
Performance and Scalability Evaluation of the Castalia
Wireless Sensor Network Simulator

Dimosthenis Pediaditakis
Imperial College London

180 Queen's Gate
London, SW7 2AZ, United Kingdom

dpediadi@doc.ic.ac.uk

Yuri Tselishchev
NICTA, Univ. of Sydney

13 Garden Street
Eveleigh, NSW, Australia

Yuri.Tselishchev@nicta.
com.au

Athanassios Boulis
NICTA

13 Garden Street
Eveleigh, NSW, Australia

Athanassios.Boulis@nicta.
com.au

ABSTRACT
Castalia is an open-source simulator for wireless sensor networks
and body area networks which is widely used in the academic and
research community. This paper presents a basic evaluation study
of Castalia, reporting computation time and memory usage for a
variety of scenarios/benchmarks. Moreover, key parameters, such
as network size, simulation time, fraction of mobile nodes are
varied to reveal Castalia’s scalability potential. We discuss our
results and explain counterintuitive findings in simulator’s
performance. The results and their explanation can be used by
Castalia users as a guide to determine the limits they can push
their simulations, as well as to make parameter choices that trade-
off accuracy for performance. They also provide an indication of
Castalia’s performance capabilities to potential users.

Categories and Subject Descriptors
I.6 [Computing Methodologies]: Simulation and Modeling

General Terms
Wireless Sensor Network simulator, scalability performance
evaluation.

Keywords
Castalia, WSN, wireless, sensor, network, simulator, performance,
scalability.

1. INTRODUCTION
The wireless sensor networks (WSN) research community has
relied heavily on simulation to propose and validate solutions at
every stage and layer of a WSN system. The inherent ad hoc
nature of WSN, their embedded and distributed programming
difficulties, and their large-scale proposed deployments in some
cases, have made real deployments and testing prohibitory.
Researchers have used various platforms for their simulating
needs, many of which are evolutions of wired network simulators,
or they are modeling a small portion of the whole system. Castalia
[1] was created out of the need to have a simulator specifically

designed for WSN, encompassing all important aspects of the
system and providing the most accurate modeling available in the
research community, starting with the communication models
(i.e., wireless channel and radio models) [14][15]. Due to its
accurate modeling and relative ease of use, Castalia has gained
wide acceptance in the WSN research community with a number
of citations in the literature. Despite its acceptance though, there
has not been a rigorous evaluation study on the performance
capabilities and scalability of Castalia. This study can be of
particular interest since the expert’s “common sense” dictates that
there is a significant performance cost for accurate modeling, and
the effect is even more pronounced when we are trying to scale
our simulations with respect to network size and other parameters
of interest. Although, this claim is true in a general sense, it is
worth investigating -quantitatively- the performance of the
simulator to reveal specific and practical boundaries of its usage.

This is indeed the purpose of the paper. We have conducted a
series of simulations under different scenarios and measured the
time needed to complete these simulations as well as their
memory usage. One scenario includes a complex real-life
application: a WSN to monitor the structural health of bridges. An
advanced MAC protocol, a routing protocol, and a physical
process are used in this scenario. It is interesting to see how the
performance scales with network size under different channel
assumptions and under different MAC protocols. Other scenarios
include a more artificial setting, specifically designed to evaluate
Castalia. Nodes placed on a grid (some of them mobile)
transmitting periodically packets, using a CSMA MAC protocol.
We observe and report how performance scales with different
settings in network size, fraction of nodes which are mobile,
simulation time duration, while different channel models are used
(ideal, static realistic and time-varying realistic).

It is important to note that we are not trying to compare the
performance of Castalia with other WSN simulators, although
Castalia would compare favorably to other platforms for
seemingly similar tasks. We are avoiding this kind of comparison
because two simulator platforms do not offer the same
functionality nor do they have the same goals in their modeling,
so it is not possible to compare “apples to apples”. This key idea
has also been conveyed by Voigh et al. [21]. We are rather
showing the performance capabilities and limits of Castalia and
we are exposing performance-accuracy tradeoffs in a quantitative
way. Researchers can use this information together with the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTools 2010 March 15–19, Torremolinos, Malaga, Spain.
Copyright 2010 ICST, ISBN 78-963-9799-87-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8727
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8727

functionality specification of Castalia to decide when and how to
use the simulator.

