
A Temporal Network Calculus Approach to Service
Guarantee Analysis of Stochastic Networks

Jing Xie
Department of Telematics

Norwegian University of Science and Technology

Yuming Jiang
Centre for Quantifiable Quality of Service in

Communication Systems
Department of Telematics

Norwegian University of Science and Technology

ABSTRACT

Many computer networks such as wireless networks are stochas-
tic in nature. In order to perform performance guarantee
analysis of such networks, a theory, called stochastic network
calculus, has evolved. In the stochastic network calculus lit-
erature, most results are based on space-domain traffic and
service models where the arrival process and the service pro-
cess are respectively characterized by the cumulative amount
of arrival and the cumulative amount of service. Recently,
a novel approach called time-domain approach to stochas-
tic network calculus (SNC) has been proposed, where the
traffic and service models are defined based on the cumu-
lative inter-arrival times and the cumulative service times
respectively.

In this paper, we concretize the time-domain SNC traffic
and service models by linking some well-known stochastic
processes to them. In addition, we exemplify the temporal
analysis approach by investigating the delay performance of
a Gilbert-Elliott channel. The results show that the delay
bound can be improved under the independence condition.
Furthermore, a comparison between the temporal and the
spatial analysis results reveals that the two analytical ap-
proaches essentially yield close results.

1. INTRODUCTION
Nowadays computer networks are so widespread in our ev-

eryday life and provide a fast and convenient way to access
various network services. One inevitable trend of network
development is to deliver information with various traffic
characteristics and diverse Quality of Service (QoS) require-
ments. In response to the continually growing demand for
more bandwidth, it is necessary to improve existing technol-
ogy and develop new ones. Performance analysis is needed to
optimize the performance of existing technologies and eval-
uate the efficiency of new ones.

Performance models capture the behavior characteristics
of networks. The behavior of a computer network is often
subject to many irregularities and stochastic fluctuations.
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The reason behind this phenomena is manifold. First of all,
the diverse network applications incorporate some compli-
cated dynamics which generate the varying traffic patterns,
accordingly. Secondly, in many network systems, the ser-
vices provided by the networks are non-deterministic. Such
networks are stochastic in nature and are called stochas-
tic networks in this paper. A representative type of such
networks is wireless networks, where the error-prone na-
ture of wireless channels causes data transmission inherently
stochastic and influences the link capacity over time. In
addition, aggregate multiplexing has been employed exten-
sively in order to improve resource utilization. From the
perspective of individual flows, the service received dynam-
ically changes over time because new flows join or existing
flows leave.

Stochastic network calculus is an analytical theory orig-
inated for stochastic performance guarantee analysis. The
fundamental elements of this theory are stochastic arrival
curve and stochastic service curve. The former is a traffic
model characterizing the behavior of the traffic arrival pro-
cess. The latter is a service model describing the service
provided by a network element. The significant progress on
modeling and analyzing network behavior from the spatial
perspective is summarized in [3][7][9]. The study from a
temporal perspective is, however, very limited.

Recently, a novel approach called time-domain approach
to stochastic network calculus (SNC) has been proposed [12].
In this temporal approach, the traffic and service models are
defined based on the cumulative interarrival times and the
cumulative service times respectively, based on which de-
lay and backlog bounds are derived [12]. However, a clear
guidance of finding the time-domain arrival curve or service
curve characterization of an arrival process or a service pro-
cess is missing. An objective of this paper is to provide this
missing link.

Another objective of the paper is to compare the temporal
SNC approach and the spatial SNC approach. This is ex-
emplified through delay analysis of a Gilbert-Elliott channel,
for which, performance bounds derived under the temporal
SNC approach are available in the literature. Particularly,
the analysis is based on the time-domain traffic and service
models defined in the temporal SNC approach, and delay
bounds are obtained. For the analysis, a new service model
called time-domain stochastic strict service curve is defined
to help find the stochastic service curve of a network element.
In addition, martingale inequalities are adopted when appli-
cable. Furthermore, the analytical results from the temporal
SNC approach are compared with those from the temporal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
VALUETOOLS 2011, May 16-20, Paris, France
Copyright © 2011 ICST 978-1-936968-09-1
DOI 10.4108/icst.valuetools.2011.245600

408



SNC approach. The comparison reveals that the two SNC
approaches essentially give close results.

The rest of the paper is organized as follows. Sec. 2 in-
troduces preliminary knowledge and relevant mathematical
background. In Sec. 3, we investigate the stochastic arrive
curve characterization of the arrival process from the tem-
poral perspective. In Sec. 4, the service process is character-
ized through the time-domain stochastic strict service curve
model and stochastic service curve model. The detailed pro-
cedure of analyzing the Gilbert-Elliott channel service char-
acterization is given in Sec. 5. Sec. 6 demonstrates how
to find the system delay bound and discusses the numer-
ical results, based on the time-domain SNC approach. In
addition, the delay bounds derived from the temporal anal-
ysis are compared to those derived from the spatial analysis.
Conclusions are drawn in the last section.

2. PRELIMINARY AND BACKGROUND
This section first describes the system model and defines

notations used throughout this paper, and then gives rele-
vant mathematical background that is indispensable in the
following analysis.

2.1 System Model and Notations
.
Consider packets arriving to a system. We use P (n), a(n),

d(n) and δn, to denote the nth packet entering the system,
its arrival time to the system, departure time from the sys-
tem and the service time provided by the system, respec-
tively, where n = 1, 2, .... The inter-arrival time and inter-
departure time between P (n− 1) and P (n) are denoted by
τn and τ∗n, respectively.

From the temporal perspective, an arrival process counts
the cumulative inter-arrival time between two arbitrary pack-
ets and is denoted by Γ(m,n) =

Pn
k=m+1 τk. A service

process describes the cumulative service time received be-
tween two arbitrary packets and is denoted by ∆(m,n) =
Pn

k=m
δk. A departure process represents the cumulative

inter-departure time between two arbitrary packets and is
denoted by Γ∗(m,n) =

Pn
k=m+1 τ

∗
k . All processes are de-

fined on n ≥ 1, m ≥ 1.
The following function sets are often used in this paper.

