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ABSTRACT

This work describes the Grid and cluster scheduling simu-
lator Alea 2 designed for study, testing and evaluation of
various job scheduling techniques. This event-based simula-
tor is able to deal with common problems related to the job
scheduling like the heterogeneity of jobs, resources, and the
dynamic runtime changes such as the arrivals of new jobs
or the resource failures and restarts. The Alea 2 is based
on the popular GridSim toolkit [31] and represents a ma-
jor extension of the Alea simulator, developed in 2007 [16].
The extension covers both improved design, extended func-
tionality as well as the improved scalability and the higher
simulation speed. Finally, new visualization interface was in-
troduced into the simulator. The main part of the simulator
is a complex scheduler which incorporates several common
scheduling algorithms working either on the queue or the
schedule (plan) based principle. Additional data structures
are used to maintain information about the resource status,
the objective functions and for collection and visualization
of the simulation results. Many typical objectives such as
the machine usage, the average slowdown or the average
response time are included. The paper concludes with an
example of the Alea 2 execution using a real-life workload,
discussing also the scalability of the simulator.

Categories and Subject Descriptors

D.2.8 [SIMULATION AND MODELING]: Types of
Simulation—Discrete event

General Terms

Simulation, Scheduling, Visualization
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In the recent years large computing clusters, computing
centers and Grids have become more and more available
to the scientific and commercial community. Efficient job
scheduling in these large, dynamic and heterogeneous sys-
tems is important but difficult task. Many researchers are
getting involved in developing new efficient algorithms that
would be suitable either for general systems or for specific
institution or company. Clearly, newly proposed algorithms
must be heavily tested and evaluated before they are applied
in the real systems. Due to many reasons, such as the cost
of resources, the reliability, the varying background load or
the dynamic behavior of components, experimental evalu-
ation cannot be mostly performed in the real systems. To
obtain reliable results, many simulations with various setups
must be performed using the same and controllable condi-
tions that simulate different real-life scenarios. This is often
unreachable in the real Grid.

For this purpose many simulators have been developed.
If properly designed, such simulators are very useful since
different setups and different data sets can be used to evalu-
ate existing or proposed solutions. While for some purposes
an ad-hoc simulator is sufficient, there are also general Grid
and cluster simulators allowing to simulate various scenarios
and problems. Most of them are available as toolkits that
have to be carefully modified and extended before they are
suitable for the researcher’s goals. The amount of such nec-
essary work is usually quite large if the simulation outputs
should be complex and reliable.

In this work we present an extension to the well known
GridSim simulation toolkit. It is a Grid scheduling simula-
tor called Alea 2 which represents “ready to use” centralized
scheduling system allowing to apply and compare various
scheduling algorithms similar to those used in the produc-
tion systems such as PBSpro [14], LSF [35] or CCS [12]. The
solution consists of the scheduler entity and other support-
ing classes which extend the original basic functionality of
the GridSim. The main benefit of our solution is that the
Alea 2 allows immediate testing by inclusion of several pop-
ular and widely used scheduling algorithms such as FCFS,
EDF [24], EASY Backfilling [29], EDF-Backfilling [36], etc.
Beside the queue-based algorithms, it also enables the use
of algorithms that construct the schedule —sometimes re-
ferred to as the scheduling plan [12]. The research on the
schedule-based techniques have become quite popular in the
recent years. In CCS system [12] backfill-like policy is used
to generate schedule while GORBA scheduler [30] uses evo-
lutionary algorithms to optimize the schedule. In [4], genetic
algorithms are used for the Grid scheduling while [34, 1, 28]
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propose several variants of local search-based methods for
scheduling in the Grids and heterogeneous computer envi-
ronments. Also, our own research is oriented towards the
proposal of schedule-based techniques [18, 19], therefore we
have included them into the simulator together with the pre-
viously mentioned queue-based algorithms. Current release
of the Alea 2 also contains workload parsers that can read
popular trace formats such as the Grid Workloads Format
(GWF) and the Standard Workloads Format (SWF), thus
allowing an immediate use of the simulator.

