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ABSTRACT

In this work, we study the problem of power allocation in teams.
Each team consists of two agents who try to split their available
power between the tasks of communication and jamming the nodes
of the other team. The agents have constraints on their totalenergy
and instantaneous power usage. The cost function is the difference
between the rates of erroneously transmitted bits of each team. We
model the problem as a zero-sum differential game between the
two teams and useIsaacs’approach to obtain the necessary condi-
tions for the optimal trajectories. This leads to a continuous-kernel
power allocation game among the players. Based on the commu-
nications model, we present sufficient conditions on the physical
parameters of the agents for the existence of a pure strategyNash
equilibrium (PSNE). Finally, we present simulation results for the
case when the agents are holonomic.

1. INTRODUCTION

The decentralized nature of wireless ad hoc networks makes them
vulnerable to security threats. A prominent example of suchthreats
is jamming: a malicious attack whose objective is to disruptthe
communication of the victim network intentionally, causing inter-
ference or collision at the receiver side. Jamming attack isa well-
studied and active area of research in wireless networks. Unautho-
rized intrusion of such kind has started a race between the engineers
and the hackers; therefore, we have been witnessing a surge of new
smart systems aiming to secure modern instrumentation and soft-
ware from unwanted exogenous attacks.

The problem under consideration in this paper is inspired byrecent
discoveries of jamming instances in biological species. Ina se-
ries of playback experiments, researchers have found that resident
pairs of Peruvian warbling antbirds sing coordinated duetswhen
responding to rival pairs. But under other circumstances, cooper-
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ation breaks down, leading to more complex songs. Specifically,
it has been reported that females respond to unpaired sexualrivals
by jamming the signals of their own mates, who in turn adjust their
signals to avoid the interference [27].

Many defence strategies have been proposed by researchers against
jamming in wireless networks. A brief survey of various techniques
in jamming relevant to our research is provided in [5]. In thepast,
networks with multiple attackers have also been consideredin the
literature. In [15, 16], the authors consider the interaction between
a source-destination pair, an eavesdropper, and friendly jammers.
The source can buy "jamming power" from the friendly jammers
which disguise the eavesdropper. This allows the source to achieve
increased secrecy rate. The authors study the problem in thecon-
text of a Stackelberg game and show that a trade-off exists between
the price announced by the jammers and the resulting performance.
A similar problem was tackled in [9] where relay nodes can help
the source in the presence of multiple eavesdroppers. The authors
propose different relaying schemes and study two design problems:
minimizing the transmission power subject to a minimum secrecy
rate and maximizing the secrecy rate subject to a total powercon-
straint. Analytical analyses show that relaying yields improved per-
formance when compared to direct transmission in maliciousenvi-
ronments. Different from the aforementioned references, our work
here considers non-friendly jamming teams, i.e., the security bot-
tleneck considered here is jamming and not eavesdropping. More-
over, to the best of our knowledge, pursuit-evasion strategies for
jamming teams were not studied before.

Ad hoc networks consist of mobile energy-constrained nodes. Mo-
bility affects all layers in a network protocol stack including the
physical layer as channels become time-varying [13]. Moreover,
nodes such as sensors deployed in a field or military vehiclespa-
trolling in remote sites are often equipped with non-rechargeable
batteries. Power control plays, therefore, a crucial role in design-
ing robust communications systems. At the physical layer, power
control can be used to maximize rate or minimize the transmis-
sion error probability, see [18, 3] and the references therein. In
addition, in multi-user networks, power control can be usedto reg-
ulate the interference level at the terminals of other users[24, 28,
10]. Due to the lack of a centralized infrastructure in ad hocnet-
works, distributed solutions are essential. In this work, similar to
[3, 24, 28], we model the power allocation problem as a noncoop-
erative game, thus allowing us to devise a non-centralized solution.
As a departure from previous research, however the power control
mechanism we propose splits the power budget of each player into
two portions: a portion used to communicate with team-matesand
a portion used to jam the players of the other team. More impor-
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tantly, the objective function is chosen to be the difference between
the cumulative bit error rate (BER) of each team; this allowsfor
increased freedom in choosing physical design parameters,besides
the power level, such as the size of modulation schemes.

In the past year, there have been reports of predator drones being
hacked [14, 20], resulting in intruders gaining access to classified
data being transmitted from an aircraft. Motivated from such in-
cidents, we have analyzed various scenarios of evading jamming
attacks among autonomous agents. In the case of asingle jammer
trying to intrude the communication link between a transmitter and
a receiver, the problem can be formulated as multiplayer (specifi-
cally, three player) pursuit-evasion game [17, 2]. In [5], we inves-
tigated the problem of finding motion strategies for two unmanned
autonomous vehicles (UAVs) to evade jamming in the presence
of an aerial intruder. We considered a differential game theoretic
approach to compute optimal strategies by a team of UAVs. We
formulated the problem as a zero-sum pursuit-evasion game.The
cost function was picked as the termination time of the game.We
usedIsaacs’approach to derive the necessary conditions to arrive at
the equations governing the saddle-point strategies of theplayers.
In [7], we extended the previous analysis to a team of heteroge-
neous vehicles containing UAVs and autonomous ground vehicles
(AGVs). In [4], we analyzed the problem of multiple jammers in-
truding the communication network in a formation of UAVs. In
[6], we analyzed the problem of connectivity maintenance inmulti-
agent systems in the presence of a jammer. In this current work,
we study a scenario where ateamof malicious nodes launch a
jamming attack on another team, which is capable of jamming as
well. We again use differential game theory to study the pursuit-
evasion strategies of the teams, which constitute of unmanned de-
cision makers (UDMs).