Particularly, we denote by G the set of non-negative wide-
sense increasing functions:

G =
˘

f(·) : ∀0 ≤ x ≤ y, 0 ≤ f(x) ≤ f(y)
¯

where for any function f ∈ G, we set f(x) = 0 for x < 0.
We denote by Ḡ the set of non-negative wide-sense de-

creasing functions:

Ḡ =
˘

g(·) : ∀0 ≤ x ≤ y, 0 ≤ g(y) ≤ g(x)
¯

where for any function g ∈ Ḡ, we set g(x) = 1 for x < 0.

2.2 Preliminaries
Min-plus algebra has been used to characterize and ana-

lyze network behavior from the spatial perspective [1][8][7].
Interestingly, modeling network behavior from the temporal
perspective can be easily represented using max-plus algebra
[8][12]. We review the basics of both min-plus and max-plus
algebras used in this paper.

The min-plus convolution of single variate functions F,G ∈

F denoted by ⊗ is defined as below:

F ⊗G(t) = inf
0≤s≤t

˘

F (s) + G(t− s)
¯

The max-plus convolution, denoted by ⊗̄, of single variate
functions A,B ∈ F , is defined as:

A⊗̄B(n) = sup
0≤m≤n

˘

A(m) +B(n−m)
¯

.

Note that the single variate min-plus and max-plus con-
volutions are commutative.

The moment generating function (MGF) MX(η) of a ran-
dom variable X is defined for all values η by

MX(η) = E
ˆ

eηX
˜

,

where E is the expectation of its argument.
A martingale is a stochastic process, where the conditional

expectation of an observation at time t, given all the obser-
vations up to some earlier time s, equals the observation at
time s. Let An be a discrete-time process with finite mean,
then it is a discrete-time martingale iff there holds for all n,

E
`

An+1|A1, A2, ...,An

´

= An.

An is said to be a submartingale iff for all n,

E
`

An+1|A1, A2, ...,An

´

≥ An.

An is said to be a supermartingale iff for all n,

E
`

An+1|A1, A2, ...,An

´

≤ An.

Every martingale is a supermartingale and a submartingale.
Lemma 1 presents an inequality for supermartingale which

is derived from the Doob’s submartingale inequality [6].

Lemma 1. If
˘

Uk, 1 ≤ k ≤ n
¯

is a supermartingale and
all Uk, k = 1, ..., n, are non-negative, then for any real value
x > 0, there holds:

P
n

sup
1≤m≤n

Uk ≥ x
o

≤ E[U1]

x
. (1)

3. ARRIVAL PROCESS CHARACTERIZA-

TION
In this section, we first recall the definitions of time-domain

stochastic arrival curve models and then obtain the stochas-
tic arrival curve characterization of the arrival process.

3.1 Moment Generating Function of Inter-
arrival Time

When observing the traffic arrival process Γ(m,n) from
the temporal perspective, it is indeed formed from process
{τm+1}, where τm+1 ≡ a(m+1)−a(m). In order to guaran-
tee a certain level of QoS to this arrival process, the packet
inter-arrival times should be constrained. For the arrival
process Γ(m,n) formed by identically distributed {τm+1},
suppose there exists ϕ(η, n−m) satisfying

E[eηΓ(m,n)] ≥ eη(n−m)ϕ(η,n−m)

which becomes the following expression

1

η(n −m)
logE

ˆ

eηΓ(m,n)˜

≥ ϕ(η, n−m).
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If {τm+1} are independent and identically distributed (i.i.d.),

then it is easily verified that 1
η(n−m) logE

ˆ

eηΓ(m,n)
˜

= 1
η
logE

ˆ

eητ1
˜

,

which is independent of n−m, and we hence adopt:

1

η
logE

ˆ

eητ1
˜

≥ ϕ(η).

3.2 i.a.t Stochastic Arrival Curve Characteri-
zation

The i.a.t stochastic arrival curve is defined as below [12]:

Definition 1. (i.a.t Stochastic Arrival Curve). A
flow is said to have an inter-arrival-time (i.a.t) stochastic
arrival curve λ ∈ G with bounding function h ∈ Ḡ, if for all
m,n ≥ 1 and x ≥ 0, there holds

P
n

Γ(m,n) <
ˆ

λ(n−m) − x
˜+

o

≤ h(x). (2)

Remark. We adopt λ(0) = 0 by convention.
Assume {τm+1} are identically distributed. Let ϕ(η, n −

m) ≤ 1
η(n−m)

logE
ˆ

eηΓ(m,n)
˜

. Then (2) is rewritten as

P
˘

ϕ(η, n−m) · (n−m) − Γ(m,n) > x
¯

= P
˘

eη[ϕ(η,n−m)·(n−m)−Γ(m,n)] > eηx
¯

≤ e−ηxE
ˆ

eη[ϕ(η,n−m)·(n−m)−Γ(m,n)]˜ (3)

= e−ηx e
ηϕ(η,n−m)·(n−m)

E
ˆ

eηΓ(m,n)
˜

≤ e−ηx (4)

for η > 0. Here (3) is known as the Chernoff bound, and (4)

is obtained due to E
ˆ

eηΓ(m,n)
˜

≥ eη(n−m)ϕ(η,n−m) by defini-
tion. The following lemma summarizes the above result.

Lemma 2. For an arrival process Γ(m,n), if there exists
ϕ(η, n−m) which satisfies, for m,n ≥ 1,

1

η(n−m)
logE

ˆ

eηΓ(m,n)˜ ≥ ϕ(η, n−m),

then this process has an i.a.t. stochastic arrival curveλ(n) =
ϕ(η, n) · n with bounding function h(x) = e−ηx for η > 0.

If {τm+1} are i.i.d., (2) is rewritten as follows:

P
n

ϕ(η) · (n−m) − Γ(m,n) > x
o

≤ e−ηxE
ˆ

eη[ϕ(η)−τ1]˜,

from which, we have the following lemma.

Lemma 3. If the inter-arrival times of arrival process
Γ(m,n) are i.i.d., then the arrival process has an i.a.t. stochas-
tic arrival curve λ(n) = ϕ(η) · n with bounding function

h(x) = e−ηxE
ˆ

eη[ϕ(η)−τ1]
˜

, where ϕ(η) ≤ 1
η
logE

ˆ

eητ1
˜

for
η > 0.

Remark: Lemma 2 becomes Lemma 3 by taking into con-
sideration the independence condition of inter-arrival times.