This paper is organized as follows. First, the related work
is discussed. Next, the problem characteristics related to the
simulation capabilities of the Alea 2 are described. Section 4
presents the design of the Alea 2 and its main features. We
also show the scalability and the functionality of the sim-
ulator through several experiments using the largest traces
from the Parallel Workloads Archive and the complex real-
life workload from the Czech national Grid infrastructure
MetaCentrum [17]. Finally the future work is discussed.

2. RELATED WORK
There are numerous simulators and toolkits that provide

various functionality for simulations of the clusters, network
and Grid environments.

We start with the MicroGrid [25] which is rather an emu-
lator than a simulator. It can be used for systematic study
of the dynamic behavior of applications, middleware, re-
sources, and networks. The MicroGrid uses the Globus
Toolkit 2.2 API for its execution which allows to precisely
emulate GTK 2.2 based systems —however such systems are
outdated since the current version 4.2.1 uses different model
based on the concept of web services.

The Bricks [32] simulates various scheduling schemes on
a typical high-performance global computing systems. The
Bricks can simulate various behaviors of global computing
systems, especially the behavior of networks and resource
scheduling algorithms. Moreover, its modular design allows
to incorporate different scheduling algorithms, and it also al-
lows incorporation of existing global computing components
via its foreign interface.

The BeoSim [15] has been implemented for the purpose of
studying multi-site parallel job scheduling algorithms in the
context of a multi-cluster computational Grid. The Beosim
can be driven either by synthetic workload or real workload.
It also provides Java based visualization tool.

The SimGrid [22] is a C based simulator used for the
simulation and development of distributed applications in
heterogeneous and distributed environment. The SimGrid
solves different problems using different programming en-
vironments that constitutes different paradigms. The Sim-
Grid’s MSG tool is widely used for the basic evaluation and
simulation of scheduling algorithms while other tools such as
the GRAS and the SMPI are used for developing and study
of real applications. The SimDag provides functionalities to
simulate parallel task scheduling with DAG (Direct Acyclic
Graphs) workflow models.

The Simbatch [3], based on the SimGrid’s MSG, allows to
evaluate scheduling algorithms for batch schedulers. Neither
the SimGrid nor the Simbatch offer integrated visualization
output. However, both simulators may generate a trace that
can be lately visualized through the Pajé [6] or the ViTE [5]
visualization tools.

The SimBOINC [20] is another SimGrid based simulator.

It is designed to simulate heterogeneous and volatile desk-
top grids and volunteer computing systems. The SimBOINC
simulates a client-server platform where multiple clients re-
quest work from a central server. The goal of this project is
a testing of new scheduling strategies in the BOINC (Berke-
ley Open Infrastructure for Network Computing), and in
other desktop and volunteer systems. The characteristics of
the client such as the speed, the availability of the work-
load or the network availability can all be specified in the
simulation inputs.

While the SimGrid, the Simbatch and the SimBOINC are
all based on the C programming language, all following sim-
ulators are based on the popular Java language [26]. While
Java is usually less efficient than C, it allows easy develop-
ment and effortless portability.

The Monarc 2 [8] is a simulation framework whose aim is
to provide a design and optimization tool for large scale dis-
tributed computing systems, with a focus on the forthcom-
ing LHC (Large Hadron Collider) experiments at CERN. Al-
though it incorporates simple scheduling module, the main
goal of the Monarc 2 is to provide a realistic simulation
of distributed computing systems, customized for specific
physics data processing, and to offer a flexible and dynamic
environment for the performance evaluation of a range of
possible data processing architectures. The Monarc 2 ex-
tends the obsolete Monarc simulator [23], by improving its
flexibility and performance.

The GridSim [31] is a flexible, modular and universal Grid
simulation toolkit with a very good documentation. It is
written in Java on top of an event simulation library called
SimJava [13]. Thanks to the Java language, the GridSim
is a platform independent toolkit. The GridSim provides
functionality to simulate the basic Grid environment and its
behavior by providing simple implementations of common
entities such as the computational resources or the users. It
also allows to simulate simple jobs, the network topology, the
data storage and other useful features. Provided implemen-
tations represent the base functionality and it is necessary to
extend them when performing simulations with more com-
plex requirements. This can been done by the implementa-
tion of new Java classes inheriting from the existing GridSim
classes, which is also the case of the Alea 2 described in this
paper.