The main contributions of this paper are as follows. To the best of
our knowledge, this is the first work that considers the problem of
two teams of mobile autonomous agents jamming each other. Our
analysis takes into consideration constraints in energy and power
among the agents. Moreover, we relate the problem of optimal
power allocation for communication and jamming to the commu-
nication model between the agents. Finally, we provide a sufficient
condition for existence of an optimal decision strategy among the
agents based on the physical parameters of the problems.

The rest of the paper is organized as follows. We formulate the
problem in Section 2 and explain the underlying notation. InSec-
tion 3, we introduce and solve an associated optimal controlprob-
lem. The Nash equilibrium properties of the team power con-
trol problem are studied in Section 4, and the specific example of
systems employing uncoded M-quadrature amplitude modulations
(QAM) follows in Section 5. Simulation results are presented in
Section 6. We conclude the paper and provide future directions in
Section 7. An Appendix at the end includes explicit expressions for
some of the variables introduced in the paper.

2. PROBLEM FORMULATION

Consider two teams of mobile agents. Each agent is communicat-
ing with members of the team it belongs to and at the same time,
jamming the communication between members of the other team.
We consider a scenario where each team has two members, though
at a conceptual level our development applies to higher number
of team members as well. Team A is comprised of the two players

{1a, 2a} and Team B is comprised of the two players{1b, 2b}. The
agents move on a plane and therefore, have two degrees of freedom
(x, y). The dynamics of the players are given by the following
equations:

• Team A:

ẋa
i = fa

xi
(xa

i ,u
a

i , t)
ẏa
i = fa

yi
(xa

i ,u
a

i , t)

}

i ∈ {1, 2} (1)

• Team B:

ẋb
i = fb

xi
(xb

i ,u
b

i , t)
ẏb
i = fb

yi
(xb

i ,u
b

i , t)

}

i ∈ {1, 2} (2)

In the above equations,xi andui denote vectors representing the
state and control input of agenti, with the superscript (a or b)
identifying the corresponding team. The state space of the entire
system is represented byX≃ R

2 × R
2 × R

2 × R
2. Moreover,

ui ∈ Ui ≃ {φ : [0, t] → Ai | φ(·) is measurable}, where
Ai ⊂ R

pi . f : R2×Ai×R → R is uniformly continuous, bounded
and Lipschitz continuous inxi for fixed ui. Consequently, given
a fixedui(·) and an initial point, there exists a unique trajectory
solving (1) and (2) [1].

Now, we describe the physical layer communications model inthe
presence of a jammer which is motivated by [26]. For each trans-
mitter and receiver pair, we assume the following communications
model. Given that the transmitter and the receiver are separated by
a distanced, and the transmitter transmits with constant powerPT ,
the received signal powerPR is given by

PR = ρPTd
−α, (3)

whereρ depends on the antennas’ gains and, according to the free
space path loss model, is given by:

ρ =
GTGRλ

2

(4π)2
,

whereλ is the signal’s wavelength andGT ,GR are the transmit and
receive antennas’ gains, respectively, in the line of sightdirection.
In real scenarios,ρ is very small in magnitude. For example, using
nondirectional antennas and transmitting at900 MHz, we haveρ =
1·1·0.33
(4π)2

= 6.896 × 10−4.

The signal-to-interference ratio (SINR)s is given by

s =
PR

I + σ
, (4)

whereσ is the ambient noise level. The Bit Error Rate (BER) is
given by the following expression:

p(t) = g(s), (5)

whereg(·) is a decreasing function ofs. Explicit expressions for
g(·) are provided in Section V where we consider the example of
M-QAM. Each player uses its power for the following purposes:
(1) Communicating with the team-mate, and (2) Jamming the com-
munication of the other team. We assume thatfa andfb are the
frequencies at which Team A and Team B communicate, respec-
tively, andfa 6= fb.



For an initial positionx0 ∈ X, the outcome of the gameπ, is given
by the following expression:

π(x0, ua
1 , ua

2 , ub
1, ub

2) =

∫ T

0

[pa1(t) + pa2(t)− pb1(t)− pb2(t)]
︸ ︷︷ ︸

L

dt,

wherepai (t) andpbi(t) are the BERs for agenti in team A and team
B, respectively, andT is the time of termination of the game.pi
depends insi, i.e, the SINR perceived by agenti. From (3),si
depends on the mutual distances between the players. Therefore,
we can see that the outcome functional,π, depends on the state of
the players and hence, their control inputs. The outcome functional
models the difference in the erroneous communication packets ex-
changed between the members of the same team during the entire
course of the game. The objective of team A is to minimizeπ and
the objective of team B is to maximize it.