3.3 v.w.d Stochastic Arrival Curve Character-
ization

The v.w.d stochastic arrival curve is defined as below [12]:

Definition 2. (v.w.d Stochastic Arrival Curve). A
flow is said to have a virtual-waiting-delay (v.w.d) stochastic

arrival curve λ ∈ G with bounding function h ∈ Ḡ, if for any
m,n ≥ 1 and x ≥ 0, there holds

P
n

sup
1≤m<n

˘

λ(n−m) − Γ(m,n)
¯

> x
o

≤ h(x). (5)

The left-hand side of (5) represents an instantaneous prop-
erty which is generally hard to calculate [10]. To address this
difficulty, additional constraint on the bounding function is
needed. Assume {τn} are identically distributed. Without
loss of generality, assume when m takes m0, the following
holds

sup
0≤m<n

˘

ϕ(η, n−m) · (n−m) − Γ(m,n)
¯

= ϕ(η, n−m0) · (n−m0) − Γ(m0, n).

Then from (5), we can write, for any x ≥ 0,

P
n

sup
0≤m≤n

˘

ϕ(η, n−m) · (n−m) − Γ(m,n)
¯

> x
o

= P{ϕ(η, n−m0) · k − Γ(m0, n) > x} ≤ e−ηx,

where, the last step is obtained from (4).

Lemma 4. For an arrival process Γ(m,n), if there exists
ϕ(η, n−m) which satisfies, for any 1 ≤ m < n,

1

η(n−m)
logE

ˆ

eηΓ(m,n)˜

≥ ϕ(η, n−m)

then this process has a v.w.d stochastic arrival curve λ(n) =
ϕ(η, n) · n with bounding function h(x) = e−ηx for η > 0.

If the arrival process is formed by the i.i.d. inter-arrival
times, it has a stochastic arrival curve given by Lemma 5.

Lemma 5. If the inter-arrival times of arrival process
Γ(m,n) are i.i.d., then the arrival process has a v.w.d stochas-
tic arrival curve λ(n) = ϕ(η) · n with bounding function

h(x) = eηϕ(η)E[e−ητ1 ]e−ηx for η > 0, where ϕ(η) ≤ 1
η
logE

ˆ

eητ1
˜

.

Proof. Consider a sequence of non-negative random vari-
ables {Vm}, m = 1, 2, ..., n− 1, formed by

Vm = eηϕ(η)·m−ηΓ(n−m,n) = eηϕ(η)·m−η
Pn

k=n−m+1
τk .

Since {τk} are i.i.d., we then have

Vm+1 = eηϕ(η)·(m+1)−ηΓ(n−m−1,n)

= eηϕ(η)·(m+1)−η
Pn

k=n−m τk

= eηϕ(η)·m−η
Pn

k=n−m+1
τk · eηϕ(η)−ητn−m

= Vm · eηϕ(η)−ητn−m .

In addition, there holds:

E
ˆ

Vm+1|V1, ..., Vm

˜

= E
ˆ

Vm+1|τn, τn−1, ..., τn−m+1

˜

= E
ˆ

Vm · eηϕ(η)−ητn−m |τn, ..., τn−m+1

˜

= E
ˆ

Vm|τn, ..., τn−m+1

˜

· E
ˆ

eηϕ(η)−ητn−m
˜

(6)

= Vm · eηϕ(η)

E
ˆ

eητ1
˜ (7)

≤ Vm (8)

where, step (6) is due to that τn−m is independent of {τn, τn−1,
..., τn−m+1}, step (7) is because {τ1, τ2, ...} are identically
distributed and

E
ˆ

Vm(τn, τn−1, ..., τn−m+1)|τn, τn−1, ..., τn−m+1

˜

= Vm,
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and step (8) holds since E
ˆ

eητ1
˜

= eηϕ(η) by definition.
Hence V1, V2, ..., Vn form a non-negative supermartingale.

From Lemma 1, there holds

P
n

sup
1≤m<n

˘

ϕ(η) · (n−m) − Γ(m,n)
¯

> x
o

= P
n

sup
1≤m<n

˘

eϕ(η)·(n−m)−Γ(m,n)¯

> ex
o

= P
n

sup
1≤m<n

Vm > ex
o

≤ E[V1]e
−ηx = eηϕ(η)E[e−ητ1 ]e−ηx

which ends the proof.

Remark. Lemma 4 becomes Lemma 5 by taking into ac-
count the independence condition. The bounding function
in Lemma 5 contains a scaling factor eηϕ(η)E[e−ητ1 ] with
regard to ϕ(η). This scaling factor will yield tighter arrival
curves if it is smaller than 1.

Example 1. Exponential inter-arrival time distribution.

Consider an arrival process of packets generated at times
{a(n)}. Suppose the inter-arrival times {τn} are i.i.d. expo-
nentially distributed random variables with mean 1

µ
. Then

the arrival process Γ(m,n) follows gamma distribution with
parameters n−m and µ. We thus have

E
ˆ

eηΓ(m,n)
˜

=
“ µ

µ− η

”n−m

⇒ 1

η(n−m)
logE

ˆ

eηΓ(m,n)˜ =
1

η
log

µ

µ− η

Let ϕ(η) = 1
η
log µ

µ−η
. By applying Lemma 3 and Lemma

5, the i.a.t stochastic arrival curve and the v.w.d stochastic
arrival curve of the arrival process can be obtained. Specifi-
cally, this arrival process has a v.w.d stochastic arrival curve
λ(n) with bounding function h(x), where

λ(n) = ϕ(η) · n =
n

η
log

µ

µ− η

h(x) = eηϕ(η)E[e−ητ1 ]e−ηx = e−ηx.

4. SERVICE PROCESS CHARACTERIZA-

TION
This section first reviews the i.d stochastic service curve

model, from which we define a stochastic strict service curve
model to facilitate obtaining the i.d stochastic service curve.
Moreover, a time-domain error process is introduced to de-
couple the characterization of the cumulative impaired ser-
vice time from the real service process.

4.1 Stochastic Strict Service Curve
Consider a stochastic system. The following definition [12]

describes the service process of this system by comparing the
packet actual departure time d(n) with a virtual departure
time a⊗̄γ(n).

