforms: Why’s, What’s and How’s. In IEEE

Internation Conference on Computer Design: VLSI in

Computers and Processors (ICCD), pages 370–378,
Freiburg, Germany, September 2002. IEEE Computer
Society.

[6] O.-V. Group. Road vehicles - open interface for embedded
automotive applications. ISO 17356, 2005.

[7] J. W. S. Liu. Real-Time Systems. Prentice Hall Inc, 2000.

[8] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hållberg, J. Högberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A Full System Simulation Platform.
Computer, 35(2):50–58, 2002.

[9] R. Rajkumar and J. Lehocsky. Priority Inheritance Protocols:
an Approach to Real-Time Synchronisation. IEEE

Transaction on Computer, 39(9):1175–1185, 1990.

[10] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod.
Using the SimOS Machine Simulator to Study Complex
Computer Systems. ACM Transactions on Modeling and

Computer Simulation, 7:78–103, 1997.

[11] T. Scharnhorst and al. Autosar - challenges and achievements
2005. VDI Berichte, (1907), 2005.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8712
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8712