The GridSim is used by various researchers in their simula-
tions. There exists decentralized scheduler [2] implemented
in an obsolete version of the GridSim, but it does not sup-
port dynamic behavior of the system and it is not capable of
simulating network topology or other recent features. The
reason is the incompatibility between older and recent Grid-
Sim versions.

The Grid Scheduling Simulator (GSSIM) [21] based on the
GridSim toolkit has been developed for several years and be-
came publicly available in 2009. It should provide an easy to
use Grid scheduling framework for enabling simulations of
a wide range of scheduling algorithms in multi-level, hetero-
geneous Grid infrastructures. However, the GSSIM encoun-
ters some problems such as slow execution, weak scalability
and poor visualization outputs. Moreover, the GSSIM is not
compatible with the standard GridSim releases (including
the latest GridSim 5) since it uses its own branch based on
a modified version 4. Still, if GSSIM is optimized and made
compatible with the GridSim, it will provide an interesting
alternative, supporting more features than our simulator.
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The Alea [16] has been developed since 2007. However,
over the time many core improvements have been done con-
cerning the design, the scalability and the functionality. Sev-
eral new scheduling algorithms and objective functions were
included as well as the support of additional job and machine
characteristics. The new Alea 2 now also provides complex
visualization tool which supports an export of simulation re-
sults into several bitmap formats. The simulation speed and
the simulator’s scalability have been significantly improved
through the newly developed or redesigned classes. This
covers a new memory-efficient job loader and a redesigned
job allocation policy, which speeds up the whole simulation
(see Section 5). Moreover, the support of standardized work-
loads formats has been included as well as the simulation of
machine failures using the real-life failure traces. All these
features are closely discussed in Section 4.

To conclude this section, there are several different simu-
lation toolkits that cover various aspects of Grid and cluster
simulations. Sadly —based on our experience —several of
them are not now usable1 either due to the incompatibility
(MicroGrid), major reconstruction (SimBOINC), or due to
the authors’ decisions (Bricks, BeoSim).

3. PROBLEM CHARACTERISTICS
In this section we briefly describe the type of problems

which may be simulated using the Alea 2. We focus on the
problem of Grid and cluster scheduling that can be formu-
lated by defining the characteristics of machines, jobs and
by optimization criteria. In addition, we also discuss the
behavior of the system with respect to the dynamic changes
occurring over time.

Simulated system is composed of one or more computer
clusters, that are managed by one centralized scheduler. One
cluster is composed of several machines. So far, we expect
that machines within one cluster have the same parame-
ters. Those are the number of CPUs, size of the main mem-
ory (RAM) and CPU speed. Moreover, each machine may
have additional parameters that closely specify its additional
properties. These properties typically describe the architec-
ture of the machine (Opteron, Xeon, . . . ), available software
licenses (Matlab, Gaussian, . . . ), operating system (Debian,
SUSE, . . . ), maximum time limit for job execution (e.g.,
2 hours, 24 hours, 1 month), network interface parameters
(10Gb/s, Infiniband, . . . ), available file system (nfs, afs, . . . )
or the owner of the machine (Masaryk University, Charles
University, . . . ). All machines within a cluster use the Space
Sharing processor allocation policy which allows the paral-
lel execution of several jobs at the cluster when the total
amount of requested CPUs is less or equal to the number of
CPUs of the cluster. Therefore several machines within the
same cluster can be co-allocated to process a given paral-
lel job. On the other hand, machines belonging to different
clusters can not be co-allocated (used for execution of the
same parallel job).

Job represents user’s application. Job may require one (se-
quential) or more CPUs (parallel). Also the duration and
the arrival time are specified. There are no precedence con-
straints among jobs and we consider neither preemptions of
the jobs nor migrations from one machine to another. Addi-
tional information may closely specify the job’s characteris-
tics. Those are the job deadline, the maximum time limit for

1In October 2009.

execution, the required machine architecture, the requested
software licenses, the operating system, the network type,
etc. These additional information are very important since
they shift the simulation’s results closer to the reality as we
have shown in our previous work on real-life complex data
sets [17]. The goal of the scheduler is to meet all these
requirements. Moreover, scheduler should also reflect the
quality of the generated solution. For this purpose, several
objective functions are supported, that cover both users’ and
system administrators’ expectations. High machine usage,
high throughput and good performance of the scheduler are
usually very important for the system administrator. There-
fore, the avg. machine usage [9], the avg. weighted machine
usage [33], the makespan [34], the avg. number of waiting
jobs and the avg. runtime of the scheduling algorithm [19]
are used to measure the performance of the scheduler. Users’
requirements are represented by the avg. slowdown [9], the
avg. weighted slowdown [9], the number of delayed jobs [19]
and the avg. tardiness [16]. There are some criteria that are
useful for both the users and the administrators such as the
avg. response time [9], the avg. weighted response time [9]
and the avg. wait time [9].