Definition 3. (i.d Stochastic Service Curve). A sys-
tem is said to provide an inter-departure time (i.d) stochas-
tic service curve γ ∈ G with bounding function j ∈ Ḡ,if for
any n ≥ 1, x ≥ 0, there holds

P
n

d(n) − a⊗̄γ(n) > x
o

≤ j(x). (9)

Remark. We adopt γ(0) = 0 by convention.
Although (9) explores the relationship between the ar-

rival process and the departure process, it does not explic-
itly characterize the service process. To solve this problem,
we expand (9) as follows [12]:

d(n) − a⊗̄γ(n) = sup
1≤m≤n

ˆ

a(m) + ∆(m,n)
˜

− a⊗̄γ(n). (10)

Without loss of generality, assume a(m0) (1 ≤ m0 ≤ n) is
the beginning of the backlogged period in which packet P (n)
is served. Then, sup1≤m≤n

ˆ

a(m) + ∆(m,n)
˜

= a(m0) +
∆(m0, n) and a⊗̄γ(n) ≥ a(m0)+ γ(n−m0 +1). We rewrite
the right-hand side of (10) as

a(m0) + ∆(m0, n) − a⊗̄γ(n)

≤ a(m0) + ∆(m0, n) − a(m0) − γ(n−m0 + 1)

= ∆(m0, n) − γ(n−m0 + 1). (11)

Note that (11) holds for arbitrary m0 ≤ n. Inspired by this,
we define a new service curve model as below.

Definition 4. Stochastic Strict Service Curve. A sys-
tem is said to provide stochastic strict service curve γ(n)
with bounding function j(x), if the cumulative service time
between two arbitrary packets P (m) and P (n)1 satisfies

P
n

∆(m,n) − γ(n−m+ 1) > x
o

≤ j(x)

for any x ≥ 0.

Moreover, (11) reveals a relationship between the i.d stochas-
tic service curve and the stochastic strict service curve.

Lemma 6. If a system provides stochastic strict service
curve γ(n) with bounding function j(x), then it provides
an i.d stochastic service curve γ(n) with the same bound-
ing function j(x).

With Lemma 6, we can further explore the stochastic ser-
vice curve characterization. If the service times {δn} are
identically distributed, we have

P
n

d(n) − a⊗̄γ(n) > x
o

≤ P
n

eη[∆(m,n)−γ(n−m+1)] > eηx
o

≤ e−ηxE
ˆ

eη[∆(m,n)−(ν(η,n−m+1)+ηγ )·(n−m+1)]˜

≤ e−ηxe−ηηγ(n−m+1) ≤ e−ηxe−ηηγ

where γ(n−m+ 1) = (ν(η, n −m + 1) + ηγ) · (n−m+ 1)
with ν(η, n−m + 1) satisfying

ν(η, n−m + 1) ≥ 1

η(n−m+ 1)
logE

ˆ

eη∆(m,n)˜

.

If the service times {δn} are i.i.d., we have

P
n

d(n) − a⊗̄γ(n) > x
o

≤ e−ηxE
ˆ

eη[∆(n,n)−(ν(η)+ηγ)]n−m+1 ˜

≤ e−ηxe−ηηγ

where γ(n −m + 1) = (ν(η) + ηγ) · (n − m + 1) with ν(η)
satisfying

ν(η) =
1

η
logE

ˆ

eηδ1
˜

.

The following lemma summarizes the above discussion.
1If P (m) and P (n) are in the same backlogged period,
∆(m,n) = d(n) − d(m− 1) = Γ∗(m− 1, n).
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Lemma 7. If the system provides stochastic strict service
curve γ(n) with bounding function j(x) and

• the service times {δn} are identically distributed, then
γ(n− m + 1) = (ν(η, n − m + 1) + ηγ) · (n − m + 1)
and j(x) = e−ηxe−ηηγ for all η > 0, ηγ ≥ 0, where

ν(η, n−m + 1) ≥ 1

η(n −m+ 1)
logE

ˆ

eη∆(m,n)˜

;

• the service times {δn} are i.i.d., then γ(n−m + 1) =
(ν(η) + ηγ) · (n − m + 1) and j(x) = e−ηxe−ηηγ for
η > 0, ηγ ≥ 0, where

ν(η) =
1

η
logE

ˆ

eηδ1
˜

.

4.2 Error Server Due to Impairment
The error server model consists of an ideal service process

and an error process [11]. The former describes the service
process when there would be no error. The latter charac-
terizes the errors in the service. We investigate a typical
example of error server in this subsection.

Consider a wireless channel providing service with stochas-
tic nature which is due to some random impairment process.
The impairment degrades the network performance because
packets may not be transmitted successfully when the chan-
nel condition is ‘bad’ or packets are queued in the buffer until
the channel condition becomes ‘good’. Either dropping/re-
transmitting the unsuccessfully delivered packets or holding
the queued packets longer can be counted as errors in the
service time. The cumulative error in service time can be
explicitly described by an error process.

If the channel is always in ‘good’ condition, the service
time of packet P (n) equals the packet transmission time de-

noted by δ̂n. However, the varying link condition may cause
P (n) to suffer additional delay denoted by εn. Then the ac-
tual service time equals the packet transmission time plus
the additional delay, i.e., δn = δ̂n + εn.

Let ∆̂(m,n) =
Pn

k=m
δ̂k represent the ideal service pro-

cess without errors, E(m,n) =
Pn

k=m εk represent the er-
ror process, and ∆(m,n) represent the actual service pro-
cess. The cumulative actual service time satisfies, for any
1 ≤ m ≤ n,

∆(m,n) = ∆̂(m,n) + E(m,n). (12)

If the ideal service process ∆̂(m,n) has a (deterministic)

strict service curve2 γ̂(n), i.e., ∆̂(m,n) ≤ γ̂(n−m + 1) for
any 1 ≤ m ≤ n, then from (12), there holds

∆(m,n) ≤ γ̂(n−m+ 1) + E(m,n).

Furthermore, if the error process E(m,n) has a stochastic
strict service curve γE(n), we get a further result

∆(m,n) − γ̂(n−m + 1) − γE(n−m+ 1)

≤ E(m,n) − γE(n−m+ 1).

The following lemma illustrates that the above-mentioned
error server provides a stochastic strict service curve.

2The deterministic strict service curve is a special case of
the stochastic strict service curve with bounding function
j(x) = 0.