The rest of the paper is organized as follows: Section 2 discusses
related work. Section 3 provides a brief description of some of the
models used in Castalia, in particular relating to communication.
Section 4 presents our performance results and explains some
counter-intuitive findings. Finally section 5 concludes the paper.

2. RELATED WORK
There are several simulators used in WSN research as mentioned
in the introduction. The most popular ones are: 1) the network-
simulator-2 (ns-2) [18], and its specific WSN modifications
[3][13] 2) TOSSIM [8], a discrete event simulator, emulating
nodes that run the TinyOS [9] operating system, 3) J-Sim
(formerly known as JavaSim) [17], a general purpose JavaTM-
based simulator developed after NS-2 with the aim to overcome
the scalability issues of the latter. Comparing these and other
WSN simulators with Castalia in terms of functionality and model
accuracy is outside the scope if this work. The reader can refer to
[6][16] for surveys that compare these platforms as well as several
others.

Work that evaluates simulators is of more relevance to this paper.
Nicol et al. in [12] compared the scalability of NS-2, J-Sim and
SSFNet by measuring the execution-time, the number of
generated events, the memory footprint, and finally the accuracy
of results. Ns-2 was found to be the fastest among the other two,
but also the most memory-hungry and JavaSim was the worst
performer in terms of speed. Lopez et al. in [10] present several
design practices for designing fast and scalable simulators for
sensor networks, but unfortunately, they were limited in
theoretical implementation norms, without actually performing
some kind of benchmarking. Finally, in their recent work,
Weingartner et al. [22], compared the performance of ns-2, ns-3,
OMNeT++, Jist and SimPy. The comparison criteria they used
were execution time and memory usage for various network sizes.
They also made an interesting measurement of simulation
execution time versus the packet drop probability in the network,
which makes a lot of sense because as more and more packets are
removed from the simulation, the fewer events are processed.

We are using the same metrics as the aforementioned works but
we do not compare the results with other WSN simulators. As
explained in the introduction this would involve comparing
dissimilar things. Focusing solely on Castalia allows us to perform
a well-rounded set of simulations ranging different scenarios and
different models while varying different “scaling” parameters.
This is the first such evaluation survey on Castalia.

3. SUMMARY OF CASTALIA’S MODELS
In this section we present a brief summary of the models that are
relevant to the simulation results we present in the paper. For a
more detailed description please refer to Castalia’s User Manual
[2]. Castalia is built on OMNeT++ [20], a framework which
provides the basic machinery and tools to write discrete-event
simulators, but by itself does not provide any components
specifically for computer network simulations.

3.1 Channel Modeling
In Castalia, nodes are OMNeT++ modules that do not connect to
each other directly but through the wireless channel module. The

arrows in Figure 1 signify message passing from one module to
another. When a node has a packet to send, it goes through the
wireless channel which then decides which nodes should receive
the packet.

Figure 1: The top level module connection in Castalia

One important aspect of the wireless channel modeling is to
estimate the average path loss between two nodes, or in general,
two points in space. For WSN, where the separation of nodes is
from a couple of meters to a hundred meters, the lognormal
shadowing model has been shown by Zuniga [23] to give accurate
estimates for average path loss when appropriate radio models are
considered too. Castalia uses the lognormal shadowing model,
along with radios that return a packet reception probability (PRP)
given the received signal to noise ratio (SNR). These offer the
realistic conditions that Zuniga describes. When we want to
emulate an ideal channel model, we eliminate the shadowing (by
eliminating the sigma parameter) and adopt an ideal radio
modulation scheme (where the modulation function SNR!PRP is
a 0-1 step function). These changes effectively make the
communication model to be the unit disk model. Interference is
computed dynamically and directly affects the SNR, instead of
having it as a separate feature. In the ideal model all interference
is discarded.

