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ABSTRACT 
Castalia is an open-source simulator for wireless sensor networks 
and body area networks which is widely used in the academic and 
research community. This paper presents a basic evaluation study 
of Castalia, reporting computation time and memory usage for a 
variety of scenarios/benchmarks. Moreover, key parameters, such 
as network size, simulation time, fraction of mobile nodes are 
varied to reveal Castalia’s scalability potential. We discuss our 
results and explain counterintuitive findings in simulator’s 
performance. The results and their explanation can be used by 
Castalia users as a guide to determine the limits they can push 
their simulations, as well as to make parameter choices that trade-
off accuracy for performance.  They also provide an indication of 
Castalia’s performance capabilities to potential users. 

Categories and Subject Descriptors 
I.6 [Computing Methodologies]: Simulation and Modeling  

General Terms 
Wireless Sensor Network simulator, scalability performance 
evaluation. 

Keywords 
Castalia, WSN, wireless, sensor, network, simulator, performance, 
scalability. 

1. INTRODUCTION 
The wireless sensor networks (WSN) research community has 
relied heavily on simulation to propose and validate solutions at 
every stage and layer of a WSN system. The inherent ad hoc 
nature of WSN, their embedded and distributed programming 
difficulties, and their large-scale proposed deployments in some 
cases, have made real deployments and testing prohibitory. 
Researchers have used various platforms for their simulating 
needs, many of which are evolutions of wired network simulators, 
or they are modeling a small portion of the whole system. Castalia 
[1] was created  out  of  the  need  to  have a simulator specifically 

designed for WSN, encompassing all important aspects of the 
system and providing the most accurate modeling available in the 
research community, starting with the communication models 
(i.e., wireless channel and radio models) [14][15]. Due to its 
accurate modeling and relative ease of use, Castalia has gained 
wide acceptance in the WSN research community with a number 
of citations in the literature. Despite its acceptance though, there 
has not been a rigorous evaluation study on the performance 
capabilities and scalability of Castalia. This study can be of 
particular interest since the expert’s “common sense” dictates that 
there is a significant performance cost for accurate modeling, and 
the effect is even more pronounced when we are trying to scale 
our simulations with respect to network size and other parameters 
of interest. Although, this claim is true in a general sense, it is 
worth investigating -quantitatively- the performance of the 
simulator to reveal specific and practical boundaries of its usage.  

This is indeed the purpose of the paper. We have conducted a 
series of simulations under different scenarios and measured the 
time needed to complete these simulations as well as their 
memory usage. One scenario includes a complex real-life 
application: a WSN to monitor the structural health of bridges. An 
advanced MAC protocol, a routing protocol, and a physical 
process are used in this scenario. It is interesting to see how the 
performance scales with network size under different channel 
assumptions and under different MAC protocols. Other scenarios 
include a more artificial setting, specifically designed to evaluate 
Castalia. Nodes placed on a grid (some of them mobile) 
transmitting periodically packets, using a CSMA MAC protocol. 
We observe and report how performance scales with different 
settings in network size, fraction of nodes which are mobile, 
simulation time duration, while different channel models are used 
(ideal, static realistic and time-varying realistic).  

It is important to note that we are not trying to compare the 
performance of Castalia with other WSN simulators, although 
Castalia would compare favorably to other platforms for 
seemingly similar tasks. We are avoiding this kind of comparison 
because two simulator platforms do not offer the same 
functionality nor do they have the same goals in their modeling, 
so it is not possible to compare “apples to apples”. This key idea 
has also been conveyed by Voigh et al. [21]. We are rather 
showing the performance capabilities and limits of Castalia and 
we are exposing performance-accuracy tradeoffs in a quantitative 
way.  Researchers can use this information together with the 
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functionality specification of Castalia to decide when and how to 
use the simulator. 

The rest of the paper is organized as follows: Section 2 discusses 
related work. Section 3 provides a brief description of some of the 
models used in Castalia, in particular relating to communication. 
Section 4 presents our performance results and explains some 
counter-intuitive findings. Finally section 5 concludes the paper. 

  

2. RELATED WORK 
There are several simulators used in WSN research as mentioned 
in the introduction. The most popular ones are: 1) the network-
simulator-2 (ns-2) [18], and its specific WSN modifications 
[3][13] 2) TOSSIM [8], a discrete event simulator, emulating 
nodes that run the TinyOS [9] operating system, 3) J-Sim 
(formerly known as JavaSim) [17], a general purpose JavaTM-
based simulator developed after NS-2 with the aim to overcome 
the scalability issues of the latter.  Comparing these and other 
WSN simulators with Castalia in terms of functionality and model 
accuracy is outside the scope if this work. The reader can refer to 
[6][16] for surveys that compare these platforms as well as several 
others.  

