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ABSTRACT
We address the computation of rare event probabilities in
Markovian queueing networks with huge or possibly even
infinite state spaces. For this purpose, we incorporate ideas
from importance sampling simulations into a non-simulative
numerical method that approximates transient probabili-
ties based on a dynamical truncation of the state space.
A change of measure technique is applied in order to accom-
plish a guided state space exploration. Numerical results for
three different example networks demonstrate the efficiency
and accuracy of our method.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: PROBABILITY AND
STATISTICS—Queueing theory,Markov Processes

Keywords
Queueing networks, Markov chains, Rare events, Impor-
tance sampling, Transient analysis

1. INTRODUCTION
Many performance measures in modern computer and com-
munication networks are associated with probabilities of un-
wanted events such as buffer overflows, packet losses, ex-
cessive backlogs, extreme delays, or blocking, all of which
can significantly degrade the intended network service. To
achieve an acceptably high level of performance they must be
rare, that is, their probability must be very small. Typical
probability thresholds according to common network stan-
dards are of the order 10−9 or below. Thus, network design
and performance engineering requires efficient methods for
calculating rare event probabilities.

Markovian queueing networks are well-established in perfor-
mance evaluation of computer and communication networks
[2, 18, 20, 31] but except for very special cases rare event
analysis becomes cumbersome. Even in the absence of rare

events and if product-form solutions are available, comput-
ing exact solutions is often impossible for complex networks.
In such cases, approximate numerical analysis and stochas-
tic simulation constitute two common complementary ap-
proaches to network performance evaluation.

For numerical analysis, Markovian queueing networks are
usually mapped to an underlying continuous-time Markov
chain (CTMC) described at the stochastic process level,
uniquely defined by an initial probability distribution and a
generator matrix. The state space of the underlying CTMC
is multi-dimensional where the components describe the num-
ber of customers in the network nodes or (in case of phase-
type distributed interarrival and service times) the exponen-
tial phases assigned to the nodes. But the size of the state
space typically increases exponentially with the number of
network nodes or model components, hence the model di-
mensionality. This effect is known as state space explosion
and often causes models to be numerically intractable due
to the prohibitively large state space.

Different strategies to tackle the state space explosion have
been employed, mostly with regard to steady state anal-
ysis, that is computing unique stationary distributions of
ergodic Markov chains by solving a system of linear equa-
tions. Transient analysis, which we consider in this paper,
is far less often addressed and computing transient proba-
bilities is typically more complicated since it requires the
solution of the Kolmogorov differential equations (KDEs).
For comprehensive treatments see, e.g., [2, 6, 28].

Stochastic simulation does not suffer from state space explo-
sion because the state space need not be explicitly enumer-
ated. But stochastic simulation constitutes an algorithmic
statistical estimation procedure that tends to be computa-
tionally expensive and only provides an estimate whose reli-
ability and accuracy in terms of relative error or confidence
interval half width depend on the variance of the correspond-
ing simulation estimator. Estimating rare event probabili-
ties by straightforward direct simulation is not effective be-
cause rare events occur too infrequently to compute reliable
statistical estimates in reasonable time. Therefore, reducing
the variance of simulation estimators is a primary goal of
rare event simulation [3, 24]. More precisely, efficient rare
event simulation techniques, in particular importance sam-
pling [13, 15, 17], aim at constructing alternative estimators
with much smaller variances than standard estimators.
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Importance sampling is a variance reduction technique that
makes use of a change of measure. The probability distribu-
tion (measure) in the model is changed such that the rare
event of interest becomes less rare. Then the simulation is
conducted under the importance sampling measure and the
systematically biased results are weighted by the likelihood
ratio in order to yield unbiased estimates. However, impor-
tance sampling by no means guarantees variance reduction
but may be even counterproductive and increase the vari-
ance. The efficiency of corresponding simulation schemes
and the statistical accuracy of simulation results, usually ex-
pressed by asymptotic robustness properties of the underly-
ing importance sampling estimators [1, 19, 27, 29], strongly
depend on the choice of the change of measure. Despite con-
siderable recent progress with regard to provably asymptot-
ically efficient changes of measure for Jackson networks [10],
their construction is still highly demanding and the develop-
ment of efficient importance sampling simulations remains
a difficult task. Moreover, even if asymptotically efficient
schemes are available, other schemes may be better for spe-
cific probability ranges.

In this paper, we combine the basic idea of importance sam-
pling with a numerical solution approach that overcomes
the state space explosion by using a state space trunca-
tion. The underlying principle is a guided state space ex-
ploration where paths that contribute significantly to the
rare event probability are not truncated. We use change
of measure strategies suggested by importance sampling to
identify these significant parts and “guide” the exploration
of the state space in such a way that an accurate approxi-
mation of the rare event probability is obtained.

We present a numerical algorithm that approximates the so-
lution of the KDEs by truncating large state spaces in an
iterative fashion. At a particular time instant t, we consider
an approximation of the transient distribution and assume
that only a tractable number of states have a non-zero prob-
ability. States with a probability smaller than a threshold
δ are neglected, that is, their probability is approximated
as zero. The KDEs are then solved for a small time step h
during which the truncated state space is adapted to the dis-
tribution at time t + h. More precisely, certain states that
do not belong to the truncated space at time t are added
at time t + h because in between they receive a significant
amount of probability which exceeds δ. Other states are ne-
glected because their probability drops below δ. This idea
has been previously used to approximate the transient dis-
tribution up to a total error of the order of 10−5 and less [8].
The smaller the significance threshold δ is chosen the more
accurate the approximation becomes.

In the following, we first introduce a useful model descrip-
tion based on transition classes and review the formal frame-
work of importance sampling in Section 2 and 3, respec-
tively. Subsequently, we present our dynamical state space
truncation procedure in Section 4.1 and then combine it in
Section 4.2 with a change of measure strategy similarly as
in the underlying concept of importance sampling, which
yields the guided state space exploration. We substantiate
the usefulness of our approach in Section 5 with experimen-
tal results of three queueing network examples and conclude
our work in Section 6.

2. MODEL DESCRIPTION
For model description we employ a unified transition class
formalism that applies to Markovian queueing networks as
well as to other Markovian population models. It is moti-
vated by the need to handle large state spaces and in par-
ticular by the transition structure of the underlying CTMC.

In almost all relevant cases, the transition structure is not
arbitrary but state transitions correspond to certain events
where similar events essentially have the same effect, e.g.
arrivals, service completions, departures, or moves between
nodes in queueing networks. Hence, they can be taken as
specific discrete event systems [4], which provides a struc-
tured model description on an intermediate level of abstrac-
tion. Thus, a model description that reflects the event sys-
tem character of the model is well suited, in particular for
simulation purposes. For Markovian models the events need
not be scheduled and the setting of Markovian event systems
is also useful for numerical solution [14].