Let P a
i (t) and P b

i (t) denote the instantaneous power levels for
communication used by playeri in Team A and Team B, respec-
tively. Since the agents are mobile, there are limitations on the
amount of energy available to each agent that is dictated by the ca-
pacity of the power source carried by each agent. We model this
restriction as the following integral constraint for each agent

∫ T

0

Pi(t)dt ≤ E. (6)

The game is said to terminate when any one agent runs out of
power, that is (6) is violated.

In addition to the energy constraints, there are limitations on the
maximum power level of the devices that are used onboard each
agent for the purpose of communication. For each player, this con-
straint is modeled by the following set of inequalities:

0 ≤ P a
i (t), P

b
i (t) ≤ Pmax. (7)

At every instant, each agent has to decide on the fraction of the
power that needs to be allocated for communication and jamming.
Table 1 provides a list of decision variables for the playersthat
models this allocation. Each decision variable is a non-negative
real number and lies in the interval[0, 1]. The decision variables
belonging to each row add up to one. The fraction of the total
power allocated by the player in rowi to the player in columnj
is given by the first entry in the cell(i, j). This allocated power
is used for jamming if the player in columnj belongs to the other
team; otherwise, it is used to communicate with the agent in the
same team. Similarly, the distance between the agent in rowi and
the agent in columnj is given by the second entry in cell(i, j).
Since distance is a symmetric quantity,dij = dji anddij = dji.

Figure 1 summarizes the power allocation between the members of
the same team as well as between the members of different teams.

In the above game, each agent has to compute the following vari-
ables at every instant:

1. The instantaneous control,ui(t).

2. The instantaneous power level,Pi(t).

3. All the decision variables present in the row corresponding
to the agent in Table 1.

Table 1: Decision variables and distances among agents.

1b 2b 1a 2a

1a γ1
1 , d

1
1 γ1

2 , d
1
2 γ12, d12

2a γ2
1 , d

2
1 γ2

2 , d
2
2 γ21, d21

1b δ12, d12 δ11 , d
1
1 δ21 , d

2
1

2b δ21, d21 δ12 , d
1
2 δ22 , d

2
2

P

P

P

P

P

A

B

a

a aP P

a
P

b

b

b

b

1

1

Pa 1

1

2

2

1

1

2

2

2

2

2

δ

δ

δ

γ

γ

γ

γ1

a
P12γ γ12

δ P1

bδ21
12

1
2

δ2
1

1
1

1
1

P
2

b
2
1

2
2

2
2

2
1

Figure 1: Power allocation among the agents for communica-
tion as well as jamming.

In the next section, we analyze the problem of computing the opti-
mal controls for each agent.

3. OPTIMAL CONTROL PROBLEM

From the problem formulation presented in the previous section,
we can conclude that the objective functions of the two teamsare
in conflict. The tuple(ua∗

1 , ua∗
2 , ub∗

1 , ub∗
2 ) is said to be optimal (or,

in pair-wise saddle-point equilibrium) for the players if it satisfies
the following conditions:

π[x0, ua∗
1 , ua∗

2 , ub
1, ub

2] ≤ π[x0, ua∗
1 , ua∗

2 , ub∗
1 , ub∗

2 ] (8)

π[x0, ua∗
1 , ua∗

2 , ub∗
1 , ub∗

2 ] ≤ π[x0, ua
1 , ua

2 , ub∗
1 , ub∗

2 ] (9)

In simple terms, the above equations imply that agents in Team
A are solving a joint optimization problem of minimizing theout-
come. Similarly, agents in Team B are solving a joint optimization
problem of maximizing the outcome. Moreover, the two teams are
playing a zero-sum game against one another. In this case, the value



of the game, denoted by the functionJ : X → R, can be defined
as follows:

J(x) = π[x0, ua∗
1 , ua∗

2 , ub∗
1 , ub∗

2 ] (10)

The value of the game is unique at a pointX in the state-space.
An important property satisfied by the value of the game is the
Nash equilibriumproperty. The tuple(ua∗

1 , ua∗
2 , ub∗

1 , ub∗
2 ) is said

to be in Nash equilibrium if no unilateral deviation in strategy by
a player can lead to a better outcome for that player. Hence, there
is no motivation for the players to deviate from their equilibrium
strategies. In terms of the outcome of the game, the strategies
(ua∗

1 , ua∗
2 , ub∗

1 , ub∗
2 ) are in Nash equilibrium (for the 4-player game)

if they satisfy the following property:

π[x0, ua∗
1 , ua∗

2 , ub∗
1 , ub

2]
π[x0, ua∗

1 , ua∗
2 , ub

1, ub∗
2 ]

}

≤ π[x0, ua∗
1 , ua∗

2 , ub∗
1 , ub∗

2 ]

π[x0, ua∗
1 , ua∗

2 , ub∗
1 , ub∗

2 ] ≤
{

π[x0, ua
1 , ua∗

2 , ub∗
1 , ub∗

2 ]
π[x0, ua∗

1 , ua
2 , ub∗

1 , ub∗
2 ]

(11)

In general, there may be multiple sets of strategies for the players
that are in Nash equilibrium. Assuming the existence of a value,
as defined in (10), and the existence of a unique Nash equilibrium,
we can conclude that the Nash equilibrium concept of person-by-
person optimality given in (11) is a necessary condition to be satis-
fied for the value of the game. Further, obtaining the set of strate-
gies that are in Nash equilibrium yields the optimal strategies for
the players. In the following analysis, we assume the aforemen-
tioned conditions in order to compute the optimal strategies.