The realistic model handles average path loss, but there is another
aspect to the channel: Time variability. This is particularly
important for Body Area Networks, where experimental data
shows a large variation in the received signal with time. The
solution we gave in Castalia is generic, accurate, yet efficient.

When we have to calculate the path loss at a specific moment, we
first find the average path loss from the state we have stored
during channel initialization and then we have to find the
component of the path loss due to temporal variation. To do this
we have kept the last “observed” value (in simulation this means
the last value we computed) and the time it has passed since then.
These two numbers should define a probability density function
(pdf) that we draw our new value from. Obviously, if little time
has passed, then the bulk of the probability in this pdf should be in
values close to the last observation. If the last observation is a
deep fade (e.g. -40 dB) then the pdf should “boost” bigger values.
We cannot produce those pdfs dynamically from a model. They
have to be produced from our experimental measurements and
entered as model parameters. This in turn implies that we cannot
have a pdf for any combination of last observation (dB value) and
time passed. Instead we have to declare for what dB values and
what times we are providing the pdfs. Our algorithm then uses a
series of random number draws from a combination of available

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8727
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8727

pdfs to approximate the results for any dB value and time passed.
We also provide a way to describe a pdf in a manner that is
computationally cheap to draw a random number from it, yet it
produces accurate results. We will not delve further into the
effectiveness of our time-varying channel modeling, but its
macroscopic performance results will be shown in the
performance evaluation section.

3.2 Mobility affecting Channel Modeling
Allowing for mobile nodes complicates matters, since now it is
not enough to take the average path losses between the nodes. We
need to keep state about path losses between points in the space.
This implies that we need to break up the space in discrete cells
and calculate the path losses from each cell to each other cell.
Look at figure 2 for an example of such a map only for one
transmitting cell.

Figure 2: Path loss map in a 2D space segmented in cells (for a

single transmitter cell)

The map is calculated with the lognormal shadowing model we
described before. Then, we just take cell locations and cell IDs
instead of specific node locations and node IDs. The smaller the
cell size is, the more fine-grained and accurate is your path loss
map but also the more memory is needed to store it. Imagine you
just have a 2-dimentional field 100m by 100m and you would like
to have a cell of 1m by 1m, this results in 10,000 cells. This in
turn results in a total of 10,0002 = 100,000,000 distinct cell-to-cell
path losses. With several bytes per path loss element (we store
information besides the path loss) this can grow up to the order of
GBytes of memory. Our algorithm is smart and does not keep all
possible combinations but still the same scaling factor applies
(O(N4)). Consequently the state-space can quickly explode, as
well as the processing time searching through these cells. Adding
a 3rd dimension can aggravate matters, so the user has to be aware
of these parameter values.

If we do not have any mobility in our scenario then we can
declare this by setting a special parameter to be true and save a lot
of memory space and computation time. In this case, the space is
not broken up into cells and the exact node locations are used in
path loss computations.

4. PERFORMANCE EVALUATION
A Castalia simulation scenario is fully described using an
OMNeT++ specific parameter description file. For the purposes of
our experiments, we had to perform a big number of simulations,
and thus, we made extensive use of scripting to automatically
generate the parameter description files, measure execution time,
monitor the memory usage and collect/plot results. Execution
times have been measured at a micro-second scale, using the
Time::HiRes library of Perl. Memory profiling has been
implemented with a Python script which runs at the background
and polls the process’s resident set size (rss) at main memory, at a
customizable sample rate (set to 10Hz). The machine we ran our
experiments was equipped with an Intel Core 2 DuoTM E6750
CPU running at 2.66GHz clock speed (1333MHz bus speed) and
with 4GB of RAM (DDR2 @ 800MHz). Manufacturer’s
specifications for this particular CPU amount to 41673 MPTOPS
and 21.28 GFLOPS. Moreover, an identical machine’s SPEC
CPU2006 benchmark results are publicly available [4][5] and the
reported peak/base scores are 20.5/18.3 for the CINT2006 test,
and 17.7/17.1 for the CFP2006 test.