Work that evaluates simulators is of more relevance to this paper. 
Nicol et al. in [12] compared the scalability of NS-2, J-Sim and 
SSFNet by measuring the execution-time, the number of 
generated events, the memory footprint, and finally the accuracy 
of results. Ns-2 was found to be the fastest among the other two, 
but also the most memory-hungry and JavaSim was the worst 
performer in terms of speed. Lopez et al. in [10] present several 
design practices for designing fast and scalable simulators for 
sensor networks, but unfortunately, they were limited in 
theoretical implementation norms, without actually performing 
some kind of benchmarking. Finally, in their recent work, 
Weingartner et al. [22], compared the performance of ns-2, ns-3, 
OMNeT++, Jist and SimPy. The comparison criteria they used 
were execution time and memory usage for various network sizes. 
They also made an interesting measurement of simulation 
execution time versus the packet drop probability in the network, 
which makes a lot of sense because as more and more packets are 
removed from the simulation, the fewer events are processed.   

We are using the same metrics as the aforementioned works but 
we do not compare the results with other WSN simulators. As 
explained in the introduction this would involve comparing 
dissimilar things. Focusing solely on Castalia allows us to perform 
a well-rounded set of simulations ranging different scenarios and 
different models while varying different “scaling” parameters.  
This is the first such evaluation survey on Castalia.  

   

3. SUMMARY OF CASTALIA’S MODELS 
In this section we present a brief summary of the models that are 
relevant to the simulation results we present in the paper. For a 
more detailed description please refer to Castalia’s User Manual 
[2]. Castalia is built on OMNeT++ [20], a framework which 
provides the basic machinery and tools to write discrete-event 
simulators, but by itself does not provide any components 
specifically for computer network simulations. 

3.1 Channel Modeling 
In Castalia, nodes are OMNeT++ modules that do not connect to 
each other directly but through the wireless channel module. The 

arrows in Figure 1 signify message passing from one module to 
another. When a node has a packet to send, it goes through the 
wireless channel which then decides which nodes should receive 
the packet. 

 

Figure 1: The top level module connection in Castalia 

One important aspect of the wireless channel modeling is to 
estimate the average path loss between two nodes, or in general, 
two points in space. For WSN, where the separation of nodes is 
from a couple of meters to a hundred meters, the lognormal 
shadowing model has been shown by Zuniga [23] to give accurate 
estimates for average path loss when appropriate radio models are 
considered too. Castalia uses the lognormal shadowing model, 
along with radios that return a packet reception probability (PRP) 
given the received signal to noise ratio (SNR). These offer the 
realistic conditions that Zuniga describes. When we want to 
emulate an ideal channel model, we eliminate the shadowing (by 
eliminating the sigma parameter) and adopt an ideal radio 
modulation scheme (where the modulation function SNR!PRP is 
a 0-1 step function). These changes effectively make the 
communication model to be the unit disk model. Interference is 
computed dynamically and directly affects the SNR, instead of 
having it as a separate feature. In the ideal model all interference 
is discarded.  

The realistic model handles average path loss, but there is another 
aspect to the channel: Time variability. This is particularly 
important for Body Area Networks, where experimental data 
shows a large variation in the received signal with time. The 
solution we gave in Castalia is generic, accurate, yet efficient. 

When we have to calculate the path loss at a specific moment, we 
first find the average path loss from the state we have stored 
during channel initialization and then we have to find the 
component of the path loss due to temporal variation. To do this 
we have kept the last “observed” value (in simulation this means 
the last value we computed) and the time it has passed since then. 
These two numbers should define a probability density function 
(pdf) that we draw our new value from. Obviously, if little time 
has passed, then the bulk of the probability in this pdf should be in 
values close to the last observation. If the last observation is a 
deep fade (e.g. -40 dB) then the pdf should “boost” bigger values. 
We cannot produce those pdfs dynamically from a model. They 
have to be produced from our experimental measurements and 
entered as model parameters. This in turn implies that we cannot 
have a pdf for any combination of last observation (dB value) and 
time passed. Instead we have to declare for what dB values and 
what times we are providing the pdfs. Our algorithm then uses a 
series of random number draws from a combination of available 
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pdfs to approximate the results for any dB value and time passed. 
We also provide a way to describe a pdf in a manner that is 
computationally cheap to draw a random number from it, yet it 
produces accurate results. We will not delve further into the 
effectiveness of our time-varying channel modeling, but its 
macroscopic performance results will be shown in the 
performance evaluation section. 

3.2 Mobility affecting Channel Modeling 
Allowing for mobile nodes complicates matters, since now it is 
not enough to take the average path losses between the nodes. We 
need to keep state about path losses between points in the space. 
This implies that we need to break up the space in discrete cells 
and calculate the path losses from each cell to each other cell. 
Look at figure 2 for an example of such a map only for one 
transmitting cell. 