Another important parameter is the dynamic behavior of
the simulated system. Job arrivals and completions appear
during the time, change the load of the system and request
appropriate reactions of the scheduler. Another factor are
the dynamic changes on the machines. As the time is run-
ning, machines may become unavailable due to the failures
or the upgrades while other machines may appear as a result
of restart or extension of current cluster’s size. Again, such
situations have to be properly handled by the scheduler.

4. ALEA 2 OVERVIEW
Same as the GridSim, the Alea 2 is an event-based mod-

ular simulator, composed of independent entities which im-
plements the desired simulation functionality (see Figure 1).
It consists of the centralized scheduler, the grid resource(s)
with the local job allocation policy, the job loader, the ma-
chine and failure loader and additional classes responsible for
the simulation setup, the visualization and the generation of
simulation output. By now, the Grid users are not directly
simulated but the job loader entity can be used as a parent
class for the future implementation of the Grid user. Simula-
tor’s behavior is driven by the event-based message passing
protocol. For each simulated event—such as the job arrival
or the job completion —one message defining this event is
created. It contains the identifier of the message recipient,
the type of the event, the time when the event will occur
and the message data. In case of, e.g., job arrival such mes-
sage would look like this: (scheduler ID; job arrival event;
job arrival time; job description). The simulator is fully
compatible with the latest GridSim 5.02 release since no
changes were made in the GridSim package itself. All exten-
sions were made by implementing child classes which extend
the standard GridSim (parent) classes. Similarly, easy ex-
tension of current functionality is possible thanks to the ob-
ject oriented paradigm used by the GridSim and the Alea 2.
In the following text all important extensions on top of the
GridSim package are mentioned and explained.

The simulation is initialized by the ExperimentSetup class
which creates instances of the scheduler, the job and machine

2GridSim 5.0 was released in September 2009.
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Figure 1: Main parts of the Alea 2 simulator.

loader, the failure loader and other entities as required by
the standard GridSim. The MachineLoader entity performs
the initialization of the simulated computing environment.
It reads the data describing the machines from a file and
creates Grid resources accordingly. GridSim itself does not
provide such functionality and machine parameters must be
“hardcoded” in the source java file. Our solution allows to
change machines’ parameters without the re-compilation of
the whole program.

The JobLoader reads the file containing the job descrip-
tions and creates jobs’ instances dynamically over the time.
The JobLoader supports several trace formats including the
Grid Workloads Format (GWF) of the Grid Workloads Archi-
ve3 and the Standard Workloads Format (SWF) of the Par-
allel Workloads Archive4. When the simulation time is equal
to the job submission time the JobLoader sends the job
to the scheduler. The JobLoader reads only one job at
a time to limit the required memory space, and to allow
the use of very large workload traces. This approach was
taken since the original GridSim’s Workload entity reads
all data at once which results in simulation fails for large
workloads due to the Java’s Out-Of-Memory error. The job
itself is represented by the instance of the ComplexGridlet

class. The GridSim provides only trivial implementation
of a job in its Gridlet class. The ComplexGridlet extends
this class, allowing to simulate more realistic scenarios where
each job may require additional properties such as the spe-
cific amount of available memory or the specific machine
parameters, and other real-life based constraints as was dis-
cussed in Section 3.

The FailureLoader reads the file containing descriptions
of machine failures. Once the simulation time reaches the
failure start time, the appropriate machine is set to be failed,
killing all jobs being currently executed on that machine.
When the failure period passes the machine is restarted.