The Hamiltonian of the system is given by the following expres-
sion:

H = L+∇J · f(x)
= pa1(t) + pa2(t)− pb1(t)− pb2(t) +∇J · f(x) (12)

In order to compute the optimal control of the players, we will use
the Isaacs’conditions [17] which are the following:

1.

H [x0, ua∗
1 , ua∗

2 , ub∗
1 , ub

2]
H [x0, ua∗

1 , ua∗
2 , ub

1, ub∗
2 ]

}

≤ H [x0, ua∗
1 , ua∗

2 , ub∗
1 , ub∗

2 ]

H [x0, ua∗
1 , ua∗

2 , ub∗
1 , ub∗

2 ] ≤
{

H [x0, ua
1 , ua∗

2 , ub∗
1 , ub∗

2 ]
H [x0, ua∗

1 , ua
2 , ub∗

1 , ub∗
2 ]

2. H [x0, ua∗
1 , ua∗

2 , ub∗
1 , ub∗

2 ] = 0

The agents in Team A want to minimize the Hamiltonian at every
instant, and the agents in Team B want to maximize it. The dy-
namics of the agents are decoupled. Therefore, the Hamiltonian is
separable in its controls and, hence, the order of taking theextrema
becomes inconsequential. As a consequence, the optimal controls
of the players are given by the following expression from Isaacs’
first condition.

(ua∗
1 , ua∗

2 , ub∗
1 , ub∗

2 ) = argmax
ub
1
,ub

2

min
ua
1
,ua

2

H

The optimal controlui is obtained by the following expression:

ua∗
i = minua

i

∂J
∂xa

i
· fa

i (x
a
i , ua

i , t)

ub∗
i = maxub

i

∂J

∂xb
i

· fb
i (x

b
i , ub

i , t)

}

i = 1, 2

Additionally, the gradient of the value function satisfies the retro-
gressive path equations(RPE) given by the following partial dif-
ferential equation:

∂∇J

∂τ
=

∂H

∂x
,

whereτ is the retrograde time or time left for termination.

The RPE leads to the following equations for the players.

Team A

J̊xa
i
= ∇J · ∂f

a
xi
(x)

∂xa
i

+ α
∑

k=1,2

[sakg
′(sak)(x

a
j − xa

i )

(d12)2
+

sbkg
′(sbk)Pmaxγ

i
k(x

a
i − xb

k)

(dik)
−(α+2)

]

J̊ya
i
= ∇J · ∂f

i
y(x)
∂ya

i

− α
∑

k=1,2

[sakg
′(sak)(y

a
j − ya

i )

(d12)2
+

sbkg
′(sbk)Pmaxγ

i
k(y

a
i − yb

k)

(dik)
−(α+2)

]

Team B

J̊xb
i
= ∇J · ∂f

b
xi
(x)

∂xb
i

− α
∑

k=1,2

[sbkg
′(sbk)(x

b
j − xb

i)

(d12)2
+

sakg
′(sak)Pmaxδ

k
i (x

b
i − xa

k)

(dki )
−(α+2)

]

J̊yb
i
= ∇J · ∂f

i
y(x)
∂yb

i

+ α
∑

k=1,2

[sbkg
′(sbk)(y

b
j − yb

i )

(d12)2
+

sakg
′(sak)Pmaxδ

k
i (y

b
i − ya

k)

(dki )
−(α+2)

]

Here, (̊.) denotes derivative with respect to retrograde time. Since
termination is only a function of the power of each player,J is in-
dependent of the position of the players on the terminal manifold.
Therefore,∇J = 0 at termination. This forms the boundary con-
dition for the RPE.

In the next section, we address the problem of power allocation.

4. POWER ALLOCATION

From (4), the SINR received by each agent in terms of the power
levels of the other agents as well as their mutual distances is given
by the following expressions

sa1 =
P a
2 (t)γ

21(d12)−α

σ
ρ
+ P b

1 (t)δ
1
1(d

1
1)

−α + P b
2 (t)δ

1
2(d

1
2)

−α

sa2 =
P a
1 (t)γ

12(d12)−α

σ
ρ
+ P b

1 (t)δ
2
1(d

2
1)

−α + P b
2 (t)δ

2
2(d

2
2)

−α

sb1 =
P b
2 (t)δ21(d12)

−α

σ
ρ
+ P a

1 (t)γ
1
1(d

1
1)

−α + P a
2 (t)γ

2
1(d

2
1)

−α

sb2 =
P b
1 (t)δ12(d12)

−α

σ
ρ
+ P a

1 (t)γ
1
2(d

1
2)

−α + P a
2 (t)γ

2
2(d

2
2)

−α
(13)

From the expression in (12), we can conclude that the power allo-
cation among the agents only affects the termL in the Hamiltonian.



Therefore, Isaacs’ first condition leads to the following power allo-
cation problem among the agents.