4.1 Real-life scenarios
The first set of simulations is about an application we have
developed for a real life need: Designing a WSN for structural
health bridge monitoring. The nodes are deployed statically along
a bridge of variable length. The network is 3 nodes wide and N
nodes long, where N depends on the length of the bridge. The
nodes are 20m apart as they are following the length of the bridge.
A physical process creating triggering cars is part of the scenario.
When nodes detect a car, they send the data to the sink sampling
at 5Hz. There is one node in the middle which acts as the sink
Simple tree routing is employed to achieve multi-hop
communication. As for the MAC, we are using either a simple
CSMA or the more complex T-MAC [19].

Figure 3 shows the ratio of real execution time over simulated
time as a function of the network size (number of nodes). There
are 3 curves for the 3 different scenarios we chose: A simple
CSMA based MAC with 1) realistic and 2) ideal channel
modeling and 3) T-MAC with a realistic channel modeling. All
simulations run for a simulated time of 1800sec (30min). It must
be noted that results showed very little variation against different
random seeds, thus confidence levels are not shown in the figures
(since they are almost 0).

We notice that the realistic CSMA scenario is the fastest of all,
followed by the realistic T-MAC (at least for network sizes >150).
This might seem counter-intuitive as the realistic model is
expected to be more computationally intensive. However, in
Castalia, the ideal model is not implemented by a computationally
simple module. We are using the same code as the realistic model.
The parameter change to achieve/emulate the ideal model does
not have a considerable effect on the code executed in the wireless
channel. Then why is the simulation much slower when using the
ideal model? The answer is that because the channel
characteristics change, we have more packets being successfully
received and forwarded, thus more events altogether. Similar
findings have been reported also by Weingartner et al. in [22].
Looking at the final received packet success rate, the ideal model
reaches 99% when the realistic model reaches 59% for the biggest
network. We also notice that the use of T-MAC instead of CSMA
has an important impact on execution time, at least for small to
medium network sizes, when most packets are delivered. For

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8727
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8727

network sizes smaller than 150 nodes the T-MAC scenario is
almost twice as slow as its CSMA counterpart and also the
slowest of the all three scenarios. This reflects the complexity of
the T-MAC protocol compared to CSMA.

Figure 3: The Bridge Test scenarios

The memory usage follows an almost perfect linear pattern so we
do not include the graph due to space restrictions. For all three
different scenarios the memory increases from 4MB (for the 20
node case) to 20MB (for the 455 node case) linearly.

Another interesting trend is to see is the initialization overhead of
Castalia. Figure 4 shows the “real execution” to “simulation time”
ratio for different simulation times, for a 110-node network.

Figure 4: Showing Initialization overheads

We notice that for small simulation time values (e.g., 1sec or
5secs) CSMA and TMAC execution times seem the same, both
being quite slow. This is due to the 250ms initialization delay that
we need for this network.

4.2 Evaluation-specific scenarios
To better expose the scaling of performance with network size
(not depending on routing protocols, or MAC, or physical
process), and to delve into mobility scenarios we decided to run

some “artificial” scenarios that were designed specifically for this
evaluation.

The general setting is that the nodes are placed on a rectangle grid
and are transmitting 1 packet/sec using CSMA. The packets are
not forwarded when received and there is no routing whatsoever.

In this way we have a better view at the performance and
scalability of the lower communication layers (wireless channel
and radio) and less on the effect of the MAC, routing, application,
or physical process. For example with the bridge scenario there
was little point to go to 1000 node network since the routing of
messages over so many hops would take over and furthermore we
would never realistically design an application to work like this.
Now with these evaluation-specific settings we can meaningfully
explore these boundaries.

Figure 5 shows performance results for a static network and for
three different channel models: ideal, realistic and realistic with
time variability. The total simulation time duration was again
1800 sec.

Figure 5: Static networks performance

We notice again the simulations becoming slower as networks
become bigger. The increase is indeed almost linear (e.g., for the
time-varying model: 441 nodes run in 115sec, 1784 nodes run in
585sec). We notice again that the supposedly simple ideal model
is slower and the time-varying model is the fastest. Again, this is
not an indication of the actual complexity of their computation but
the indirect computation caused by extra messages generated.
More specifically, the ideal model causes more receptions of
transmitted packets than the realistic model and also from the time
varying model (whose deep fades affect reception even worse
than the time-invariant realistic model). Memory is again
increasing linearly from 5MB to 64MB.