In the GridSim, the Grid resource is represented by the
GridResource instance. It contains one or more machines

3http://gwa.ewi.tudelft.nl
4http://www.cs.huji.ac.il/labs/parallel/workload/

that constitute, e.g., a computer cluster. Such resource
is managed by the local scheduling policy. Current Grid-
Sim 5.0 supports several policies based on space-shared and
time-shared paradigm. Unfortunately none of these policies
support the execution of parallel jobs and the simulation
of machine failures at the same time. Moreover, the co-
allocation of several machines is also not available. There-
fore, new allocation policy called AdvancedSpaceShared was
developed for the Alea 2 based on the GridSim’s Space-

Shared policy. It allows to execute both sequential and par-
allel jobs on the specified number of CPUs using the space-
shared processor allocation policy. It enables to simulate
more realistic scenarios involving the parallel jobs as well as
the simulations of machine failures. In addition, it includes
more efficient implementation of the message passing which
allows significant improvements in the simulation speed (see
Section 5).

The newly developed Visualizator class generates the
simulation’s graphical output. The Gridsim itself enables
visualizations displaying the process of allocating jobs onto
the machines over time as can be seen in Figure 2. The Visu-

Figure 2: Visualization of the job allocation proce-

dure as provided by the GridSim.
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Figure 3: Visualization interface of the Alea 2 during the simulation.

alizator extends this functionality by displaying additional
information useful for tuning and debugging of scheduling
algorithms. So far, several outputs covering different ob-
jectives are supported and displayed. Those are the aver-
age overall utilization of resources, the cluster utilization,
the number of waiting and running jobs and the number of
requested, utilized and available CPUs. Beside that, also
the percentage of failed and running CPUs per cluster can
be displayed. The Visualizator may work in two different
fashions. In the first case, the visualization is generated con-
tinuously as the simulation proceeds (see Figure 3). In the
second case, the graphs are generated when the simulation
is finished, using the simulation results as an input. Results
are continuously collected by the ResultCollector. When
the simulation completes, the ResultCollector stores them
into csv files that can be easily used as an input for other
tools (Calc, Excel, Spreadsheet, etc.) and it also saves gen-
erated graphs into a preferred bitmap file (png, jpg, bmp,
gif).

The key part of the Alea 2 is the Scheduler entity, which
is described in the following section.

4.1 Scheduler Entity
The Scheduler is the main part of the Alea 2. Its behav-

ior is driven by events and corresponding messages. Using
them, the Scheduler communicates with the JobLoader (job
arrivals), the GridResources (job submission/completion and
failure detection) and with the ResultCollector (periodical
result collection). It is responsible for performing scheduling
decisions according to the selected scheduling policy. The

Scheduler was designed as a modular, extensible entity com-
posed of three main parts (see Figure 4) which are discussed
in the following text.

The first part stores dynamic information concerning the
Grid resources (see Figure 4 bottom right). For each Grid-

Resource, one ResourceInfo object is created that holds up-
to-date information regarding the current resource status. It
stores information about jobs currently in execution, about
jobs that are planned for execution (if the schedule is being
constructed) and it implements various functions that help
to compute or predict various values, e.g., the next free slot
available for specific job, etc.

The second part is responsible for the communication with
the remaining simulation entities (see Figure 4 top). It ac-
cepts incoming messages (events) and reacts accordingly.
Typically, the Scheduler receives newly incoming job from
the JobLoader. It takes the incoming job and places it into
the queue or schedule according to the applied scheduling
algorithm. Next, new scheduling round is performed and
an attempt to submit jobs present in the queue or schedule
is performed. If some resource is available and a suitable
job is selected, it is submitted to the resource where it will
be executed. Moreover, appropriate scheduler’s Resource-

Info object is updated according to the new situation. Once
some job is completed, it is returned to the Scheduler and
the ResourceInfo object is updated as a result of the new
state. Similar update is performed when some machine fails
or restarts. Next, a new scheduling round is started. The
cycle finishes when no new job arrivals appear and all sub-
mitted jobs have been completed. Then the simulation ends
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Figure 4: Main parts of the Scheduler entity.