In order to describe a Markovian event system we have to
define its state space and to specify all relevant events that
may trigger state transitions. It is necessary to define under
which conditions a certain event may occur, how it affects
the system state and at which rate it occurs. Diverse formal
specifications of Markovian event systems can be found in
the literature. Here, we adopt the transition class formalism
of [26]. Without loss of generality we assume that the state
space is S ⊆ N

d. All events that trigger state transitions are
classified according to their effects which yields transition
classes. Formally, a transition class is a triplet C = (U , u, α)
where U ⊆ N

d is the source state space containing all states
in which the event or the corresponding state transition, re-
spectively, is possible, u : U → N

d is the update function
giving the new state u(x) ∈ N

d according to the state tran-
sition when the event occurs in state x ∈ U , and α : U → R

is the transition rate function giving the rate α(x) ∈ R at
which the event or transition occurs in state x ∈ U . A par-
ticularly appealing feature is that very different systems can
be cast in the same formalism. Any Markovian event sys-
tem, in particular any Markovian queueing network, can be
uniquely described by a set of such transition classes to-
gether with an initial distribution. The numbering of this
set is arbitrary but often closely reflects the actual meaning
of the transitions.

As a queueing network example consider a d-node tandem
Jackson network with exponentially distributed service times
where arrivals occur only at the first node according to a
Poisson process with arrival rate λ. The service rates are de-
noted by µ1, . . . , µd and the buffer capacities (queue sizes)
by ν1, . . . , νd. Hence, the different types of transitions are ar-
rivals at node 1, moves from node i to node i + 1, 0 < i < d
and departures from node d. Therefore, d + 1 transition
classes are sufficient:

C1 = (U1, u1, α1), where

• U1 = {(x1, . . . , xd) ∈ N
d : x1 < ν1},

• u1(x) = (x1 + 1, x2, x3, . . . , xd),
• α1(x) = λ;

Ci = (Ui, ui, αi), i = 2, . . . , d, where
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• Ui = {(x1, . . . , xd) ∈ N
d : xi−1 > 0, xi < νi},

• ui(x) = (x1, . . . , xi−2, xi−1 − 1, xi + 1, xi+1, . . . , xd),
• αi(x) = µi−1;

Cd+1 = (Ud+1, ud+1, αd+1), where

• Ud+1 = {(x1, . . . , xd) ∈ N
d : xd > 0},

• ud+1(x) = (x1, . . . , xd−1, xd − 1),
• αd+1(x) = µd.

State-dependent rates can be easily incorporated just by cor-
responding transition rate functions. The state space may
be infinite due to one or more infinite buffers, which can be
expressed explicitly by setting the buffer size to infinity or
implicitly just by dropping the corresponding restrictions on
the respective source state spaces. Phase-type distributed
interarrival and service times can be modeled by properly
defined transition classes for any change from one to the
next phase.

Let {C1, . . . , Cm} be a finite set of transition classes and let
Cj = (Uj , uj , αj) for j ∈ {1, . . . , m}. We assume that they

define a CTMC {X(t), t ≥ 0}. Note that certain regularity
conditions are necessary to ensure that X is uniquely deter-
mined [16]. We denote the transient state probabilities for

x ∈ S and t ≥ 0 by p(t)(x) := P (X(t) = x). In particu-

lar, p(0) is the initial distribution. Now, we have to express
the distribution or density, respectively, of sample paths of
X. Denote by t1 < t2 < . . . the successive time instants at
which transitions occur and by Cji , ji ∈ {1, . . . , m} the tran-
sition class that applies at time ti. Let τi := ti+1 − ti be the
time between the i-th and the (i + 1)-th transition. Hence,
state x(ti) is reached due to the i-th transition according to
Cji at time ti and remains unchanged for a sojourn time of
τi after which the (i + 1)-th transition according to Cji+1

occurs at time ti+1 and changes the state to x(ti+1). Thus,
the time evolution of the system is completely described by
the sequence of states and corresponding sojourn times. In
compact form, (x(t0), τ0), (x(t1), τ1), (x(t2), τ2), . . . describes
a trajectory where t0 := 0 and τ0 = t1 is the sojourn time
in the initial state x(0).

For a trajectory up to the K-th transition, considering the
Markovian property which in turn implies exponentially dis-
tributed sojourn times, the path density is given by

dP ((x(t0), τ0), . . . , (x(tK), τK)) =

p(t0)(x(0)) ·
KY

i=1

αji (x(ti−1)) exp (−α0(x(ti−1))τi−1) (1)

where α0(x(ti−1)) := α1(x(ti−1)) + · · · + αm(x(ti−1)) is the
parameter (reciprocal mean) of the exponential sojourn time
in state x(ti−1), i = 1, . . . , K. Note that for a given time
horizon the number K of transitions is not known in advance
and not deterministic. Formally, it is a random stopping
time, which is in accordance with dP being a density of
a probability measure P defined on the path space of the
Markov process.

3. IMPORTANCE SAMPLING
Importance sampling aims at variance reduction for simula-
tion estimators by a change of measure. The original sys-
tem is simulated under a different probability measure and

weighting by a correcting factor, the likelihood ratio, yields
unbiased estimates. In a general measure theoretic setting,
importance sampling is based on the Radon-Nikodym the-
orem, and all applications of importance sampling can be
derived from this setting.

Consider two probability measures P and Q on a measur-
able space (Ω,A), where P is absolutely continuous with
respect to Q, that is ∀A ∈ A : Q(A) = 0 ⇒ P (A) = 0,
or equivalently, ∀A ∈ A : P (A) > 0 ⇒ Q(A) > 0. Then,
the Radon-Nikodym theorem guarantees the existence of the
Radon-Nikodym derivative L = dP/dQ, often also referred
to as the likelihood ratio, and

∀A ∈ A : P (A) =

Z
A

LdQ. (2)

Importance sampling basically exploits that expectations
with respect to P are identical to expectations with respect
to Q when weighting by the likelihood ratio. Hence, for
random variables X on (Ω,A),

EP [X] =

Z
XdP =

Z
XLdQ = EQ[XL]. (3)

The probability of an event A ∈ A can be expressed as a spe-
cial case by P (A) = EP [IA] where IA denotes the indicator
function of A.

For CTMCs, the relevant probability measures are path dis-
tributions and absolute continuity corresponds to the con-
dition that all paths that are possible under the original
measure must remain possible under the importance sam-
pling measure. This can be obviously achieved by the con-
dition that for all positive rates in the original model the
corresponding rates under importance sampling are posi-
tive. Since we deal with CTMCs given in terms of tran-
sition classes as described in Section 2, we need an appro-
priate framework for the application of importance sampling
to this model specification.

