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ABSTRACT

In this work, we study the problem of power allocation in tesam
Each team consists of two agents who try to split their albgla
power between the tasks of communication and jamming theshod
of the other team. The agents have constraints on theirdoeaby
and instantaneous power usage. The cost function is theratiite
between the rates of erroneously transmitted bits of eash.t@Ve
model the problem as a zero-sum differential game between th
two teams and uslsaacs’approach to obtain the necessary condi-
tions for the optimal trajectories. This leads to a contim+&ernel
power allocation game among the players. Based on the commu-
nications model, we present sufficient conditions on thesuay
parameters of the agents for the existence of a pure stratagly
equilibrium (PSNE). Finally, we present simulation resttir the
case when the agents are holonomic.

1. INTRODUCTION

The decentralized nature of wireless ad hoc networks méless t
vulnerable to security threats. A prominent example of shobats
is jamming: a malicious attack whose objective is to disingt
communication of the victim network intentionally, caugimter-
ference or collision at the receiver side. Jamming attaekviell-
studied and active area of research in wireless networkauthn-
rized intrusion of such kind has started a race between tieeers
and the hackers; therefore, we have been witnessing a stnge/o
smart systems aiming to secure modern instrumentation @fitd s
ware from unwanted exogenous attacks.

The problem under consideration in this paper is inspirecebgnt
discoveries of jamming instances in biological species.a lse-
ries of playback experiments, researchers have found esatent
pairs of Peruvian warbling antbirds sing coordinated dudisn
responding to rival pairs. But under other circumstancesper-
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ation breaks down, leading to more complex songs. Spedyfical
it has been reported that females respond to unpaired sexalal
by jamming the signals of their own mates, who in turn adjosirt
signals to avoid the interference [27].

Many defence strategies have been proposed by researgharsta
jamming in wireless networks. A brief survey of various teicjues
in jamming relevant to our research is provided.in [5]. In past,
networks with multiple attackers have also been considiréie
literature. In[15] 16], the authors consider the inteattetween
a source-destination pair, an eavesdropper, and frieadyners.
The source can buy "jamming power" from the friendly jammers
which disguise the eavesdropper. This allows the sourcettieze
increased secrecy rate. The authors study the problem icotie
text of a Stackelberg game and show that a trade-off existesen
the price announced by the jammers and the resulting peafucen
A similar problem was tackled in [9] where relay nodes carphel
the source in the presence of multiple eavesdroppers. Ttherau
propose different relaying schemes and study two desigvigms:
minimizing the transmission power subject to a minimum segr
rate and maximizing the secrecy rate subject to a total pooer
straint. Analytical analyses show that relaying yieldsiaved per-
formance when compared to direct transmission in malicenws
ronments. Different from the aforementioned referencasywmrk
here considers non-friendly jamming teams, i.e., the siycoiot-
tleneck considered here is jamming and not eavesdroppinge-M
over, to the best of our knowledge, pursuit-evasion stresefpr
jamming teams were not studied before.

Ad hoc networks consist of mobile energy-constrained nokies
bility affects all layers in a network protocol stack incing the
physical layer as channels become time-varying [13]. Mezeo
nodes such as sensors deployed in a field or military vehpaes
trolling in remote sites are often equipped with non-regkable
batteries. Power control plays, therefore, a crucial mldésign-
ing robust communications systems. At the physical layewey
control can be used to maximize rate or minimize the transmis
sion error probability, see [18, 3] and the references therén
addition, in multi-user networks, power control can be useckg-
ulate the interference level at the terminals of other ufs28,
10]. Due to the lack of a centralized infrastructure in ad het
works, distributed solutions are essential. In this workilar to

[3 24, 28], we model the power allocation problem as a nopcoo
erative game, thus allowing us to devise a non-centralinfdion.

As a departure from previous research, however the poweraton
mechanism we propose splits the power budget of each platger i
two portions: a portion used to communicate with team-mates

a portion used to jam the players of the other team. More impor
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tantly, the objective function is chosen to be the diffeeehetween
the cumulative bit error rate (BER) of each team; this alldars
increased freedom in choosing physical design paraméesgjes
the power level, such as the size of modulation schemes.

In the past year, there have been reports of predator draieg b
hacked [[14, 20], resulting in intruders gaining access &ssified
data being transmitted from an aircraft. Motivated frombsurc
cidents, we have analyzed various scenarios of evading ijagnm
attacks among autonomous agents. In the casesiofghe jammer
trying to intrude the communication link between a trangeniand
a receiver, the problem can be formulated as multiplayezdi§ip
cally, three player) pursuit-evasion garmel[17, 2].[In [5¢ nves-
tigated the problem of finding motion strategies for two unnmed

autonomous vehicles (UAVS) to evade jamming in the presence

of an aerial intruder. We considered a differential gametbiec
approach to compute optimal strategies by a team of UAVs. We
formulated the problem as a zero-sum pursuit-evasion garhe.
cost function was picked as the termination time of the gave.