and the results are stored into the output files.
Last part of the Scheduler contains implementations of

several popular and widely used scheduling algorithms. Since
the recent research in the area of Grid and cluster schedul-
ing focuses on both queue and schedule based techniques we
support both of them. Concerning the queue-based tech-
niques following algorithms are implemented: First Come
First Served (FCFS), Earliest Deadline First (EDF) [24],
EASY Backfilling (EASY-BF) [29], EDF-Backfilling (EDF-
BF) [36] and a PBSpro-like (PBS) multi-queue and priority-
based scheduling algorithm [14]. Schedule-based techniques
use a schedule — instead of a queue(s)— to store the jobs. In
this case, each job is placed into the schedule upon its arrival
which defines its expected start time, expected completion
time and the target machine(s). The use of the schedule
allows to use advanced scheduling and optimization algo-
rithms [27] such as the local search-based methods [11, 10].
These techniques are represented by the Earliest Suitable
Gap (ESG) algorithm and a Local Search (LS) based op-
timization routine [18, 19]. ESG is the schedule’s analogy
of the queue-based backfilling approach. It was inspired by
the algorithm used in the CCS system [12]. Several objec-
tive functions (see Section 3) are supported which can be
used for decision making or optimization. Of course, new
objective functions and new scheduling algorithms may be
easily added into the Scheduler, using the provided data
structures and interfaces.

During the simulation, the Scheduler is capable of col-
lecting various data such as the number of waiting and run-
ning jobs, current machine utilization, and the information
related to all other objectives which were discussed in Sec-
tion 3. Once the simulation is finished, output files contain-
ing these data are generated. Moreover, selected objectives
can be used as an input for either the “on the fly” or the
“post mortem” visualization provided by the Visualizator

graphical tool.

4.2 Extensibility
The Alea 2 can be easily extended thanks to the adopted

object oriented paradigm. The simulator is modular, mean-
ing that different functionality is implemented in different
classes. Also, the crucial Scheduler class is divided into
separate parts. Thus, a new scheduling algorithm or a new
objective function can be added through the extension or the
modification of the existing classes. Similarly if, a new job
property or a new job type is requested, only the Complex-

Gridlet shall be extended or modified, leaving the other
classes intact. Therefore, all changes are encapsulated and
the development is straightforward.

5. EVALUATION
In this section we show the performance of the Alea 2 sim-

ulator through several experiments. First, we show the sim-
ulation involving complex real-life data set from the Czech
national Grid infrastructure MetaCentrum. Next we demon-
strate the speed and the scalability of the simulator with
respect to the GridSim based GSSIM simulator and the
original GridSim toolkit. All experiments were performed
on Intel Core2 Duo 2.4GHz PC with 2GB of RAM. Unless
otherwise indicated, the JVM (Java Virtual Machine) was
limited by 1GB of available RAM.

In the first experiment, we use the complex data from
the Czech national Grid infrastructure MetaCentrum5 to
demonstrate the simulation capability of the Alea 2. These
data allow us to perform very realistic simulations, involv-
ing all characteristics discussed in Section 3. For example,
we use precise information concerning the machine param-
eters, the information about machine failures and restarts,
or the specific job requirements concerning the target ma-
chine properties [17]. The experiment involved 103,656 jobs
that were originally executed during the first five months of
the year 2009 on 14 clusters having 806 CPUs. Through
the experiment, we have compared three different schedul-
ing algorithms: FCFS, EASY-BF and schedule-based ESG.
Figure 5 presents graphs depicting the average machine us-
age per cluster (left) and the number of waiting and run-
ning jobs per day (right) as were generated by the Alea 2
during the experiment. These graphs nicely demonstrate
major differences among the algorithms. Concerning the
machine usage —as expected—FCFS generates very poor
results. FCFS is not able to utilize available resources when
the first job in the queue requires some specific and cur-
rently unavailable machine(s). At this point, other “more
flexible” jobs in the queue can be executed increasing the
machine utilization. This is the main goal of the EASY-
BF algorithm. As we can see, EASY-BF is able to increase
the machine usage by using the backfilling approach. Still,
EASY-BF does not allow to delay the execution start of the
first job in the queue, which restricts it from making more
aggressive decisions that would increase the utilization even
more. Schedule-based ESG algorithm does not apply such
restrictions and thanks to the application of a more efficient
schedule-based approach it produces the best results.

In case of the second criteria, similar reasons as in the
previous example caused that FCFS is not able to schedule
jobs fluently, generating huge peak of waiting jobs during the
time. For the same reason, the resulting makespan is also
much higher than in the remaining algorithms (by 60 days).