4.1 Team A
The objective of each agent is to minimizeL.

1. Player 1:

min
Pa
1
,γ1

1
,γ1

2
,γ12

L ⇒ min
Pa
1
,γ1

1
,γ1

2
,γ12

(pa2 − pb1 − pb2
︸ ︷︷ ︸

La
1

) (14)

subject to:

P a
1 (t) ≤ Pmax

γ1
1 + γ1

2 + γ12 = 1, γ1
1 , γ

1
2 , γ

12 ≥ 0 ⇒ γ ∈ ∆3

2. Player 2:

min
Pa
2
,γ2

1
,γ2

2
,γ21

L ⇒ min
Pa
2
,γ2

1
,γ2

2
,γ21

(pa1 − pb1 − pb2
︸ ︷︷ ︸

La
2

) (15)

subject to:

P a
2 (t) ≤ Pmax

γ2
1 + γ2

2 + γ21 = 1, γ1
1 , γ

1
2 , γ

21 ≥ 0 ⇒ γ ∈ ∆3

4.2 Team B
The objective of each agent is to maximizeL.

1. Player 1:

max
P b
1
,δ1

1
,δ1

2
,δ12

L ⇒ max
P b
1
,δ1

1
,δ1

2
,δ12

(pa1 + pa2 − pb2
︸ ︷︷ ︸

Lb
1

) (16)

subject to:

P 1
b (t) ≤ Pmax

δ11 + δ21 + δ12 = 1, δ11 , δ
2
1 , δ12 ≥ 0

2. Player 2:

max
P b
2
,δ1

2
,δ2

2
,δ21

L ⇒ max
P b
2
,δ1

2
,δ2

2
,δ21

(pa1 + pa2 − pb1
︸ ︷︷ ︸

Lb
2

) (17)

subject to:

P 2
b (t) ≤ Pmax

δ12 + δ22 + δ21 = 1, δ12 , δ
2
2 , δ21 ≥ 0

Since the players do not communicate, they possess information
only about their own decision variables. This makes the power
allocation problem a continuous kernel non-zero sum game among
the players.

THEOREM 1. The optimal value of the power consumption for
each player isPmax.

PROOF. Consider Player1a. The ratep2a is a decreasing func-
tion of P 1

a (t). Also, pb1 andpb2 are increasing functions ofP 1
a (t).

Therefore,(pa2 −pb1−pb2) is a decreasing function ofP 1
a (t). Hence

the optimal value ofP 1
a (t) = Pmax. Using the same argument for

the other players leads to the conclusion that the optimum level of
power consumption of every player isPmax.

The next corollary then follows regarding the time horizon of the
differential game.

COROLLARY 1. The entire game terminates in a fixed timeT =
E

Pmax
irrespective of the initial position of the agents.

PROOF. From Theorem 1 and (6), we conclude that theT =
E

Pmax
for all players. All the players consume their entire energyat

the same time, i.e.,T . Therefore, the game ends at timeT .

Now we consider the problem of computing the optimal value of
the decision variables for the players. In order to do so, we use
preexisting results from continuous kernel games that are presented
here in Theorem 2 and Theorem 3 and are stated without proof.

THEOREM 2. [2] An N-person nonzero-sum game in which the
finite-dimensional action spacesU i (i ∈ N) are compact and cost
functionalsJ i (i ∈ N) are continuous onU1 × · · ·×UN admits a
mixed strategy Nash equilibrium (MSNE).

From the above theorem, we can conclude that the power alloca-
tion game has a Nash equilibrium in mixed strategies since the de-
cision variables of each player lie on a simplex which is compact.
Moreover,L is a continuous function of the decision variables of
all the players. Therefore, the game admits a MSNE. Although, the
MSNE has been computed for some games by exploiting some spe-
cial characteristics in the cost functions, there are no standard tech-
niques to compute MSNE for general continuous-kernel games[22,
2]. Therefore, we search for the conditions under which the power
allocation game admits a pure strategy Nash Equilibrium (PSNE).

THEOREM 3. [2] Let U be a closed, bounded and convex sub-
set ofRm, and for eachi ∈ N the cost functionalJ i : U → R be
continuous onU and convex inui for everyuj /∈ U j , j ∈ N, j /∈ i.
Then, the associated N-person nonzero-sum game admits a PSNE.

The above theorem provides the conditions under which we can
guarantee existence of a PSNE. Let us consider the case of agent
1a. The expressions for SINR provided in (13) relevant to the op-
timization problem being solved by1a can be written in a concise
form as shown below:

sa2 = a1γ
12, sb1 =

b1
c1 + γ1

1

, sb2 =
d1

e1 + γ1
2

,

where

a1 =
1

σ

Pmaxρ(d12)−α + δ21

(
d2
1

d12

)
−α

+ δ22

(
d2
2

d12

)
−α

,

b1 = δ21

(
d12
d11

)
−α

,

c1 =
σ

Pmaxρ(d11)
−α

+ γ2
1

(
d21
d11

)
−α

,

d1 = δ12

(
d12
d12

)
−α

,

e1 =
σ

Pmaxρ(d12)
−α

+ γ2
2

(
d22
d12

)−α

.