In this setting we also start exploring the effect of mobility. Figure
6 shows the performance when 0.3 of the nodes are mobile (each
mobile node chooses a random point to move to from its starting
grid position). We have used 5m"5m cells to break up the space.

We notice similar trends to the static network results. The
absolute numbers however are quite different: networks with
presence of mobile nodes are almost twice as slow as networks
with only static nodes. This is because we are now breaking up
the space into cells and doing channel computations with cells.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8727
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8727

Memory usage increases significantly, reaching 635MB (time
varying) and 510MB (ideal) for the biggest network.

We also carried another series of simulations where we varied the
fraction of mobile nodes for a 484-node network. Figure 7 shows
the results.

Figure 6: Mobile networks performance

Figure 7: Performance vs the fraction of mobile nodes

It is clear that although the simulations slow down when we have
more mobile nodes (as expected since we have more node
movement events) the slowdown is not significant. Thus, we can
claim that one important characteristic to faster simulations is to
have all nodes static. From the moment we have at least 1 mobile
node, the percentage of mobile nodes does not make much
difference.

Finally let us look at the effect of the cell size in the performance
and memory footprint. Figure 8 shows the results for varying the
cell size for a 169 node network.

We notice that for small cell sizes the simulation execution time
explodes. A good performance/accuracy trade-off point for our

particular scenarios seems to be around 5m"5m cell sizes. Figure
9 shows the results for the memory footprint of the same
simulations. The graph shows a memory footprint that exceeds
1.5GB of RAM if a cell-size of 2m x 2m is chosen. Again cell size
5m x 5m shows a reasonable compromise.

Figure 8: Performance vs cell size

Figure 9: Memory vs cell size

5. CONCLUSION
The paper presents a performance evaluation of Castalia in terms
of computation time and memory footprint for various simulation
scenarios. In particular we see how Castalia’s performance scales
when different parameters are varied and also when different
models are used. We notice that the realistic channel modeling
even with a time-varying component is not prohibitory for large
network sizes, while mobility can be handled efficiently if being
careful with the cell size. The results of this work can act as a
guide for Castalia users to tune their simulations and also to
estimate their computation-time budget.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8727
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8727

6. REFERENCES

[1] Castalia Simulator website http://castalia.npc.nicta.com.au/

[2] Castalia User’s Manual
http://castalia.npc.nicta.com.au/documentation.php

[3] Downard, I., Simulating Sensor Networks in NS-2. Technical
Report NRL/FR/5522-04-10073, Naval Research Laboratory,
Washington, D.C., U.S.A., May 2004.

[4] http://www.spec.org/cpu2006/results/res2007q3/cpu2006-
20070723-01541.html (accessed Feb 1st 2010)

[5] http://www.spec.org/cpu2006/results/res2007q3/cpu2006-
20070723-01543.html (accessed Feb 1st 2010)

[6] Korkalainen, M., Sallinen, M., Kärkkäinen, N., and Tukeva,
P. 2009. Survey of Wireless Sensor Networks Simulation
Tools for Demanding Applications. In Proceedings of the
2009 Fifth international Conference on Networking and
Services - Volume 00 (April 20 - 25, 2009). ICNS. IEEE
Computer Society, Washington, DC, 102-106.

[7] Lessmann, J., Janacik, P., Lachev, L., and Orfanus, D. 2008.
Comparative Study of Wireless Network Simulators. In
Proceedings of the Seventh international Conference on
Networking (April 13 - 18, 2008). ICN. IEEE Computer
Society, Washington, DC, 517-523.

[8] Levis, P., Lee, N., Welsh, M., and Culler, D. 2003. TOSSIM:
accurate and scalable simulation of entire TinyOS
applications. In Proceedings of the 1st international
Conference on Embedded Networked Sensor Systems (Los
Angeles, California, USA, November 05 - 07, 2003). SenSys
'03. ACM, New York, NY, 126-137.