5http://meta.cesnet.cz
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Figure 5: Comparison of FCFS, EASY-BF and ESG using complex data set.

EASY-BF is capable of a higher resource utilization and
reduction of the number of waiting jobs through the time.
ESG again produces the best results. As can be seen, these
and several other graphical outputs such as those presented
in Figure 3 help the user to understand and compare the
scheduling process of different scheduling algorithms.

Our second experiment focused on the comparison of the
Alea 2 and the GridSim based GSSIM simulator through
an experimental execution. We could not include the Grid-
Sim itself into this experiment since it does not provide im-
plementations of any scheduling algorithms. In this case,
three different criteria were taken into account—the size of
the experiment, the amount of time needed to execute the
experiment as well as the RAM requirements of the sim-
ulator. The setup was identical for both simulators, using
FCFS as a scheduling algorithm and the SDSC Blue Horizon
workload file from the PWA as an input. Originally, we in-
tended to compare the simulators using the largest available
workload SHARCNET, but—due to the GSSIM’s parser
setup—GSSIM was not able to parse the workload file cor-
rectly. Therefore, we chose the second largest SDSC Blue
Horizon workload containing 243,314 jobs. However, the
GSSIM’s execution always finished with an Out-Of-Memory
error due to the given JVM’s RAM limit being 1GB. There-

fore, we decreased the number of simulated jobs to an ac-
ceptable level. Through several experiments, 15,000 jobs
was found to be the acceptable number. Using this setup,
we compared the GSSIM with the Alea 2.

There was a large difference concerning the RAM require-
ments. The Alea 2 (see Figure 6(a)) required less than 4MB
of memory, while the GSSIM needed all dedicated memory
(1,024MB) as is shown in Figure 6(b). The execution time
presented in logarithmic scale is available in Figure 6(c).
The GSSIM uses three steps during simulation. In the first
step the simulator initializes itself by reading the workload,
next the scheduling is performed and finally the results are
generated and stored. The Alea 2 has significantly shorter
first phase since the workload is not read during this phase
but it is processed “on-the-fly” during the whole scheduling
period. The total execution time was measured as a sum
of the initialization time, the scheduling time and the time
needed for the output generation. Figure 6(c) shows that
the Alea 2 outperforms the GSSIM in all phases. The third
phase where results are generated was critical for GSSIM.
Figure 6(d) shows the execution time of the scheduling phase
with respect to the number of finished jobs. Again, the
Alea 2 is faster than the GSSIM during the whole simula-
tion. Surprisingly, the GSSIM’s graph plugin failed to gener-
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Figure 6: Experimental results for the Alea 2, the GSSIM and the GridSim.

ate any graphical output for every setup that involved more
than 100 jobs due to the Java’s Out-Of-Memory error. In
general terms, the Alea 2 proved to be faster and less mem-
ory demanding than the GSSIM. We discussed our findings
with the GSSIM developers who informed us about finishing
the preparations of a new GSSIM version that should solve
the problems we have encountered.

In the last experiment, the new Alea’s JobLoader entity
and the new AdvancedSpaceShared policy are studied using
the large real-life workload traces. They are compared with
the original GridSim’s solutions since they are critical for
a good scalability and performance of the simulator. As we
already mentioned in Section 4, the GridSim provides the
Workload class to read job descriptions from the workload
file. However, the Workload reads all jobs before the sim-
ulation starts, therefore all jobs have to be stored in the
RAM. For large data sets and common computers this may
be a problem. On the other hand, our solution using the
JobLoader reads and creates jobs “on the fly” as simulation
proceeds, meaning that only currently running and waiting
jobs are stored in the RAM at any moment. It allows us
to maintain memory requirements in a decent level. In our
experiment, we have compared the memory requirements
of the Alea 2 with our JobLoader solution and with the
original GridSim’s Workload solution. We used the largest
SHARCNET data set from the PWA. It contains informa-
tion about 1,195,242 jobs that were executed on 6,828 CPUs
at the Shared Hierarchical Academic Research Computing
Network (SHARCNET) in Ontario (Canada) mostly during
the year 2006. In this experiment the amount of RAM con-
sumed by the Java Virtual Machine (JVM) was analyzed.
The results for the Alea 2 using the JobLoader are shown