With importance sampling, the underlying probability mea-
sure determined by the transition rate functions is changed.
Since the only requirement is absolute continuity of the prob-
ability measures involved, there is much freedom in how
to change the measure. It is only necessary that all paths
that are possible (have positive probability) under the orig-
inal measure remain possible. This can be achieved by
changing the original transition rate functions αi to ’impor-
tance sampling transition rate function’ βi such that for all
i ∈ {1, . . . , m} we have βi(x) = 0 ⇒ αi(x) = 0, x ∈ S , or
equivalently, starting with the original propensity functions,
αi(x) > 0 ⇒ βi(x) > 0, x ∈ S . One then generates tra-
jectories according to the changed transition rate functions
and multiplies the results with the likelihood ratio to get
unbiased estimates for the original system. The trajectory
generation now yields a sequence of states with associated
sojourn times and reaction path density as in (1). If we set
β0(x(ti−1)) := β1(x(ti−1)) + · · ·+ βm(x(ti−1)) and keep the
same initial distribution at time t0 as for the original model,
the likelihood ratio of a trajectory ω is

L(ω) =
KY

i=1

αji (x(ti−1)) exp (−α0(x(ti−1))τi−1)

βji (x(ti−1)) exp (−β0(x(ti−1))τi−1)
(4)
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which can be efficiently computed during trajectory gener-
ation without much extra computational effort by succes-
sively updating its value after each simulated reaction ac-
cording to the running product.

However, the results possess variances and are thus sub-
ject to statistical uncertainty since stochastic simulation yet
with importance sampling still remains an estimation pro-
cedure. If the change of measure is chosen properly, it yields
enormous variance reduction compared to direct simulation,
but as a serious drawback of importance sampling a badly
chosen change of measure can even lead to infinite variance
increase. Moreover, in practice, the true probability as well
as the unknown variance of the estimator must be estimated
in course of the simulation and both are often significantly
underestimated, which then leads to wrong conclusions and
much too narrow confidence intervals that may even not
contain the rare event probability of interest. Hence, also
the reliability of importance sampling simulation results is
extremely sensitive to the change of measure.

Nevertheless, the change of measure is an advantageous strat-
egy for systematically increasing the probability of certain
events and thus provides useful hints how to guide the sys-
tem under study in order to provoke rare events of interest.
We shall therefore exploit it in order to efficiently compute
rare event probabilities without resorting to stochastic sim-
ulation, thereby avoiding both the statistical uncertainty in-
herent in simulation results and the danger of accidentally
neglecting relevant parts of the state space as often the case
with conventional state space truncation procedures.

4. NUMERICAL COMPUTATION OF RARE
EVENT PROBABILITIES

In the sequel we stepwise develop our method for the compu-
tation of rare event probabilities. We first present a numeri-
cal algorithm that approximates the distribution based on a
dynamical truncation of the state space. Then we combine
it appropriately with the change of measure approach sug-
gested by importance sampling. This combination, called
guided state space exploration, constitutes a novel numeri-
cal method specifically designed for the computation of rare
event probabilities.

4.1 Dynamical State Space Truncation
The dynamics of the CTMC {X(t), t ≥ 0} are given by the
Kolmogorov differential equation (KDE)

d

dt
p(t)(x) = M(p(t))(x) (5)

where the operator M is defined for any real-valued function
g : N

d → R such that M(g) is the function that maps a state
x to the value

M(g)(x) =
P

j,y:x=uj(y)∈Uj
αj(y) · p(t)(y)

−P
j:x∈Uj

αj(x) · p(t)(x).

The system of linear differential equations in (5) is typically
large or even infinite such that its solution with standard
numerical integration methods becomes computationally in-
feasible. If the variances of the state variables remain small,
however, one can exploit that only a tractable number of

states have “significant” probability, that is, only relatively
few states have a probability that is greater than a small
threshold. Here, we present a method based on our pre-
vious work [8] for efficiently approximating the solution of
Eq. (5). Many transient solution approaches can be applied
for this purpose (see, for instance, [8]). Here, we use an ap-
proximation based on numerical integration of Eq. (5) with
an explicit fourth-order Runge-Kutta method.

The main idea of the approximation is to integrate only
those differential equations in Eq. (5) that correspond to
significant states. All other state probabilities are set to
zero. This reduces the computational effort significantly
since in each iteration step only a comparatively small sub-
set of states is considered. Based on the fixed probability
threshold δ > 0, we dynamically decide which states to drop
or add, respectively. Due to the regular structure of the
CTMC the approximation error of the algorithm remains
small since probability mass is usually concentrated at cer-
tain parts of the state space. The farther away a state is
from a “significant set” the smaller is its probability. Thus,
in most cases the total error of the approximation remains
small. Since in each iteration step probability mass may be
“lost” the approximation error at time t is the sum of all
probability mass lost (provided that the numerical integra-
tion could be performed without any errors), that is,

1 −
X
x∈S

p̂(t)(x)

where p̂(t) is the approximation at time t.

The standard explicit fourth-order Runge-Kutta method ap-
plied to Eq. (5) yields the integration step

p(t+h)(x)= p(t)(x) + h
6

“
k(1)(x)

+2k(2)(x)+2k(3)(x) + k(4)(x)
”
,

(6)

where h > 0 is the time step of the method. For i ∈
{1, 2, 3, 4} the values k(i)(x) are defined recursively as

k(1)(x) = M(p(t))(x),

k(2)(x) = k(1)(x) + h
2
M(k(1))(x),

k(3)(x) = k(1)(x) + h
2
M(k(2))(x),

k(4)(x) = k(1)(x) + hM(k(3))(x).

(7)

In order to avoid the explicit construction of a matrix and
in order to work with a dynamic set Sig of significant states
that changes in each step, we use for a state x a data struc-
ture with the following components:

• a field x.p for the current probability of state x,
• fields x.k1, . . . , x.k4 for the terms k(1)(x), . . . , k(4)(x),
• for all j with x ∈ Uj a pointer to the successor state

uj(x) as well as the rate αj(x).

We start at time t = 0 and initialize the set Sig as the set of
all states that have initially a probability greater than δ, i.e.
Sig := {x | p(0)(x) > δ}. We perform a step of the iteration
in Eq. (6) by traversing the set Sig five times. In the first
four rounds we compute x.k1, . . . , x.k4 and in the final round
we accumulate the summands. While processing state x in
round i, i < 5, for each reaction j, we transfer probability
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Table 1: A single iteration step of the fast RK4 algo-
rithm, which approximates the solution of the KDE.

1 choose step size h;

2 for i = 1, 2, 3, 4 do //traverse Sig four times

3 //decide which fields from state data structure

4 //are needed for ki

5 switch i

6 case i = 1: coeff := 1; field := p;

7 case i ∈ {2, 3}: coeff := h/2; field := ki−1;

8 case i = 4: coeff := h; field := ki−1;

9 for all x ∈ Sig do

10 x.ki := x.ki + x.k1;

11 for j = 1, . . . , m with x ∈ Uj do

12 x.ki := x.ki − coeff · x.field · αj(x);

13 if uj(x) �∈ Sig then

14 Sig := Sig ∪ {uj(x)};
15 uj(x).ki := uj(x).ki + coeff · x.field · αj(x);

16 for all x ∈ Sig do

17 x.p :=x.p+ h
6
·+(x.k1+2 · x.k2+2 · x.k3+x.k4);

18 x.k1 := 0; x.k2 := 0; x.k3 := 0; x.k4 := 0;

19 if x.p < δ then

20 Sig := Sig \ {x};

mass from state x to its successor u(x), by subtracting a
term from x.ki and adding the same term to u(x).ki. A
single iteration step is given in pseudocode in Table 1. In
line 20, we ensure that Sig does not contain states with
a probability less than δ. As step size h in line 1 of the
algorithm, we choose the smallest average sojourn time of
all states in Sig , that is,

h = minx∈Sig 1/
Pm

j=1 αj(x).