Note thata1, b1, c1, d1 ande1 are independent of the decision of
1a.

THEOREM 4. The power allocation team game has a unique
Nash equilibrium in pure strategies if the following conditions hold
for Team A:

g′′(sai ) > 0, (18)

g′′(sb1) +
2

bi
(ci + γi

1)g
′(sb1) < 0, (19)

g′′(sb2) +
2

di
(ei + γi

2)g
′(sb2) < 0, (20)

and equivalent conditions hold for Team B:

g′′(sbi) > 0, (21)

g′′(sa1) +
2

li
(mi + δ1i )g

′(sa1) < 0, (22)

g′′(sa2) +
2

ni

(oi + δ2i )g
′(sa2) < 0, (23)

wherei ∈ {1, 2}.

The constantsb2, c2, d2, ei, li, mi, ni, andoi are obtained by re-
writing the SINR expressions as done above; their expressions can
be found in the Appendix.

PROOF. Let us consider the case of1a. From Theorem 2, we
can conclude that a pure strategy Nash equilibrium exists ifLa

1 is
convex in its arguments when the decision variables of the other
players are fixed. From [8],La

1 is convex if and only if∇2La
1 > 0

(For Team B,Lb
i is concave if and only if∇2Lb

i < 0), where the
Hessian∇2La

1 is given in (24). This constitutes thatg′′(sa2) >
0, g′′(sb1)+

2
b1
(c1+γ1

1)g
′(sb1) < 0, andg′′(sb2)+

2
d1
(e1+γ1

2)g
′(sb2) <

0. The theorem then follows by following similar steps to verify
∇2La

2 > 0, ∇2Lb
1 < 0, and∇2Lb

2 < 0.

Applying the KKT conditions [19], in addition to the assumptions
provided in the theorem that guarantee strict convexity ofLa

1 , gives
us the following equations that need to be satisfied by the globally
unique optimal solution(γ̄):

∇La
1(γ̄) +

3∑

i=1

λi∇hi(γ̄) + η∇h(γ̄) = 0

λihi(γ̄) = 0
λi, η ≥ 0

}

i ∈ {1, 2, 3}

where

h1(γ̄) = −γ12 ≤ 0

h2(γ̄) = −γ1
1 ≤ 0

h3(γ̄) = −γ1
2 ≤ 0

h(γ̄) = γ12 + γ1
1 + γ1

2 − 1 = 0

Now, we present the necessary and sufficient conditions for the so-
lution to the optimization problem for the agents. Let us consider
the case of1a. The assumptions in Theorem 4 regarding strict con-
vexity of La

1 render the KKT conditions to be necessary as well as
sufficient conditions for the unique global minimum.

To this end, we obtain:

∇La
1 =







a1g
′(sa2)

b1g
′(sb

1
)

(c1+γ1

1
)2

b1g
′(sb

2
)

(c1+γ1

2
)2






,∇h(γ̄) =





1
1
1





∇h1(γ̄) =





1
0
0



 ,∇h2(γ̄) =





0
1
0



 ,∇h3(γ̄) =





0
0
1





Sinceγ ∈ ∆3, at most three of the constraints can be active at any
given point. Hence, the gradient of the constraints at any feasible
point are always linearly independent.

If two of the three constraints among{h1, h2, h3} are active, then̄γ
has a unique solution that is given by the vertex of the simplex that
satisfies the two constraints. If only one of the constraintsamong
{h1, h2, h3} is active, then we have the following cases depending
on the active constraint

1. h1(γ̄
1) = 0: γ̄1 = (0, γ1∗

1 , 1 − γ1∗
1 ) satisfies the following

equations

g′(sb2)
d1

[e1 + (1− γ1∗
1 )]2

= g′(sb1)
b1

[c1 + γ1∗
1 ]2

(25)

2. h2(γ̄
2) = 0: γ̄2 = (1 − γ1∗

2 , 0, γ1∗
2 ) satisfies the following

equations

a1g
′(sa2) =

d1g
′(sb2)

(e1 + γ1∗
2 )2

(26)

3. h3(γ̄
3) = 0: γ̄3 = (1 − γ1∗

1 , γ1∗
1 , 0) satisfies the following

equations

a1g
′(sa2) =

b1g
′(sb1)

(c1 + γ1∗
1 )2

(27)

If none of the inequality constraints are active, then

γ̄4 = (1− γ1∗
1 − γ1∗

2
︸ ︷︷ ︸

γ12∗

, γ1∗
1 , γ1∗

2 ),

is the solution to the following equations:

a1g
′(sa2)−

b1
[c1 + γ1∗

1 ]2
g′(sb1) = 0

a1g
′(sa2)−

d1
[e1 + γ1∗

2 ]2
g′(sb2) = 0 (28)

Here,γ̄ lies in the set{(1, 0, 0), (0, 1, 0), (0, 0, 1), γ̄1, γ̄2, γ̄3, γ̄4}.

An important point to note is thata1, b1, c1, d1 ande1 depend on
the decision of the other players. Therefore, the computation of
the decision variables depend on the value of the decision variables
of the rest of the players. A possible way to deal with this prob-
lem is to use iterative schemes for computation of strategies. [2]
provides some insights into the efficacy of such schemes fromthe
point of view of convergence and stability. In this work, we assume
that each agent has enough computational power so as to complete
these iterations in a negligible amount of time compared to the total
horizon of the game.