Lemma 8. Consider an error server consists of an ideal
service process ∆̂(m,n) having a (deterministic) strict ser-
vice curve γ̂(n) and an error process E(m,n) having a stochas-
tic strict service curve γE(n) with bounding function jE(x).
Then, the error server provides a stochastic strict service
curve γ(n) with bounding function jE(x), where

γ(n) = γ̂(n) + γE(n).

Remark. With Lemma 7, if {εn} are identically dis-
tributed, then γE(n) = (νE(η, n) + ηγ) · n with bounding
function jE(x) = e−ηxe−ηηγ where

νE(η, n−m+ 1) ≥ 1

η(n−m+ 1)
logE

ˆ

eηE(m,n)˜.

If {εn} are i.i.d., then γE(n) = (νE(η)+ηγ ) ·n with the same
bounding function jE(x), where νE(η) = 1

η
logE

ˆ

eηε1
˜

.

5. SERVICE CURVE EXAMPLE
This section gives an example to demonstrate how to ob-

tain the stochastic service curve characterization of a Gilbert-
Elliott channel. We first analyze the constant rate server
which can be considered as the ideal service process of an
error server. Then we investigate the Gilbert-Elliott channel
in detail.

5.1 Constant Rate Server
Consider a server with constant service rate C. Let Ln

denote the packet length of packet P (n). If all packets have
the fixed-length L, then the server provides a deterministic
strict service curve γ(n) = L

C
· n. If the packet lengths are

i.i.d. random variables with the MGF ML(η) = E
ˆ

eηL1
˜

, we
have the following result.

Lemma 9. Consider a server with constant service rate
C. If the arrival packets have i.i.d. packet lengths, then the
server provides stochastic strict service curve γ(n) = (ν(η)+
ηγ) · n with bounding function j(x) = e−ηxe−ηηγ for η >
0, ηγ ≥ 0, where ν(η) = 1

ηC
logML(η).

Example 2.

If the packet lengths follow the exponential distribution with
parameter λ, then the server provides the stochastic strict
service curve (ν(η) + ηγ) · n with bounding function j(x) =
e−ηxe−ηηγ , where

ν(η) =
1

ηC
log

λ

λ− η
.

Example 3.

If the packet lengths are uniformly distributed over the range
[α,β], then the server provides the stochastic strict ser-
vice curve (ν(η) + ηγ) · n with bounding function j(x) =
e−ηxe−ηηγ , where

ν(η) =
1

ηC
log

eηβ − eηα

η(β − α)
.

5.2 Gilbert-Elliott Channel: Markov Chain
Modeling

Consider a time-slotted3 Gilbert-Elliott ON-OFF commu-
nication channel [2][4] which is modeled by a two-state ho-
mogeneous Markov chain. The time (number of time slots)
3As the slot length approaches zero, the service process is
approximately continuous.
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between state transitions is a random variable with a memory-
less distribution4.

0

(ON)

1

(OFF)

P01

P10

P00
P11

Figure 1: G-E channel model

In state ON, the channel transmits packets with a con-
stant rate C. In state OFF, the channel does not transmit
any packet and thus has the transmission rate 0. Here, we
assume that when the packet is being transmitted, the chan-
nel is always in ON state and does not change to OFF state,
i.e., the packet transmission will not be interrupted due to
the channel state change.

As shown in Fig.(1), the transition probability from state
i to j is denoted by pij , i, j = 0, 1 where 0 represents the
‘ON’ state and 1 represents the ‘OFF’ state. The transition
probability matrix P is as follows:

P =

»

p00 p01
p10 p11

–

.

For such ON-OFF service process, we define the packet
service time as the interval between the time when a packet
reaches (HOL) and the time when the last bit of this packet
has been successfully transmitted. Let v(n) denote the time
when a packet reaches the head of line (HOL) and be called
the virtual start time defined by:

v(n) = max[a(n), d(n− 1)]. (13)

The service time δn is

δn = d(n) − v(n).

If the packet reaches the HOL when the channel is in ON
state, the packet is transmitted immediately. Otherwise, the
packet has to wait until the channel state becomes ON. Let
TOff

n denote the OFF interval before packet P (n) can be
successfully transmitted. The service time is computed by

δn = TOff
n + ttxn , (14)

where ttxn is the time (number of time slots) of transmitting
a packet with length Ln. Assume that the packet lengths
are i.i.d. and follow some general distribution.

Figure 2: On-off model

Fig.(2) shows three scenarios of the packet service time.

• Scenario I: v(n) is within the ON interval, thus

δn = ttxn .

4Strictly speaking, the intervals between state transition are
conditionally independent and follow geometric distribution.

• Scenario II: v(k) is the boundary between the ON in-
terval and the OFF interval, thus

δk = TOff
k + ttxk .

• Scenario III: v(m) is within the OFF interval, thus

δm = TOff
m + ttxm .

For any packet P (n) served in a backlogged period, Sce-
nario III will not happen because v(n) = d(n−1)+ε (ε→ 0)
and d(n − 1) is always in the ON interval. Thus, the ser-
vice time of packets which are served in backlogged periods
equals either ttxn or TOff

n + ttxn . Since Scenario III takes
on value between Scenario I and Scenario II, it is suffice to
analyze only Scenario I and Scenario II.

The cumulative service process ∆(m,n) (in any back-
logged period) is formed from process {δY

n } that takes on
values Y · T off + Ln

C
, where Y = 1 if v(n) is exactly the

boundary between the ON interval and the OFF interval;
Y = 0 if v(n) is within the ON interval. The MGF of the

i.i.d. random variables δY
n are MδY (η) = E

ˆ

eηδY ˜

. Let M

be the diagonal matrix

M =

»

Mδ0 (η) 0
0 Mδ1(η)

–

.