In lines 2-15 we compute the values k(1)(x), . . . , k(4)(x) for
all x ∈ Sig. The fifth round starts in line 16 and in line 17
the approximation of the probability p(t+h)(x) is calculated.
Note that the fields x.k1, . . . , x.k4 are initialized with zero.

The performance of the algorithm can be further improved
if we additionally check in line 13 whether it is worthwhile to
add uj(x) to Sig , that is, we guarantee that uj(x) will receive
enough probability mass and that uj(x) will not be removed
in the same iteration due to the check in line 19. Thus, we
add uj(x) only if the inflow coeff · x.field · αj(x) to uj(x) is

greater or equal than a certain threshold δ̃ > 0. Obviously,
uj(x) may receive more probability mass from other states

and the total inflow may be greater than δ̃. Thus, if a state
is not a member of Sig and if for each incoming transition
the inflow probability is less than δ̃, then this state will not
be added to Sig even if the total inflow is greater or equal
than δ̃. This small modification yields a significant speed-up
since otherwise all states that are reachable within at most
four transitions will always be added to Sig because of line
13, but many of the newly added states will be removed in
the same iteration because of line 19.

We list some experimental results for an 8-node tandem net-
work in Table 2. We chose arrival rate λ = 0.04, service rates
µ1 = . . . = µ8 = 0.12 and computed the probability to reach

Table 2: Results for an 8-node tandem network.

δ ex. time |Sig| error

0 2317s 36984860 -

1e-20 178s 1419901 1e-11

1e-15 37s 348056 4e-10

1e-10 3s 43343 6e-6

a state where the second network node contains at least 29
customers (within a time horizon of t = 100). The accuracy
of the approximation depends on the threshold δ (listed in
the first column). Here, for ease of description we choose

δ̃ = δ. The total approximation error in the last column
equals the probability mass that “got lost” during the com-
putation because of the threshold δ. In the third column
we list the average number of significant states, that is, the
average size of the set Sig . The execution time is listed in
the second column. For δ = 0, the number of states that are
considered is maximal since no states are neglected. The so-
lution is most accurate at the cost of a long running time and
high memory requirements. For small positive values of δ,
we obtain accurate approximations based on a significantly
smaller number of considered states. For larger systems, the
analysis with very small values of δ (e.g. δ ≤ 10−20) is often
impossible because the size of Sig becomes intractable. For
instance, in the 8-node tandem network above, if δ = 0 it is
impossible to compute the probability to reach a state where
the second network node contains at least 30 customers since
the memory requirements grow beyond 8 GB.

For many practical applications, the accuracy of the ap-
proximation is sufficient for a moderately small choice of
the truncation thresholds δ and δ̃, respectively. If, how-
ever, the probabilities of rare events have to be calculated,
then the truncation approach above is no longer appropriate.
As it stands now, the main drawback of the truncation ap-
proach is that rare events of interest may be neglected, that
is, the truncated state space may not include those paths
that lead to a certain rare event because their probability
is smaller than the corresponding truncation threshold. If
smaller truncation thresholds are chosen then the paths that

0 5 10 15 20 25
0

5

10

15

20

25

L=25

Figure 1: The event that the queues of a two-node
tandem network contain L=25 customers is never
reached.
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significantly contribute to the rare event probability may not
be truncated, but the number of states that have to be con-
sidered may become too large to be manageable.

We illustrate this problem for a two-node tandem network
in Figure 1. The colored dots represent the states in the
set Sig during different iteration steps. If we start with an
empty system and approximate the probability distribution
using threshold δ = 10−15, then the states where at least 25
customers are queuing are never reached because the paths
that lead to these states have a probability smaller than δ.
Note that after the system enters steady-state there are no
significant changes in the set Sig . If we increase the time
horizon, then eventually Sig will become smaller since in
each step of the iteration probability mass is lost. If we
choose smaller values for δ, then we reach L = 25 and we
can accurately approximate the probability that at least 25
customers are present. While this is possible in the case
of small examples, smaller values of δ render the solution
intractable for more complex systems.

Note that other state space truncation approaches differ
from ours in that they only generate the most probable
states [7] or focus on calculating the steady-state distribu-
tion based on particular truncations [11, 30]. In contrast, our
method relies on a truncation that is dynamically adapted
in each step of the computation and we approximate the
transient probability distribution. Moreover, for our trun-
cation approach we never construct the infinitesimal gener-
ator matrix of the CTMC but use a structured transition
class description to generate transition rates on-the-fly. The
related approaches mentioned above are, however, similar
in that they all avoid considering the entire state space and
focus on the numerical solution of small subsets in order
to overcome the state space explosion problem. But they
do not appear promising in order to cope with rare event
probabilities.

4.2 Guided State Space Exploration
In this section we propose an extension of the truncation
approach presented in Section 4.1 that is based on ideas from
importance sampling. Assume that we are interested in the
probability P (A) of a rare event A. Besides the CTMC X,

we consider another CTMC {Y (t), t ≥ 0} that results from a
change of measure in X, that is, if X has transition classes
{C1, . . . , Cm} with rate functions α1, . . . , αm then Y has the
same transition classes except that each αj is replaced by a
rate function βj . Here, absolute continuity is not necessary,
i.e., we may choose βj such that βj(x) = 0 even if αj(x) > 0
for some x. We assume, however, that β1, . . . , βm are chosen
such that the occurence of A is more likely.

The idea is to solve X and Y simultaneously using the dy-
namical state space truncation. Let p̂(t) (q̂(t)) be the corre-
sponding numerical approximation of the distribution of X
(of Y ) at time t, respectively. The algorithm for solving Y
is exactly as in Section 4.1 whereas for X we slightly modify
the dynamical state space truncation algorithm. The deci-
sion whether we remove a state x from the set Sig at time
t depends only on q̂(t) and not on p̂(t). Thus, at all time in-
stances t for both the solution of X and Y we use the same
sets Sig. This ensures that we do not truncate the paths
leading to the rare event A. Intuitively, Y shows the direc-

tion to the rare event. Therefore, we refer to this approach
as guided state space exploration. If the change of measure
is chosen appropriately, then the vectors q̂(t) are computed
using those paths that contribute most to P (A). Hence, the

vector p̂(t) may loose lots of probability mass over time, i.e.P
x∈S p̂(t)(x) 
 1. The probability mass that remains in

p̂(t) then contains those parts that contribute most to P (A).

The guided state space exploration differs from the trunca-
tion algorithm in the following aspects:

• Instead of a single field x.p for the current probability
of state x we use two fields x.p and x.q . The former
refers to the current probability of state x in X and
the latter refers to the probability of x in Y .