 

Figure 2: Path loss map in a 2D space segmented in cells (for a 

single transmitter cell) 

The map is calculated with the lognormal shadowing model we 
described before. Then, we just take cell locations and cell IDs 
instead of specific node locations and node IDs. The smaller the 
cell size is, the more fine-grained and accurate is your path loss 
map but also the more memory is needed to store it. Imagine you 
just have a 2-dimentional field 100m by 100m and you would like 
to have a cell of 1m by 1m, this results in 10,000 cells. This in 
turn results in a total of 10,0002 = 100,000,000 distinct cell-to-cell 
path losses. With several bytes per path loss element (we store 
information besides the path loss) this can grow up to the order of 
GBytes of memory. Our algorithm is smart and does not keep all 
possible combinations but still the same scaling factor applies 
(O(N4)). Consequently the state-space can quickly explode, as 
well as the processing time searching through these cells. Adding 
a 3rd dimension can aggravate matters, so the user has to be aware 
of these parameter values. 

If we do not have any mobility in our scenario then we can 
declare this by setting a special parameter to be true and save a lot 
of memory space and computation time. In this case, the space is 
not broken up into cells and the exact node locations are used in 
path loss computations. 

4. PERFORMANCE EVALUATION 
A Castalia simulation scenario is fully described using an 
OMNeT++ specific parameter description file. For the purposes of 
our experiments, we had to perform a big number of simulations, 
and thus, we made extensive use of scripting to automatically 
generate the parameter description files, measure execution time, 
monitor the memory usage and collect/plot results. Execution 
times have been measured at a micro-second scale, using the 
Time::HiRes library of Perl. Memory profiling has been 
implemented with a Python script which runs at the background 
and polls the process’s resident set size (rss) at main memory, at a 
customizable sample rate (set to 10Hz ). The machine we ran our 
experiments was equipped with an Intel Core 2 DuoTM  E6750 
CPU running at 2.66GHz clock speed (1333MHz bus speed) and 
with 4GB of RAM (DDR2 @ 800MHz). Manufacturer’s 
specifications for this particular CPU amount to 41673 MPTOPS 
and 21.28 GFLOPS. Moreover, an identical machine’s SPEC 
CPU2006 benchmark results are publicly available [4][5] and the 
reported peak/base scores are 20.5/18.3 for the CINT2006 test, 
and 17.7/17.1 for the CFP2006 test. 

4.1 Real-life scenarios 
The first set of simulations is about an application we have 
developed for a real life need: Designing a WSN for structural 
health bridge monitoring.  The nodes are deployed statically along 
a bridge of variable length. The network is 3 nodes wide and N 
nodes long, where N depends on the length of the bridge. The 
nodes are 20m apart as they are following the length of the bridge. 
A physical process creating triggering cars is part of the scenario. 
When nodes detect a car, they send the data to the sink sampling 
at 5Hz. There is one node in the middle which acts as the sink 
Simple tree routing is employed to achieve multi-hop 
communication. As for the MAC, we are using either a simple 
CSMA or the more complex T-MAC [19].   

Figure 3 shows the ratio of real execution time over simulated 
time as a function of the network size (number of nodes). There 
are 3 curves for the 3 different scenarios we chose: A simple 
CSMA based MAC with 1) realistic and 2) ideal channel 
modeling and 3) T-MAC with a realistic channel modeling. All 
simulations run for a simulated time of 1800sec (30min). It must 
be noted that results showed very little variation against different 
random seeds, thus confidence levels are not shown in the figures 
(since they are almost 0). 

We notice that the realistic CSMA scenario is the fastest of all, 
followed by the realistic T-MAC (at least for network sizes >150). 
This might seem counter-intuitive as the realistic model is 
expected to be more computationally intensive. However, in 
Castalia, the ideal model is not implemented by a computationally 
simple module. We are using the same code as the realistic model. 
The parameter change to achieve/emulate the ideal model does 
not have a considerable effect on the code executed in the wireless 
channel. Then why is the simulation much slower when using the 
ideal model? The answer is that because the channel 
characteristics change, we have more packets being successfully 
received and forwarded, thus more events altogether. Similar 
findings have been reported also by Weingartner et al. in [22]. 
Looking at the final received packet success rate, the ideal model 
reaches 99% when the realistic model reaches 59% for the biggest 
network. We also notice that the use of T-MAC instead of CSMA 
has an important impact on execution time, at least for small to 
medium network sizes, when most packets are delivered. For 
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network sizes smaller than 150 nodes the T-MAC scenario is 
almost twice as slow as its CSMA counterpart and also the 
slowest of the all three scenarios. This reflects the complexity of 
the T-MAC protocol compared to CSMA. 