[9] Levis, P., Madden, S., Polastre, J., Szewczyk, R.,
Whitehouse, K., Woo, A., Gay, D., Hill, J., Welsh, M.,
Brewer, E. and Culler D., TinyOS: An operating system for
wireless sensor networks. In Ambient Intelligence. Springer-
Verlag, 2004.

[10] Lopez, E. E., Vales-Alonso, J., Martinez-Sala, A., Pavon-
Mario, A., and Garcia-Haro, J., Simulation scalability issues
in wireless sensor networks. Communications Magazine,
IEEE, 44(7):64–73, 2006.

[11] Naoumov, V. and Gross, T. 2003. Simulation of large ad hoc
networks. In Proceedings of the 6th ACM international
Workshop on Modeling Analysis and Simulation of Wireless
and Mobile Systems (San Diego, CA, USA, September 19 -
19, 2003). MSWIM '03. ACM, New York, NY, 50-57.

[12] Nicol, D. M., Comparison of network simulators revisited,
May 2002.

[13] Park, S., Savvides, A., and Srivastava, M. B. 2000.
SensorSim: a simulation framework for sensor networks. In
Proceedings of the 3rd ACM international Workshop on
Modeling, Analysis and Simulation of Wireless and Mobile
Systems (Boston, Massachusetts, United States, August 20 -
20, 2000). MSWIM '00. ACM, New York, NY, 104-111.

[14] Pediaditakis, D., Mohajerani, S. H., Boulis, A., “Poster
Abstract: Castalia: the Difference of Accurate Simulation in
WSN,” In the 4th European conference on Wireless Sensor

Networks, (EWSN 2007), Delft, The Netherlands, January,
2007.

[15] Pham, H. N., Pediaditakis, D., Boulis A., "From Simulation
to Real Deployments in WSN and Back," A World of
Wireless, Mobile and Multimedia Networks, International
Symposium on, pp. 1-6, 2007 IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks,
2007

[16] Singh, C. P., Vyas, O. P., and Tiwari, M. K. 2008. A Survey
of Simulation in Sensor Networks. In Proceedings of the
2008 international Conference on Computational intelligence
For Modelling Control & Automation (December 10 - 12,
2008). CIMCA. IEEE Computer Society, Washington, DC,
867-872.

[17] Sobeih, A., Chen, W. P., Hou, J. C., Kung, Lu. C., Li, N.,
Lim, H., Tyan, H. Y. and Zhang, H., J-sim: A simulation
environment for wireless sensor networks. In Annual
Simulation Symposium, pages 175–187, 2005.

[18] The Network Simulator ns-2 (http://www.isi.edu/nsnam/ns).

[19] van Dam, T. and Langendoen, K. 2003. An adaptive energy-
efficient MAC protocol for wireless sensor networks. In
Proceedings of the 1st international Conference on
Embedded Networked Sensor Systems (Los Angeles,
California, USA, November 05 - 07, 2003). SenSys '03.
ACM, New York, NY, 171-180.

[20] Varga, A., "The OMNeT++ Discrete Event Simulation
System", Proceedings of the European Simulation
Multiconference (ESM'2001).

[21] Voigt, T., Eriksson, J., Österlind, F., Sauter, R., Nils A.,
Marron, P., Reynolds, V., Shu, L., Visser, O., Koubaa, A.
and Köpke, A., Towards comparable simulations of
cooperating objects and wireless sensor networks. In: 1st
International Workshop on Performance Methodologies and
Tools for Wireless Sensor Networks, 23 Oct 2009, Pisa,
Italy.

[22] Weingärtner, E., vom Lehn, H. and Wehrle, K., (2009), "A
performance comparison of recent network simulators", ICC
2009: IEEE International Conference on Communications.

[23] Zuniga, M. and Krishnamachari, B. 2004. Analyzing the
transitional region in low power wireless links. In
Proceedings of the IEEE 1st Annual Conference on Sensor
and Ad Hoc Communications and Networks (SECON). 517--
526.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8727
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8727