• In each iteration, we compute two different values for
each field x.ki, one for the probability flow in X and
one for the flow in Y . Obviously, for Y we replace αj

by βj (see line 12 of Table 1) and x.p by x.q .
• We execute the two for-loops in lines 2-18 of Table 1

twice in order to compute x.p and x.q , respectively.
Lines 19 and 20, however, are only executed once in
each iteration where we check whether x.q < δ (instead
of x.p < δ).

We remark that for the guided state space exploration the
likelihood ratio is not needed to derive P (A) from the prob-
abilities x.q of Y . Instead, P (A) is directly approximated
by the probabilities x.p and the values x.q are only used
indirectly to determine the set of states that are considered
in each step of the numerical integration. Actually, it would
even be possible to solve Y and X not simultaneously but
one after another. During the solution of Y , we would then
record the elements of Sig for each time interval and use this
information for the subsequent solution of X during which
we truncate the state space in the same way as for Y . The
simultaneous solution, however, has the advantage that it is
faster than two subsequent solutions.

5. EXPERIMENTAL RESULTS
In this section, we present experimental results for specific
rare event probabilities computed by the guided state space
exploration described above. We consider certain buffer
overflow probabilities corresponding to high numbers of cus-
tomers in single nodes or in the overall system, respectively,
for two variants of a two-node tandem Jackson network and
an eight-node tandem Jackson network. The two-node net-
works are standard examples from the literature for which
appropriate changes of measure have been studied exten-
sively in the context of importance sampling. The eight-
node network is a more complex example for which appro-
priate changes of measure for importance sampling have not
been investigated yet.

In the sequel, we present results where we systematically
vary the parameters determining the change of measure to
study the sensitivity of our approach and consider different
values for the truncation threshold δ.

5.1 Tandem Jackson Network
Our first example is a two-node tandem Jackson network
with infinite buffers at both nodes, hence a special case of the
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Table 3: Results for the two-node tandem network with parameters λ = 0.04, µ1 = µ2 = 0.48.

L exact solution guided state space exploration

Pr |Sig| δ degenerated 0.48, 0.48, 0.04 0.6222,0.3333,0.0444 0.4,0.3,0.3 0.6,0.2,0.2 0.8,0.1,0.1

rel.err. |Sig| rel.err. |Sig| rel.err. |Sig| rel.err. |Sig| rel.err. |Sig| rel.err. |Sig|
12 1.4693e-11 90 1e-20 3.461e-8 89 3.408e-14 58 2.012e-11 47 0 89 0 77 7.892e-8 39

1e-15 4.881e-3 88 1.339e-9 46 4.589e-8 38 0 89 6.817e-15 60 3.171e-5 33

1e-10 1 54 3.397e-5 34 8.166e-5 30 6.338e-9 89 3.632e-8 42 1.082e-2 25

25 2.8722e-25 350 1e-20 1 184 1.288e-9 235 3.777e-9 192 7.034e-15 343 7.034e-15 337 1.361e-4 155

1e-15 1 103 1.257e-5 185 4.186e-6 155 1.403e-9 342 1.374e-9 269 3.519e-2 121

1e-10 1 54 1.817e-3 132 2.488e-3 116 1.552e-4 337 4.987e-4 180 3.241e-1 75

50 6.0327e-52 1325 1e-20 1 184 5.349e-4 757 4.104e-6 650 2.746e-8 1259 1.245e-7 1145 2.225e-1 444

1e-15 1 103 6.756e-2 591 1.149e-3 525 5.277e-4 1233 7.538e-3 877 3.960e-1 309

1e-10 1 54 4.220e-1 398 9.555e-2 383 1.902e-1 1177 2.628e-1 524 6.209e-1 178

example described in Section 2 by transition classes where
now d = 2 and ν1 = ν2 = ∞. The arrival and service
rates are constant whereby we can skip the state dependence
of the transition rate functions and concisely express them
by a triplet α := (α1, α2, α3) := (λ, µ1, µ2). Similarly, we
express the changed measure by β = (β1, β2, β3) where β1 is
the changed arrival rate and β2, β3 are the changed service
rates at nodes 1 and 2, respectively. We are interested in
the probability that the overall population in the system
reaches a level L during a busy cycle, that is, the probability
that starting with an arrival to the empty system the sum
of the number of customers in both network nodes is at
least L before the system empties again. Obviously, for low
utilizations and/or high ”target level” L, reaching L during
a busy cycle is a rare event.

Though at a first glance seemingly simple, this example has
received a lot of attention in the rare event simulation litera-
ture and has become a major reference example for judging
change of measure strategies. This enormous interest was
basically initiated by a change of measure proposed in [23]
where the arrival rate and the smaller service rate (or, re-
spectively, the service rate at the second node in case of equal
service rates) are exchanged. Though initially supposed to
be efficient, this change of measure has been subsequently
proven in [12] to perform poorly in certain critical param-
eter (arrival and service rates) regions. A recent thorough
analysis can be found in [5]. As the example has been so
extensively studied in the context of importance sampling
it enables us to demonstrate the advantages of our algo-
rithm over importance sampling. For numerical analysis, we
choose the parameter setting α = (0.04, 0.48, 0.48), hence ar-
rival rate λ = 0.04 and service rates µ1 = µ2 = 0.48, which
belongs to the critical parameter regions ascertained in [12].
We consider three different levels L ∈ {12, 25, 50} and six

different changes of measure β(1), . . . , β(6) as follows.

First of all, we keep the original rates, that is, we do not at all
apply a change of measure in this case, which we grasp as the
”degenerated change of measure” β(1) = (0.04, 0.48, 0.48).
The second change of measure is the interchange of the ar-
rival rate and the service rate at the second node according

to [23], hence β(2) = (0.48, 0.48, 0.04). The third one is

β(3) = (0.6222, 0.3333, 0.0444) developed in [25] and shown

to provide better results than β(2) when used for importance
sampling. Furthermore, we consider β(4) = (0.4, 0.4, 0.3),

β(5) = (0.6, 0.2, 0.2) and β(6) = (0.8, 0.1, 0.1), none of which
developed for rare event simulation with importance sam-
pling but rather ad hoc chosen by us. They are simply based
on the intuitive reasoning that increasing the arrival rate and
decreasing the service rate obviously guides the tandem net-
work to a higher population level and thus increases the rare
event probability of interest. Since these ad hoc changes of
measure do not yield proper importance sampling simula-
tion results, they are particularly well suited to highlight
that our algorithm is far less sensitive to the change of mea-
sure than importance sampling and that in contrast to im-
portance sampling our algorithm does not require intricate
pre-analyses.