Given the initial condition v(1) = i (i = 0, 1), from Kol-
mogorov backward equation, we have

E
ˆ

eη∆(1,n)|v(1) = i
˜

= E
ˆ

eηδY |v(1) = i
˜

E
ˆ

eη(∆(1,n)−δY )|v(1) = i
˜

= Mδi(η)

1
X

j=0

E
ˆ

eη(∆(2,n)|v(2) = j, v(1) = i
˜

·

P (v(2) = j|v(1) = i)

= Mδi(η)
1

X

j=0

E
ˆ

eη(∆(2,n)−δ1)|v(2) = j
˜

pij

= Mδi(η)
1

X

j=0

E
ˆ

eη∆(2,n)|v(2) = j
˜

pij (15)

Let

Φ(η, n) =
`

E
ˆ

eη∆(1,n)|v(1) = 0
˜

,E
ˆ

eη∆(1,n)|v(1) = 1
˜´

and Φ(η, n)T be its transpose. We then rewrite (15) in ma-
trix form:

Φ(η, n)T = MPΦ(η, n− 1)T . (16)

Applying (16) to its right-hand side iteratively results in

Φ(η, n)T =
`

MP
´n−1

Φ(η, 1)T . (17)

The initial condition can be obtained by

Φ(η, 1)T = M1T

where 1 = [1 1] is a vector with two entries being one.
Let πi be the steady probability at state i and ψ = [π0 π1]

which is computed by

π0 =
p10

2− p00 − p11
, π1 =

p01
2 − p00 − p11

.

413



Then we have

E
ˆ

eη∆(1,n)˜

= ψΦ(η, n)T

= ψ
`

MP
´n−1

M1T . (18)

Let ρ(·) denote the spectral radius of a matrix:

ρ(·) = sup{|α| : α ∈ σ(·)}
where |·| denotes the absolute value of α, and σ(·) represents
the set of all eigenvalues of a matrix. Then the spectral ra-
dius of matrix MP is denoted by ρ

`

MP
´

. Note that MP is
a non-negative matrix. Having known the transition proba-
bility matrix P, the spectral radius of MP is

ρ(MP) =
p00Mδ0 (η) + p11Mδ1(η) +

√
Z

2
(19)

where

Z =
`

p00Mδ0(η) − p11Mδ1(η)
´2

+ 4p01p10Mδ0 (η)Mδ1(η).

A useful corollary (see Corollary 5.6.13 [5]) is introduced
here to facilitate the following analysis.

Corollary 1. Let A be an k × k matrix and ε > 0 be
given. There is a constant σε

5 such that

|(Am)ij | ≤ σε(ρ(A) + ε)m (20)

for all m = 1, 2, 3, ... and i, j = 1, 2, ..., k.

From Corollary 1, we know that the every entry of matrix
`

MP
´n

is bounded above by σε

`

ρ(MP) + ε
´n

for any ε > 0
and some constant σε > 0.

Then (18) is bounded by

E
ˆ

eη∆(1,n)˜

≤ ψσε

`

ρ(MP) + ε
´n−1

M1T

= σε

`

ρ(MP) + ε
´n−1

ψM1T

= σε

`

ρ(MP) + ε
´n−1

(21)

≤
`

ρ(MP) + ε
´n

for σε ≤ ρ(MP) + ε. Here step (21) is obtained because
ψM = ψ and then ψ1T = 1. Hence, we have

1

ηn
logE

ˆ

eη∆(1,n)˜ ≤ 1

η
log(ρ(MP) + ε).

As ε is arbitrary, letting ε→ 0 results in the stochastic strict
service curve (ν(η) + ηγ) · (n − m + 1) for the service pro-
cess ∆(m,n) with the bounding function j(x) = e−ηxe−ηηγ ,
where

ν(η) =
1

η
logρ(MP). (22)

Example 4.

Consider a flow of variable-length packets. Suppose the packet
lengths are i.i.d. variables with moment generating func-
tion ML(η). The OFF intervals follow geometric distribu-

tion with parameter π0. Then Mδ0 (η) =
`

ML(η)
´ 1

C and

Mδ1(η) = Mδ0(η) π0eη

1−π1eη for π1e
η < 1. Inserting Mδ0(η)

and Mδ1(η) into (19), we obtain the stochastic service curve
(ν(η)+ ηγ ) ·n with bounding function j(x) = e−ηxe−ηηγ for
such flow, where

ν(η) =
1

η
log

Mδ0(η)
h

p00 + p11π0eη

1−π1eη + Υ
i

2
(23)

5This parameter is relevant to ε.

with

Υ =

r

“

p00 − p11π0eη

1 − π1eη

”2

+
4p10p01π0eη

1− π1eη
. (24)

Example 5.

Consider a flow consisting of fixed-length packets. The OFF
intervals follow geometric distribution with parameter π0.
Let the packet transmission time be T time slots. Then
Mδ0(η) = eηT and Mδ1 (η) = eηT π0eη

1−π1eη . Inserting Mδ0(η)

and Mδ1 (η) into (19), we have the stochastic service curve
(ν(η)+ ηγ ) ·n with bounding function j(x) = e−ηxe−ηηγ for
such flow, where

ν(η) =
1

η
log

eηT
h

p00 + p11π0eη

1−π1eη + Υ
i

2

= T +
1

η
log

p00 + p11π0eη

1−π1eη + Υ

2
(25)

where Υ is given in (24).

5.3 Gilbert-Elliott Channel: Error Process
Analysis

The previous subsection is based on directly analyzing
backlogged periods. In this subsection, we adopt an intu-
itive way which models the channel OFF intervals as an
error process. The channel is treated as an error server con-
sisting of an ideal service process and an error process. The
ideal service process provides service at a constant rate C.
The error process is described as an ON-OFF process. The
channel ON state corresponds to the error OFF state and
the channel OFF state corresponds to the error ON state.
When the channel is in error ON state, the error process pro-
vides service time εn following geometric distribution with
parameter π0. When the channel is in error OFF state, the
error process does not provide service, i.e., the service time
is zero. The transition probability matrix is the same as P.
However, the diagonal matrix ME is diag{ME,0(η),ME,1(η)}
where ME,0(η) = 1 and ME,1(η) = π0eη

1−π1eη .
The error process provides a stochastic strict service curve

γE(n) = ( 1
η
logρ(MEP)+ηγ)·n with bounding function jE(x) =

e−ηxe−ηηγ , where ρ(MEP) is obtained from (19):

ρ(MEP) =
p00 + p11π0eη

1−π1eη + Υ

2
(26)

where Υ is given in (24).
The error server thus provides a stochastic strict service

curve γ(n) = γ̂(n) + γE(n).

Example 6.