in Figure 6(e). Clearly, during the whole simulation 850MB
of RAM is needed at most. On the other hand, when the
JVM’s limit is 1GB, and the GridSim’s Workload solution
is used, it was not possible to load more than 25.5% of jobs
as can be seen in Figure 6(f). When an additional RAM
module was added into our testing computer and the JVM’s
memory was increased to either 2GB or 3GB, it was not
possible to read all jobs (see Figure 6(g) and (h), respec-
tively) and the simulated execution did not even started.
Only 51.4% of jobs were loaded for the 2GB limit, while the
percentage of loaded jobs was equal to 77.4% for the 3GB
limit. Clearly the JobLoader’s “on the fly” approach is more
suitable and more memory efficient for the large data sets.

Finally, we have compared the simulation speed of the
Alea 2 for our AdvancedSpaceShared policy and the origi-
nal GridSim’s SpaceShared policy using the same data set.
For the SpaceShared, the more jobs are executed the slower
the simulation is. We managed to eliminate this issue by
implementation of a more efficient message passing model
in the AdvancedSpaceShared policy. Figure 7 demonstrates
the difference between the original SpaceShared and the new
AdvancedSpaceShared policy. In this experiment, the num-
ber of successfully completed jobs in one day (86,400 sec-
onds) was computed. Our solution simulates all 1,195,242
jobs in just 125 minutes, while the original solution slows
down, finishing only 96,000 jobs within 24 hours.

Beside the previous experiments, there are also other known
results concerning the GridSim scalability [7]. Basically the
limitation of the GridSim is based on the applied thread
model which limits the number of communicating entities
to approximately 10,000. Since the Alea 2 uses the Grid-
Sim, the same limitations applies for it too. We are aware
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Figure 7: Simulation time with the SpaceShared and

the AdvancedSpaceShared policy.

that for some types of simulations such limitation may be
severe. However, the Alea 2 was designed to simulate sched-
uler’s behavior and not the behavior of thousands Grid users.
From this point of view, the ability to simulate large num-
ber of jobs and machines is necessary. Job is not a prob-
lem since it is a simple object, not using a thread. On the
other hand GridResource representing one computer cluster
requires four threads. Still, in the real world there are usu-
ally dozens or at most hundreds of clusters which fits fine
within the GridSim limitations. It is necessary to notice
that a machine within a GridResource is a simple object—
not a thread—thus hundreds of machines placed within one
GridResource require no additional thread.

6. CONCLUSION AND FUTURE WORK
We presented the platform independent Alea 2 schedul-

ing simulator which is an extension of the popular Grid-
Sim toolkit. The goal of the simulator is to offer an easy
way for the researchers to study, modify and extend var-
ious scheduling algorithms. Unlike the GSSIM or the so-
lution described in [2], the Alea 2 stays fully compatible
with the original GridSim, which is very important for the
future development. It was shown that it significantly out-
performs the GridSim based GSSIM simulator by means of
simulation speed and scalability. Moreover, the newly de-
veloped JobLoader and the AdvancedSpaceShared solutions
replacing the original GridSim’s Workload and the Space-

Shared solutions lead to better performance covering both
the scalability (JobLoader) and the simulation speed (Ad-
vancedSpaceShared).

Provided functionality covers typical researchers’ require-
ments involving “ready to use” simulator that includes full
implementations of common scheduling algorithms and sup-
ports common objective functions. Moreover, the visual-
ization interface allows faster debugging and tuning of the
studied algorithms as well as direct export of the simulation
results into the bitmap and the csv files that can be easily
used later. The Alea 2 has been successfully used in our
work which focuses on the area of cluster and Grid schedul-
ing and was able to simulate scheduling under different se-
tups involving various data sets and objective functions [16,
18, 17, 19]. We also received positive feedback from several
researchers from around the world who found using it very
helpful.

The Alea 2, including the sources and full documentation,

can be downloaded from http://www.fi.muni.cz/~xklusac/

alea.
The Alea 2 currently supports centralized scheduling ap-

proach. We plan its extention to allow decentralized and
multi-level scheduling, which is common for the large scale
Grids. Also, newly proposed or adopted scheduling algo-
rithms will be made available with the future simulator’s
releases. Last but not least, we plan to offer some of our
solutions to become a part of the future GridSim’s distribu-
tions.
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