We list our experimental results in Table 3 where the first
column contains the different values for L. For all param-
eters that we chose, the running time of our algorithm is
less than one second. The second and the third column, re-
spectively, contain numerical results obtained using the dy-
namical state space truncation outlined in Section 4.1 with
truncation threshold δ = 0. The rare event probabilities
computed in this way (cf. column “Pr”) are exact up to the
numerical integration error. In the third column we list the
average size of the set Sig during this exact computation,
that is, the average number of states that were considered.
For instance, there are 90 possible states if the number of
customers is at most 12 and the algorithm quickly arrives
at 90 states after starting with |Sig | = 1. The remaining
part of the table shows the results of the guided state space
exploration for different values of δ (listed in the fourth col-
umn). The six different changes of measures are indicated
in the table by their respective parameter values except for
the degenerated change of measure that is indicated by “de-
generated”. For each change of measure the column with
heading “rel.err.” lists the approximation error relative to
the rare event probability.

For the degenerated change of measure, the guided state
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Table 4: Results for the two-node tandem network with parameters B = 100 and λ = 0.1, µ1 = 0.7, µ2 = 0.2.

exact solution guided state space exploration

Pr ex.time |Sig| δ degenerated 0.2, 0.7,0.1 0.4,0.4,0.2 0.3,0.6,0.1

rel.err. ex.time |Sig| rel.err. ex.time |Sig| rel.err. ex.time |Sig| rel.err. ex.time |Sig|
9.2034e-31 87s 36774 1e-20 1 1s 348 1.1419e-15 7s 1769 2.8028e-5 42s 8008 4.0291e-3 6s 1198

1e-15 1 < 1s 198 1.2178e-10 4s 1022 2.8139e-3 22s 4561 5.3733e-2 3s 707

1e-10 1 < 1s 93 8.9310e-6 2s 456 1.3226e-1 8s 1974 4.0188e-1 2s 325

space exploration is identical to the dynamical state space
truncation presented in Section 4.1 (but in contrast to the
exact solution with positive truncation threshold δ) and it
yields accurate approximations only for L = 12 and δ ∈
{10−15 , 10−20}. Note that a relative error of one corresponds
to approximating the rare event probability as zero. This is
actually the same as what happens in direct simulation when
due to the small probability the rare event is not observed
and the probability of the non-observed event is estimated
as zero. It is important that with our dynamical state space
exploration the relative error is bounded by one since any er-
ror in the approximation is due to neglecting relevant states.
In contrast, with importance sampling the relative error ex-
pressed in terms of the estimator’s coefficient of variation
or the relative half width of the corresponding confidence
interval can become arbitrarily large in cases where the rare
event has been observed but the estimator’s variance is large
(cf. [5, 12, 25]).

For β(2) according to [23] and β(3) according to [25] we can
see that for all levels and all truncation thresholds the results
provided by the guided state space exploration are very accu-
rate. In [25] it is shown that with importance sampling β(2)

performs very poor for high levels in that for L = 25 it yields
results with a relative error of nearly 800%, whereas β(3)

still yields statistically accurate results. For L = 50, neither
β(2) nor β(3) yield useful results with importance sampling.
Here, with the guided state space exploration both changes
of measure perform extremely well even for L = 50 where
β(3) is only slightly better β(2). For the latter case, the rela-
tive error is at most of the order of 10−4 if δ = 10−20 while it
is at most of the order of 10−6 in the former case. Moreover,
for β(2) the set Sig is slightly larger than for β(3). Hence,
altogether both changes of measure perform quite similarly,
which clearly indicates that the guided state space explo-
ration is less sensitive to the change of measure, or, in other
words, the impact of the specific change of measure on the
reliability of the results is far lower.

For the ad hoc changes of measure β(4) and β(5) we observe
that our results are again very accurate for small enough
truncation threshold, though less accurate than the results
for β(2) and β(3). However, only if δ is too large the rela-
tive error becomes high. Since neither of these changes of
measure properly works with importance sampling, they are
particularly well suited to further corroborate and highlight
again that our algorithm is far less sensitive to the change
of measure than importance sampling and that in contrast
to importance sampling our algorithm does not require in-
tricate pre-analyses.

Finally with the last case, β(6) = (0.8, 0.1, 0.1), we test a
change of measure that has disastrous effects when used with
importance sampling. It is beyond our scope here to provide
a detailed analysis of this change of measure in the context
of importance sampling but some explanation of the effects
can be given by the notion of overbiasing. Overbiasing is a
well known problem in importance sampling and basically
means too much simulation acceleration. Although the goal
is to provoke more of the rare events of interest in order to
reduce the variance of the simulation estimator, it can be
shown that provoking too many of them yields the contrary
effect. More formally, overbiasing in importance sampling
yields extremely small likelihood ratios for most of the cor-
responding simulation runs but very large likelihood ratios
for a few simulation runs. This results in an enormous vari-
ance of the importance sampling estimators since this vari-
ance is mainly driven by the variance of the likelihood ratio.
This effect is actually one of the main causes for the extreme
sensitivity of importance sampling to the change of measure.

As we can see from our results in Table 3 the overbias-
ing effects seems to play a role also for the guided state
space exploration but it is much less serious than for impor-
tance sampling. Our algorithm, though less efficient than
for other changes of measure, still provides proper results
for reasonably small truncation thresholds. Once again we
get evidence that our algorithm is far less sensitive to the
change of measure than importance sampling.

In Table 4, we list further results for the two-node tandem
network but other than before we now do not consider the
level of the overall population but the probability that the
second queue reaches some high buffer content B. For the
original network, we consider the parameter combinations
studied in [22], namely λ = 0.1, µ1 = 0.7, µ2 = 0.2, and we
compute the probability that the second queue contains at
least B = 100 customers. In contrast to the previous type of
rare event probabilities as presented in Table 3, we solve an
infinite system without an indirectly given bound since now
the number of customers in the first queue is not any longer
implicitly bounded by a target level of the overall popula-
tion. In addition to the relative error and the average size of
Sig , we list the execution time of our method (cf. columns
“ex.time”). The exact solution takes 87 seconds while a so-
lution with the change of measure (0.2, 0.7, 0.1) takes only
a few seconds. The degenerated change of measure yields
a relative error of one while the other heuristically chosen
changes, (0.4, 0.4, 0.2) and (0.3, 0.6, 0.1), yield good results
except if δ is chosen too large.
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Table 5: Results for the two-node tandem network with slow-down and parameters B = 100, θ = 0.8. Parameter
set 1: λ = 0.1, µ1 = 0.7, µ2 = 0.2, ν1 = 0.3, parameter set 2: λ = 0.1, µ1 = 0.7, µ2 = 0.2, ν1 = 0.15.

pcom exact solution guided state space exploration

Pr ex.time |Sig| δ degenerated as suggested in [22] 0.4,0.4,0.2,ν1 0.3,0.6,0.1,ν1

rel.err. ex.time |Sig| rel.err. ex.time |Sig| rel.err. ex.time |Sig| rel.err. ex.time |Sig|
1 5.6009e-31 142s 54049 1e-20 1 < 1s 348 1.8764e-15 14s 2534 3.9418e-5 81s 13730 4.1024e-3 11s 1886

1e-15 1 < 1s 198 1.0977e-10 8s 1444 3.8105e-3 40s 7009 5.4456e-2 6s 1089

1e-10 1 < 1s 93 7.9622e-6 4s 631 1.6369e-1 14s 2699 4.0330e-1 3s 497

2 3.5471e-32 172s 71841 1e-20 1 < 1s 344 2.7777e-15 32s 5164 3.1021e-3 228s 30590 1.1562e-2 70s 10364