∇2La
1 =







a2
1g

′′(sa2) 0 0

0 − b2
1

(c1+γ1
1
)4
[g′′(sb1) +

2
b1
(c1 + γ1

1)g
′(sb1)] 0

0 0 − d2
1

(e1+γ1
2
)4
[g′′(sb2) +

2
d1

(e1 + γ1
2)g

′(sb2)]







(24)

In the next section, we express the conditions for the existence of
PSNE in terms of limitations imposed by the physical communica-
tions layer.

5. EXISTENCE OF PSNE UNDER M-QAM
MODULATION SCHEMES

The bit error rate (BER) depends on the SINR, the modulation
scheme, and the error control coding scheme utilized. Communica-
tions literature contains closed-form expressions and tight bounds
that can be used to calculateg(s) when the noise and interference
are assumed to be Gaussian [12]. For example, using uncoded M-
QAM, where Gray encoding is used to map the bits into the sym-
bols of the constellation, the BER can be approximated by [23]

g(s) ≈ ζ

log(M)
Q
(√

βs
)

, (29)

whereζ = 4(1 − 1/
√
M), β = 3/(M − 1), andQ(.) is the

tail probability of the standard Gaussian distribution which can be
expressed in terms of the error function:

Q(x) =
1

2
− 1

2
erf

(
x√
2

)

.

The conditions of Theorem 4 depend primarily on the employed
modulation and coding schemes.

THEOREM 5. When all players employ uncoded M-QAM mod-
ulation schemes, the power allocation team game has a unique
PSNE solution if the following condition is satisfied:

βρPmax

(
min{d12, d12}

)−α
< 3σ. (30)

PROOF. The conditions of Theorem 4 need to be satisfied for a
unique pure strategies solution to exist. We first verify those condi-
tions for Player 1a when uncoded M-QAM modulations are used.
To this end, we differentiate (29) in to obtain:

g′(s) = − ζ
√
β

2 log(M)
√
2πs

exp

(

−β

2
s

)

,

g′′(s) =
ζ
√
β(1 + β

√
s2)

4 log(M)
√
2πs3

exp

(

−β

2
s

)

. (31)

From (31), we conclude that condition (18) holds for any value of
a1 andγ12. Condition (19) holds given that

c1 >
β

3
b1 − γ1

1 ,

or equivalently

c1 >
β

3
b1,

which we can re-write as

σ

Pmaxρ
+ γ2

1(d
2
1)

−α >
β

3
δ21(d12)

−α, (32)

or:

σ

Pmaxρ
>

β

3
(d12)

−α. (33)

By following similar steps, we can show that (33) is sufficient for
(20) to hold. In fact, condition (33) is also sufficient for the con-
vexity of La

2 . For Team B, a sufficient condition for the concavity
of Lb

1 andLb
2 is

σ

Pmaxρ
>

β

3
(d12)−α, (34)

which can be derived following similar steps to the above. The
theorem follows from (33) and (34).

Note that the left hand side of inequality (30) depends entirely
on physical design parameters; this is of particular importance for
design purposes. Moreover, sufficient conditions for Theorem 5
can be expressed in terms of the received SNRs for all players,
which could be more insightful from a communication systems
prospective. Consider, for example, Player 1a, and let SNRxy =
Pmaxγx

y ρ(dxy)−α

σ
and SNRxy =

Pmaxδxyρ(dyx)−α

σ
. Expression

(32) can then be written as

SNR21 <
3

β
(SNR2

1 + 1).

Similarly, condition (20) holds if

SNR12 <
3

β
(SNR2

2 + 1).

Yet another useful way to interpret condition (30) is regarding it as
a minimum rate condition:

R > log

(

1 +
ρPmax

(
min{d12, d12}

)
−α

σ

)

,

whereR = log(M).

The specific conditions for Player 1a corresponding to (25)-(27)
when M-QAM modulations are utilized are:

(
sb1
sb2

) 3

2

exp

(

−β

2
(sb1 − sb2)

)

− b1
d1

= 0,

(
sb2
sa2

) 1

2

exp

(

−β

2
(sa2 − sb2)

)

− a1d1
(e1 + γ1

2)
2

= 0,

(
sb1
sa2

) 1

2

exp

(

−β

2
(sa2 − sb1)

)

− a1b1
(c1 + γ1

1)
2

= 0.

Also, (28) in this case becomes

(
sb2
sa2

) 1

2

exp

(

−β

2
(sa2 − sb2)

)

− a1d!
(e1 + γ1

2)
2

= 0,

(
sb1
sa2

) 1

2

exp

(

−β

2
(sa2 − sb1)

)

− a1b1
(c1 + γ1

1)
2

= 0.
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Figure 3: Trajectories of the agents on the plane

6. SIMULATION RESULTS

In this section, we present some simulation results. First,we present
simulations for arbitrarily chosen values of maximum powerPmax,
frequenciesf1, f2, modulation scheme sizeM , and speeds of the
playersu satisfying the convexity conditions in the previous sec-
tion. We then change the value of one parameter, while fixing the
rest, and present simulation results for the variants of theoriginal
problem.