 

Figure 3: The Bridge Test scenarios 

The memory usage follows an almost perfect linear pattern so we 
do not include the graph due to space restrictions. For all three 
different scenarios the memory increases from 4MB (for the 20 
node case) to 20MB (for the 455 node case) linearly. 

Another interesting trend is to see is the initialization overhead of 
Castalia. Figure 4 shows the “real execution” to “simulation time” 
ratio for different simulation times, for a 110-node network. 

 

Figure 4: Showing Initialization overheads 

We notice that for small simulation time values (e.g., 1sec or 
5secs) CSMA and TMAC execution times seem the same, both 
being quite slow. This is due to the 250ms initialization delay that 
we need for this network. 

4.2 Evaluation-specific scenarios 
To better expose the scaling of performance with network size 
(not depending on routing protocols, or MAC, or physical 
process), and to delve into mobility scenarios we decided to run 

some “artificial” scenarios that were designed specifically for this 
evaluation.  

The general setting is that the nodes are placed on a rectangle grid 
and are transmitting 1 packet/sec using CSMA. The packets are 
not forwarded when received and there is no routing whatsoever.  

In this way we have a better view at the performance and 
scalability of the lower communication layers (wireless channel 
and radio) and less on the effect of the MAC, routing, application, 
or physical process. For example with the bridge scenario there 
was little point to go to 1000 node network since the routing of 
messages over so many hops would take over and furthermore we 
would never realistically design an application to work like this. 
Now with these evaluation-specific settings we can meaningfully 
explore these boundaries. 

Figure 5 shows performance results for a static network and for 
three different channel models: ideal, realistic and realistic with 
time variability. The total simulation time duration was again 
1800 sec. 

 

Figure 5: Static networks performance 

We notice again the simulations becoming slower as networks 
become bigger. The increase is indeed almost linear (e.g., for the 
time-varying model: 441 nodes run in 115sec, 1784 nodes run in 
585sec).  We notice again that the supposedly simple ideal model 
is slower and the time-varying model is the fastest. Again, this is 
not an indication of the actual complexity of their computation but 
the indirect computation caused by extra messages generated. 
More specifically, the ideal model causes more receptions of 
transmitted packets than the realistic model and also from the time 
varying model (whose deep fades affect reception even worse 
than the time-invariant realistic model). Memory is again 
increasing linearly from 5MB to 64MB.   

In this setting we also start exploring the effect of mobility. Figure 
6 shows the performance when 0.3 of the nodes are mobile (each 
mobile node chooses a random point to move to from its starting 
grid position). We have used 5m"5m cells to break up the space. 

We notice similar trends to the static network results. The 
absolute numbers however are quite different: networks with 
presence of mobile nodes are almost twice as slow as networks 
with only static nodes. This is because we are now breaking up 
the space into cells and doing channel computations with cells. 
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Memory usage increases significantly, reaching 635MB (time 
varying) and 510MB (ideal) for the biggest network. 

We also carried another series of simulations where we varied the 
fraction of mobile nodes for a 484-node network. Figure 7 shows 
the results.   

 

 

Figure 6: Mobile networks performance 

 

 

Figure 7: Performance vs the fraction of mobile nodes 

 

It is clear that although the simulations slow down when we have 
more mobile nodes (as expected since we have more node 
movement events) the slowdown is not significant. Thus, we can 
claim that one important characteristic to faster simulations is to 
have all nodes static. From the moment we have at least 1 mobile 
node, the percentage of mobile nodes does not make much 
difference. 

Finally let us look at the effect of the cell size in the performance 
and memory footprint. Figure 8 shows the results for varying the 
cell size for a 169 node network. 

We notice that for small cell sizes the simulation execution time 
explodes. A good performance/accuracy trade-off point for our 

particular scenarios seems to be around 5m"5m cell sizes. Figure 
9 shows the results for the memory footprint of the same 
simulations. The graph shows a memory footprint that exceeds 
1.5GB of RAM if a cell-size of 2m x 2m is chosen. Again cell size 
5m x 5m shows a reasonable compromise. 

 

 

Figure 8: Performance vs cell size 

 

 

Figure 9: Memory vs cell size 

 

5. CONCLUSION 
The paper presents a performance evaluation of Castalia in terms 
of computation time and memory footprint for various simulation 
scenarios. In particular we see how Castalia’s performance scales 
when different parameters are varied and also when different 
models are used. We notice that the realistic channel modeling 
even with a time-varying component is not prohibitory for large 
network sizes, while mobility can be handled efficiently if being 
careful with the cell size. The results of this work can act as a 
guide for Castalia users to tune their simulations and also to 
estimate their computation-time budget. 
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