1e-15 1 < 1s 197 2.6431e-10 21s 3464 1.2373e-1 150s 20777 1.2141e-1 44s 6590

1e-10 1 < 1s 93 4.9194e-5 11s 1851 9.0224e-1 81s 11450 6.2285e-1 17s 2480

5.2 Tandem Jackson Network with Slow-down
Our next example network is a slight modification of the pre-
vious one, the two-node tandem Jackson network with server
slow-down as considered in, e.g., [9, 22, 21]. When the length
of the second queue reaches B ·θ, the service rate of the first
node changes from µ1 to ν1. Similar to the example above,
the network with slow-down has become a reference exam-
ple for judging change of measure strategies for systems with
state-dependent rates in the original system. Here, we con-
sider two different parameter combinations from [22]. The
first combination is (λ, µ1, µ2, ν1) = (0.1, 0.7, 0.2, 0.3) and
the second one is (λ, µ1, µ2, ν1) = (0.1, 0.7, 0.2, 0.15) where
λ is the arrival rate, µ2 is the service rate at the second
node, and µ1 and ν1 are the service rates at the first node
before and after slow-down. We compute the probability
that starting with an arrival to the empty system the num-
ber of customers in the second network node is at least B
before the system empties again.

We list results for both cases in Table 5 where the column
“pcom” refers to the two parameter combinations. Also, in
both cases we let B = 100 and θ = 0.8. Similar as above,
we consider an exact solution (δ = 0) and the degenerated
change of measure. The changes of measure suggested in [22]
are such that, for pcom 1, arrival rate µ2 is chosen, service
rate at the second node is λ, and the service rate at the
first node is chosen as µ1 while the queue length is below
B · θ and ν1 if the queue length is at least B · θ (cf. column
“as suggested in [22]”). For pcom 2, the parameters of the
change of measure are also chosen as (µ2, µ1, λ) while the
queue length at the first queue is below B · θ. If the queue
length reaches B · θ, the parameters of the change of mea-
sure are calculated by solving an equation (see [22]) which
yields (0.177263, 0.177263, 0.095474). Again, we list the re-
sults of this change of measure in the column with heading
“as suggested in [22]”. Finally, we consider for both param-
eter combinations two heuristically chosen changes of mea-
sure, (0.4, 0.4, 0.2, ν1) and (0.3, 0.6, 0.1, ν1) where ν1 = 0.3
for pcom 1 and ν1 = 0.15 for pcom 2. Similar as for the
network without slowdown, the exact solution takes signif-
icantly longer than the solutions based on the dynamical
truncation of the state space. Moreover, the relative error
is one for the degenerated case and high if δ is large and
the change of measure is chosen heuristically. The change
of measure suggested in [22] performs well even if δ is large.

5.3 Eight-Node Tandem Network
Our final example is a tandem network with eight nodes.
We choose arrival rate λ = 0.04, and equal service rates
µ1 = . . . = µ8 = 0.12 and consider the probability that
starting with an arrival to the empty system the sum of the
number of customers in all network nodes is at least L = 29
before time T . Hence, as in our very first example we are
concerned with the overall population in the system but we
restrict our analysis to the time interval [0, T ] where T = 50
or T = 100 (cf. column “T”). To the best of our knowl-
edge, no in-depth study of this system has been conducted
in the context of importance sampling. As it is more com-
plex than the two-node networks, of course, an appropriate
change of measure is more difficult to obtain. Here, we con-
sider heuristic changes of measure that seem reasonable with
regard to the goal of provoking more rare events of interest.
As before, we start by considering the degenerated change of
measure where no rates are changed and the computation is
done using the parameters of the original network. For the
non-degenerated changes of measure we first apply a quite
straightforward generalization of exchanging the arrival rate
with the service rate at the last node, hence in our case now
an exchange of λ and µ8. Then we consider two ad hoc
heuristics based on the reasoning that simply increasing the
arrival rate without changing any service rate increases the
probability of a high overall population. More precisely, we
increase the arrival rate by a factor of two and by a factor
of three, respectively. The results obtained by the guided
state space exploration are given in Table 6. As we can
see once more, for sufficiently small truncation threshold δ
our algorithm provides very accurate results with quite low
computational efforts.

6. CONCLUSIONS
In this paper, we have presented an efficient method for cal-
culating rare event probabilities in Markovian queueing net-
works with huge or infinite state space. Our methods com-
bines a dynamical state space truncation procedure with the
change of measure idea of importance sampling. This com-
bination yields a guided state space exploration where the
change of measure is applied in order to guide the analysis al-
gorithm to the relevant parts of the state space and to avoid
truncation of important states. For the approximation of
the transient distribution, we used an explicit fourth-order
Runge-Kutta method. However, our approach can also be
combined with other transient solution methods, e.g. with
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Table 6: Results for the eight-node tandem network with parameters λ = 0.04, µ1 = · · · = µ8 = 0.12, L = 29.

T exact solution guided state space exploration

Pr ex.time |Sig| δ degenerated λ and µ8 exchanged λ two times faster λ three times faster

rel.err. ex.time |Sig| rel.err. ex.time |Sig| rel.err. ex.time |Sig| rel.err. ex.time |Sig|
50 1.6643e-23 796s 36984860 1e-20 1 13s 268689 5.9530e-5 106s 1514580 3.5570e-3 577s 3450157 3.3110e-4 99s 1257158

1e-15 1 3s 72524 3.3907e-1 34s 479171 3.5541e-3 201s 1138686 6.7326e-1 29s 374744

1e-10 1 < 1s 11161 1 6s 84349 3.4976e-3 30s 165803 1 5s 60968

100 1.2204e-16 2317s 36984860 1e-20 1 178s 1419901 3.8544e-9 1625s 9163634 1.3029e-4 1995s 4757788 1.6235e-5 1451s 7418540

1e-15 1 37s 348056 1.8114e-4 729s 3943370 2.8527e-1 452s 1075486 5.3342e-4 581s 2833833

1e-10 1 3s 43343 9.5890e-1 136s 684309 9.9755e-1 41s 110010 9.9189e-1 95s 458195

the uniformization method [28].

Our method has the general advantages of numerical meth-
ods over simulative approaches, namely, that it does not
require the generation of trajectories and has only a numeri-
cal error but no statistical error. Moreover, our experimental
results show that it is far less sensitive to the change of mea-
sure than importance sampling, that is, even if the change of
measure is not well enough chosen for use with importance
sampling, our numerical method performs well. The accu-
racy of our method is controlled by the truncation threshold
δ. Obviously, as the truncation threshold δ → 0 the approx-
imation becomes exact if we neglect the error introduced by
the numerical integration method. For too large values of
δ, say, δ ≥ 10−15 the accuracy of the approximation can be
degraded by a badly chosen change of measure, but even in
this case the degradation is far less extreme than for impor-
tance sampling. A sufficiently small truncation threshold
yields accurate results. Thus, determining an appropriate
change of measure becomes easier as in the case of impor-
tance sampling or, in other words, the change of measure
is less important than for importance sampling. Hence, our
method provides an efficient means for numerical analysis of
transient rare event probabilities.