Figure 2 shows the trajectories of the agents, distances between
agents, and the values of the decision variables over200 time steps.
The kinematics of all the agents are given by the following equa-
tions

ẋi = ui cos θi, ẏi = ui sin θi

We used the following values for the parameters in the simulations:

• Pmax = 100

• f1 = 300 MHz andf2 = 100 MHz

• Typical values of M are2, 4, 16, 64, and256. For simulation
purposes, we fix the value ofM at 2.

• ua
1 = ua

2 = ub
1 = ub

2 = 1

Figures 3, 4, and 5 contain four subfigures each repeating oneof
the above simulations for a variation of the original parameters as
follows:

1. Different Speeds:ua
1 = 5, ua

2 = 1, ub
1 = 3, andub

2 = 4

2. Different Modulation:M = 16

3. Different terminal conditions.

4. Frequency exchange:f1 = 100MHz andf2 = 300MHz

In each case, we present the simulation results when all the param-
eters are fixed except for the one listed above.

7. CONCLUSION AND FUTURE WORK

This paper has studied the power allocation problem for jamming
teams. The motion of the teams was modelled using the framework
of pursuit-evasion games and the optimal strategies were derived.
An underlying static game was used to obtain the optimal power
allocation, where the power budget of each user is split between
communication and jamming powers. This work focused on the
analysis of teams consisting of two players only. Potentialfuture
directions include:

• Computation of Singular Surfaces: In this work, we have
computed the trajectories based on the necessary conditions
of optimality imposed by the Isaacs’ conditions. In order
to complete the construction of the optimal trajectories of
the agents, we have to identify the singular surfaces in the
state space [2]. This is an interesting future research direc-
tion since the construction and nature of the singular surfaces
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Figure 4: Variations of the decision variables as a function of time.
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Figure 5: Distances among the agents



would depend on the value of the decision variables obtained
from the power allocation game.

• Computation of MSNE: As discussed in Section 3, the power
allocation games admits a MSNE without any constraints on
the underlying communication model. An important future
problem is to compute the MSNE for the power allocation
game.

• Scheduling Schemes: An interesting direction would be ex-
ploring scheduling algorithms, similar to the one proposedin
[11], in which players take turns in communicating or jam-
ming. For example, the users of a given team that are closest
in distance to the the other team could allocate all their re-
sources to jamming, while the other users allocate all their
resources to communicating with each other.

• Power Control: When multiple users are present, and due to
the broadcast nature of wireless systems, networks become
interference-limited. The transmission power of one user can
impede the links between other nodes due to the interference;
hence, it is important to regulate the transmission power of
the users in order to, for example, maximize the total capac-
ity of the network.

• Routing: Multihop routing improves the total throughput and
power efficiency of a network through relaying packets via
intermediate nodes to their final destination. Because a por-
tion of the energy of each node has to be allocated to jam the
other team, determining the optimal route for transmission
becomes a challenge, especially in the presence of mobility.
An investigation of routing protocols in the context of games
is therefore essential for studying the overall performance of
the networks [25].

• Eavesdropping:Whenfa = fb, another security issue arises
as the ADMs of a given team can receive and decode mes-
sages intended for internal communications of other teams.
To ensure secure communications, each team would need to
allocate power to jam the eavesdroppers. In fact, a more
general scenario is when adversarial teams consist of active
eavesdroppers: malicious nodes that can act as jammers and
eavesdroppers [21].
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APPENDIX

The following are the expressions of the quantities appearing in
(18)-(23) and in∇2La

2 , ∇2Lb
1, and∇2Lb

2:

a2 =
1

σ

Pmaxρ(d12)−α + δ11

(
d1
1

d12

)
−α

+ δ12

(
d1
2

d12

)
−α

b2 = δ21

(
d12
d21

)
−α

c2 =
σ

Pmaxρ(d21)
−α

+ γ1
1

(
d11
d21

)
−α

d2 = δ12

(
d12
d22

)
−α

e2 =
σ

Pmaxρ(d22)
−α

+ γ1
2

(
d12
d22

)−α

k1 =
1

σ

Pmaxρ(d12)−α + γ1
2

(
d1
2

d12

)
−α

+ γ2
2

(
d2
2

d12

)
−α

l1 = γ21

(
d12

d11

)−α

m1 =
σ

Pmaxρ(d11)
−α

+ δ12

(
d12
d11

)
−α

n1 = γ12

(
d12

d21

)
−α

o1 =
σ

Pmaxρ(d21)
−α

+ δ22

(
d22
d21

)−α

k2 =
1

σ

Pmaxρ(d12)−α + γ1
1

(
d1
1

d12

)
−α

+ γ2
1

(
d2
1

d12

)
−α

l2 = γ21

(
d12

d12

)−α

m2 =
σ

Pmaxρ(d12)
−α

+ δ11

(
d11
d12

)
−α

n2 = γ12

(
d12

d22

)
−α

o2 =
σ

Pmaxρ(d22)
−α

+ δ21

(
d21
d22

)−α
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