Consider the same flow given in Example 4. Then the Gilbert-
Elliott channel provides a stochastic strict service curve (ν(η)+
ηγ) · n with bounding function j(x) = e−ηxe−ηηγ , where

ν(η) =
1

η
logE

ˆ

eη
L0
C

˜

+
1

η
logρ(MEP)

=
1

η
log

E
ˆ

eη
L0
C

˜`

p00 + p11π0eη

1−π1eη + Υ
´

2

which matches the result of Example 4.
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Example 7.

Consider the same flow given in Example 5. Then the Gilbert-
Elliott channel provides a stochastic strict service curve (ν(η)+
ηγ) · n with bounding function j(x) = e−ηxe−ηηγ , where

ν(η) = T +
1

η
log

p00 + p11π0eη

1−π1eη + Υ

2
(27)

which matches the result of Example 5.
Remark. By comparing the above two examples to Ex-

ample 4 and Example 5, we notice that the backlogged pe-
riod analysis and the error process analysis yield the same
results for analyzing the two-state Gilbert-Elliott channel.

6. STOCHASTIC DELAY BOUND
In the previous sections, we have introduced applying

the logarithmic moment generating function to finding the
stochastic arrival curve and the stochastic service curve for
several arrival processes and service processes. If the stochas-
tic arrival curve of an arrival process is known and the service
process provided to the arrival process can be characterized
by a stochastic service curve, we readily obtain the delay
bound based on results of the time-domain SNC [12].

6.1 Delay Bound Analysis
We recall the main steps6 of deriving the delay bound

given the stochastic arrival curve λ(n) with bounding func-
tion h(x) and the stochastic service curve γ(n) with bound-
ing function j(x).

For any packet P (n), its system delay D(n) is:

D(n) = d(n) − a(n)

=
h

d(n) − a⊗̄γ(n)
i

+
h

a⊗̄γ(n) − a(n)
i

≤ d(n) − a⊗̄γ(n) + sup
1≤m<n

n

λ(n−m) − Γ(m,n)]
o

+sup
k≥0

˘

γ(k + 1) − λ(k)
¯

(28)

In order to ensure network stability, we shall assume

lim
k→∞

1

k
[γ(k) − λ(k)] ≤ 0.

Since γ(k) and λ(k) are linear functions of the variable k,
we obtain

sup
k≥0

˘

γ(k + 1) − λ(k)
¯

= γ(1).

From the given conditions, the system delay is bounded by:

P{D(n) > x} ≤ j ⊗ h
`

[x− γ(1)]+
´

(29)

where [y]+ ≡ max
ˆ

0, y].
If the arrival process Γ(m,n) is independent of the service

process ∆(m,n), the stochastic delay bound is given below

P{D(n) > x} ≤ 1 −
Z x∗

0

`

1 − j(x∗ − z)
´

d(1− h(z)) (30)

where x∗ = [x− γ(1)]+.
Remark. Step (28) requires that the arrival process has

a v.w.d stochastic arrival curve and the service process has

6We refer the reader to [12] for the detailed derivation pro-
cedure.

an i.d stochastic service curve. (29) and (30) are obtained
from Lemma 1.5 and Lemma 6.1 [7], respectively. Moreover,
(30) implies that at least one of h(x) and j(x) is integrable.

Example 8.

Consider a flow of fixed-length packets, of which the inter-
arrival times follow the same exponential distribution as Ex-
ample 1. Packets of this flow arrive to a wireless node and
are queued in the buffer before they are transmitted over a
Gilbert-Elliott On-Off channel as given in Example 7. Con-
sidering the assumption that when a packet is being trans-
mitted, the channel state will not change to OFF, we set the
time slot length to one packet transmission time.

Then according to (29), the delay that a packet experi-
ences in this system is stochastically bounded by

P{D(n) > x} ≤ inf
0<η≤η∗

inf
0≤z≤x∗

ˆ

e−ηηγ e−ηz + e−η(x∗−z)˜

(31)
where x∗ = [x− ν(η) − ηγ ]+ with ν(η) given in (27), and η∗

is the maximal value that η can take under π1e
η < 1.

If the arrival process is independent of the service process,
according to (30), the stochastic delay bound is given by

P{D(n) > x} ≤ inf
0<η≤η∗

ˆ

e−ηx∗

+ x∗ηe−η(ηγ+x∗))
˜

, (32)

where x∗ is the same as that in (31).

6.2 Comparison between Spatial and Tempo-
ral Analysis Approaches

As mentioned in Sec. 1, the available SNC literature for
performance guarantee analysis focuses on the spatial per-
spective. In this subsection, we derive the system delay
bound using the spatial analysis approach. The arrival pro-
cess given in Example 1 and the network system given in
Example 7 are used here for ease of exposition.

The spatial approach characterizes the arrival process based
on the cumulative amount of arrival traffic and the service
process based on the cumulative amount of service. Ac-
cordingly, the space-domain stochastic arrival curve and the
space-domain stochastic service curve are the bounds on the
cumulative amount of traffic and service, respectively. Let
A(t) and α(t) denote the arrival process and its arrival curve
which is with the bounding function f(y), and S(t) and β(t)
denote the service process and its service curve which is with
the bounding function g(y).

Example 9.

The arrival process given in Example 1 is a compound Pois-
son process from the spatial perspective. Let L be the packet
length for all packets. The arrival rate of the Poisson process
is µ. This compound Poisson arrival process has the stochas-
tic arrival curve as below [6], for t ≥ 0 and θ > 0, θα ≥ 0,

α(t) =
“µ

θ
(eθL − 1) + θα) · t, f(y) = e−θθαe−θy.

For the Gilbert-Elliott ON-OFF channel, its space-domain
stochastic service curve is the variation of the ON-OFF model’s
envelop process (see [1]), for all t ≥ 0 and θ > 0,

β(t) =
t

θ
log

“p11 + p00e
1
T

θ + Y

2

”

, g(y) = e−θy,
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where

Y =

q

(p11 + p00e
1
T

θ)2 − 4(p11 + p00 − 1)e
1
T

θ.

Here 1/T represents the channel transmission rate (number
of packets) in the ‘ON’ state due to the time-slotted channel
with the slot length T .