At the current stage, exact formulas for the approximation
error of the guided state space exploration are not yet avail-
able. As usual when inventing and presenting a novel com-
putational method, we have demonstrated the accuracy by
comparison with exact results. Clearly, it would be highly
desirable to be able to compute a priori error bounds for
given changes of measure and truncation thresholds, to de-
termine the required truncation threshold for a prescribed
maximum relative error, or to compute a posteriori the rela-
tive error for results obtained with a certain change of mea-
sure and a priori fixed truncation threshold. These issues
are major topics of ongoing further research.

7. ACKNOWLEDGMENTS
L. Mikeev and V. Wolf have been partially funded by the
German Research Council (DFG) as part of the Cluster
of Excellence on Multimodal Computing and Interaction at
Saarland University and the Transregional Collaborative Re-
search Center “Automatic Verification and Analysis of Com-
plex Systems” (SFB/TR 14 AVACS).

8. REFERENCES
[1] J. H. Blanchet, P. W. Glynn, P. L’Ecuyer,

W. Sandmann, and B. Tuffin. Asymptotic robustness
of estimators in rare-event simulation. In Proceedings
of the 2007 INFORMS Simulation Society Research
Workshop, 2007.

[2] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi.
Queueing Networks and Markov Chains. John Wiley
& Sons, 2nd edition, 2006.

[3] J. A. Bucklew. Introduction to Rare Event Simulation.
Springer-Verlag, 2004.

[4] C. G. Cassandras and S. Lafortune. Introduction to
Discrete Event Systems. Springer-Verlag, 2nd edition,
2008.

[5] P. T. de Boer. Analysis of state-independent
importance-sampling measures for the two-node
tandem queue. ACM Transactions on Modeling and
Computer Simulation, 16(3):225–250, 2006.

[6] E. de Souza e Silva and R. Gail. Transient solutions
for Markov chains. In W. K. Grassmann, editor,
Computational Probability, chapter 3, pages 43–79.
Kluwer Academic Publishers, 2000.

[7] E. de Souza e Silva and P. M. Ochoa. State space
exploration in Markov models. In Proceedings of the
ACM SIGMETRICS joint international conference on
Measurement and modeling of computer systems,
pages 152–166. ACM, 1992.

[8] F. Didier, T. A. Henzinger, M. Mateescu, and V. Wolf.
Fast adaptive uniformization of the chemical master
equation. In Proceedings of the High Performance
Computational Systems Biology Workshop, pages
118–127. IEEE Computer Society, 2009.

[9] P. Dupuis, K. Leder, and H. Wang. Large deviations
and importance sampling for a tandem network with
server slow-down. Queueing Systems, 57(2–3):71–83,
2007.

[10] P. Dupuis and H. Wang. Importance sampling for
Jackson networks. Queueing Systems,
62(1–2):113–157, 2009.

[11] S. Gibson and E. Seneta. Augmented truncation of
infinite stochastic matrices. Journal of Applied
Probability, 24:600–608, 1987.

[12] P. Glasserman and S.-G. Kou. Analysis of an
importance sampling estimator for tandem queues.
ACM Transactions on Modeling and Computer
Simulation, 5(1):22–42, 1995.

[13] P. W. Glynn and D. L. Iglehart. Importance sampling
for stochastic simulations. Management Science,

195



35(11):1367–1392, 1989.

[14] W. K. Grassmann. Finding transient solutions in
Markovian event systems through randomization. In
W. J. Stewart, editor, Numerical Solution of Markov
Chains, chapter 18, pages 357–372. Marcel Dekker,
Inc., 1991.

[15] P. Heidelberger. Fast simulation of rare events in
queueing and reliability models. ACM Transactions on
Modeling and Computer Simulation, 5(1):43–85, 1995.

[16] T. A. Henzinger, B. Jobstmann, and V. Wolf.
Formalisms for specifying Markovian population
models. In Proceedings of the 3rd International
Workshop on Reachability Problems, volume 5797 of
LNCS. Springer, 2009.

[17] S. Juneja and P. Shahabuddin. Rare event simulation
techniques: An introduction and recent advances. In
S. G. Henderson and B. L. Nelson, editors, Simulation,
Handbooks in Operations Research and Management
Science, chapter 11, pages 291–350. Elsevier,
Amsterdam, The Netherlands, 2006.

[18] G. Kesidis. An Introduction to Communication
Network Analysis. John Wiley & Sons, 2007.

[19] P. L’Ecuyer, J. H. Blanchet, B. Tuffin, and P. W.
Glynn. Asymptotic robustness of estimators in
rare-event simulation. ACM Transactions on Modeling
and Computer Simulation, 20(1):6:1–4:41, 2010.

[20] D. A. Menasce, V. A. Almeida, and L. W. Dowdy.
Performance by Design. Prentice Hall, 2004.

[21] D. I. Miretskiy. Queueing Networks: Rare Events and
Fast Simulations. PhD thesis, University of Twente,
Enschede, The Netherlands, 2009.

[22] D. I. Miretskiy, W. R. W. Scheinhardt, and M. R. M.
Mandjes. Efficient simulation of a tandem queue with
server slow-down. Simulation, 83(11):751–767, 2007.

[23] S. Parekh and J. Walrand. A quick simulation method
for excessive backlogs in networks of queues. IEEE
Transactions on Automatic Control, 34:54–56, 1989.

[24] G. Rubino and B. Tuffin, editors. Rare Event
Simulation Using Monte Carlo Methods. John Wiley
& Sons, 2009.

[25] W. Sandmann. Fast simulation of excessive population
size in tandem Jackson networks. In Proceedings of
12th IEEE Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication
Systems, MASCOTS, pages 347–354. IEEE Computer
Society Press, 2004.

[26] W. Sandmann. Structured description of Markovian
network models and its potentials for efficient rare
event simulation. In Proceedings of the 2nd
International Conference on Performance Modelling
and Evaluation of Heterogeneous Networks, HetNets,
pages P39/1–10, 2004.

[27] W. Sandmann. Efficiency of importance sampling
estimators. Journal of Simulation, 1(2):137–145, 2007.

[28] W. J. Stewart. Introduction to the Numerical Solution
of Markov Chains. Princeton University Press, 1994.

[29] B. Tuffin, P. L’Ecuyer, and W. Sandmann. Robustness
properties for simulations of highly reliable systems.
In Proceedings of the 6th International Workshop on
Rare Event Simulation, RESIM, pages 107–118, 2006.

[30] R. L. Tweedie. Truncation approximation of invariant

measures for Markov chains. Journal of Applied
Probability, 35(3):517–536, 1998.

[31] P. Van Mieghem. Performance Analysis of
Communications Networks and Systems. Cambridge
University Press, 2006.

196