We define the maximum horizontal distance between func-
tions α(t) and β(t), denoted by H(α,β) as follows:

H(α,β) = sup
s≥0

˘

inf{τ ≥ 0 : α(s) ≤ β(s+ τ)}
¯

,

which can be considered as the maximal system delay of
a virtual system, where the arrival process is α(t) and the
service process is β(t).

Let D(t) denote the system delay of the traffic arriving
at time t ≥ 0. The system delay bound is known as (see
Theorem 5.4 [7]):

P
n

D(t) > H(α+ y, β)
o

≤ inf
0<θ≤θ∗

inf
0≤z≤y

ˆ

e−θθαe−θz + e−θ(y−z)˜. (33)

Similar to (30), if the arrival process A(t) is independent of
the service process S(t), the system delay is stochastically
bounded by the Stieltjes convolution of f(y) and g(y):

P
n

D(t) > H(α+ y, β)
o

≤ inf
0<θ≤θ∗

e−θy + θye−θθαe−θy. (34)

Remark. Although the bounding functions obtained by ap-
plying the spatial approach (see (33) and (34)) look very sim-
ilar as those obtained from the temporal analysis (see (31)
and (32)), their arguments have different meanings. To com-
pute the delay bound, the spatial approach uses the amount
of traffic denoted by y as the argument, while the temporal
approach uses the time denoted by x (or x∗) as the argu-
ment. Since the bounding functions of both approaches are
negative exponential functions, a larger argument yields a
smaller result and vice versa.

6.3 Numerical Results
The available literature [7] provides a simple example to

illustrate that by considering the independence condition,
the tightness of the delay bound may be improved, i.e., (30)
may provide a tighter bound compared to (29). In order
to intuitively illustrate these two bounds, we use Matlab to
numerically compute the two bounds derived in Example 8
(see (31) and (32)). Then, we investigate how the optimal
parameter ηγ impact the delay bound. Moreover, the sys-
tem delay bounds obtained by the temporal and the spatial
approaches are compared.

The Gilbert-Elliott channel provides C = 2Mbps capac-
ity when it is in the ON state. All packets have the same
length 250 bytes. Hence the packet transmission time T =
1msec which is the time slot length. The transition proba-
bilities between ON and OFF states hold such relationship
p10/p01 = 3, from which, we calculate π0 = 0.75, π1 = 0.25
and p00 = (2 + p11)/3. If we set p00 = 0.95, the correspond-
ing transition probabilities are p01 = 0.05, p10 = 0.15 and
p11 = 0.85, respectively. Moreover, according to π1 = 0.25,
we obtain the maximal value of η, η∗ = 1.386.

In the following figures, we use Bound 1 and Bound 2
to represent the bounds given in (31) and (32), respectively.
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Figure 3: Bound Comparison: ηγ = 0

As shown in Fig. 3, Bound 1 is looser than Bound 2 under
the same condition, i.e., the same arrival process and the
same network system. This result implies that by considering
the independence condition, the bound may be improved.
The same phenomenon has been discussed in [7].
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Figure 4: Bound 1 vs. Varying ηγ

Since both (31) and (32) contain the scaling factor, e−ηηγ ,
how does this scaling parameter impact the delay bound?

From the definition of ηγ , it should be set in terms of ν(η).
Fig. 4 shows Bound 1 when ηγ takes 0, 0.5ν(η) and 0.6ν(η).
The bound obtained by setting ηγ = 0.5ν(η) is tighter than
that obtained by setting ηγ = 0. However, when ηγ exceeds
0.5ν(η) such as 0.6ν(η), the bound becomes more loose than
that obtained by setting ηγ = 0.5ν(η). Thus, ηγ = 0.5ν(η)
is the optimal value.

Similarly, Fig. 5 shows Bound 2 against various ηγ . As
ηγ increases from 0 to 0.3ν(η) or 0.5ν(η), the bound be-
comes looser. This is because the increase of ηγ results in
the decrease of y in (32) for a fixed x. Moreover, taking the
infimum impacts the final result as well.

Fig. 6 shows the bounds obtained from the spatial and the
temporal approaches. When computing the space-domain
delay bound according to (33), we need to first compute the
space-domain arrival curve α(t) and the service curve β(t)
under an implicit relation, α(t) ≤ β(t), which ensures sys-
tem stability. With this condition and varying the arrival
rate µ of the Poisson process, we can determine the maxi-
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Figure 5: Bound 2 vs. Varying ηγ

mal θ, θ∗. As the amount of traffic y varies, the bound on
the probability that the system delay exceeds H(α + y, β)
can be obtained with θ∗. Let η = θ∗ and x = H(α + y, β)
when computing the time-domain delay bound according to
(31). In Fig. 6, µ = 0.6 or µ = 0.75 means the arrival rate
per time slot. As µ increases, more packets arrive and then
the system delay becomes longer. Thus, fixing a certain time
and observing the bounds obtained by setting µ = 0.6 and
µ = 0.75, the trend is that a smaller µ causes a tighter
bound. When µ = 0.75, the space-domain bound and the
time-domain bound are very close. However, when µ = 0.6,
the space-domain bound is tighter than the time-domain
bound. The reason is that under the current parameter set-
ting, the amount of traffic y used to compute the space-
domain bound is larger than the time H(α + y, β) − γ(1)
used to compute the time-domain bound. A larger argument
yields a smaller result for the negative exponential functions
as we have discussed in Sec. 6.2. From Fig. 6, we notice that
the spatial and the temporal approaches give close results.
However, how the individual parameters of bounding func-
tions influence the final result still needs more investigation.
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Figure 6: Space and time domain bound comparison
vs. Varying µ (θ∗ = η, ηγ = 0 and θα = 0)

7. CONCLUSION
We introduced a temporal network calculus approach to

performance guarantee analysis of stochastic networks. A
key technique used in linking an arrival process or a service
process to the time-domain stochastic arrival curve char-
acterization or stochastic service curve characterization is
MGF. Based on the arrival process characterization and
the service process characterization, performance bounds
such as delay bound can be further derived from tempo-
ral stochastic network calculus. In addition, the Gilbert-
Elliott channel was particularly studied to demonstrate how
to obtain the MGF of the service process. The numerical
results showed that the delay bound was improved by tak-
ing into consideration the independence between the arrival
process and the service process. Finally, we illustrated that
the temporal and the spatial analysis approaches give close
performance bounds under the appropriate match between
the arguments used in both approaches.
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