{1%,2°} and Team B is comprised of the two playéi$, 2°}. The
agents move on a plane and therefore, have two degrees dbfnee
(z,y). The dynamics of the players are given by the following
equations:

e TeamA:
&y = fo. (x5, uf,t) } .
Ui = Jas (X3, Uy ie{1,2 1
Yi :fyi(xi7ui7t) { } ( )
e Team B:
2 = f2 (xP,ul,t) }
.Z le 1 19 ie 172 2
it =iy pietbE @

In the above equations; andu; denote vectors representing the
state and control input of ageit with the superscript (a or b)

usedisaacs’approach to derive the necessary conditions to arrive at identifying the corresponding team. The state space of ittiece

the equations governing the saddle-point strategies opldneers.

In [[7], we extended the previous analysis to a team of heterog
neous vehicles containing UAVs and autonomous ground hkeshic
(AGVSs). In [4], we analyzed the problem of multiple jammaens i
truding the communication network in a formation of UAVs. In
[6], we analyzed the problem of connectivity maintenanamirti-
agent systems in the presence of a jammer. In this currerk, wor
we study a scenario wheretaam of malicious nodes launch a
jamming attack on another team, which is capable of jamming a
well. We again use differential game theory to study the yitirs
evasion strategies of the teams, which constitute of unethae-
cision makers (UDMs).

The main contributions of this paper are as follows. To th& bé

our knowledge, this is the first work that considers the probbf

two teams of mobile autonomous agents jamming each other. Ou
analysis takes into consideration constraints in energlypemver
among the agents. Moreover, we relate the problem of optimal
power allocation for communication and jamming to the commu
nication model between the agents. Finally, we provide fcserfit
condition for existence of an optimal decision strategy agthe
agents based on the physical parameters of the problems.

The rest of the paper is organized as follows. We formulage th
problem in Sectiof]2 and explain the underlying notationSét-
tion[3, we introduce and solve an associated optimal coptwi-
lem. The Nash equilibrium properties of the team power con-
trol problem are studied in Sectiéh 4, and the specific exarnpl
systems employing uncoded M-quadrature amplitude mddukat
(QAM) follows in Sectior{b. Simulation results are presenie
Sectior 6. We conclude the paper and provide future dinestio
Sectiori Y. An Appendix at the end includes explicit expr@ssior
some of the variables introduced in the paper.

2. PROBLEM FORMULATION

Consider two teams of mobile agents. Each agent is commntunica

ing with members of the team it belongs to and at the same time,

jamming the communication between members of the other.team

system is represented B{~ R? x R? x R? x R%. Moreover,

u € Uy ~ {¢ : [0,t] — A; | #(-) ismeasurablg where
Ai CRPi. f : R?x A; xR — Ris uniformly continuous, bounded
and Lipschitz continuous iw; for fixed u;. Consequently, given
a fixedu;(-) and an initial point, there exists a unique trajectory

solving [3) and[(R)[I1].

Now, we describe the physical layer communications modgien
presence of a jammer which is motivated byl[26]. For eachstran
mitter and receiver pair, we assume the following commuitoa
model. Given that the transmitter and the receiver are aggrhby
a distancel, and the transmitter transmits with constant power
the received signal powe?z is given by
Pr = pPrd™“, (3)
wherep depends on the antennas’ gains and, according to the free
space path loss model, is given by:

_ GrGgr\’
p= (471')2 )

where) is the signal’'s wavelength arér, G r are the transmit and
receive antennas’ gains, respectively, in the line of sififfetction.

In real scenariog, is very small in magnitude. For example, using
nondirectional antennas and transmitting@ MHz, we havep =

Lime = 6.896 x 107

The signal-to-interference ratio (SINRJs given by

5= Pr
E

4)

whereo is the ambient noise level. The Bit Error Rate (BER) is
given by the following expression:

p(t) = g(s), (5)

whereg(-) is a decreasing function af Explicit expressions for
g(-) are provided in Section V where we consider the example of
M-QAM. Each player uses its power for the following purpases
(1) Communicating with the team-mate, and (2) Jamming the-co

We consider a scenario where each team has two membershthoug munication of the other team. We assume thaand f, are the

at a conceptual level our development applies to higher eumb
of team members as well. Team A is comprised of the two players

frequencies at which Team A and Team B communicate, respec-
tively, and fo # fb.



For an initial positiorx, € X, the outcome of the game is given
by the following expression:

T
(X0, U2, U3, U, Ub) = / P2(0) + p3() — pS(t) — ph(0)] d,
0

L

wherep{ (t) andp?(t) are the BERS for agefitn team A and team

B, respectively, and” is the time of termination of the game;
depends ins;, i.e, the SINR perceived by agent From [3), s;
depends on the mutual distances between the players. ®reref
we can see that the outcome functionaldepends on the state of
the players and hence, their control inputs. The outcometiformal
models the difference in the erroneous communication packe
changed between the members of the same team during the entir
course of the game. The objective of team A is to minimizand

the objective of team B is to maximize it.

Let P2 (t) and P?(t) denote the instantaneous power levels for
communication used by playeérin Team A and Team B, respec-
tively. Since the agents are mobile, there are limitationste
amount of energy available to each agent that is dictatetdga-
pacity of the power source carried by each agent. We model thi
restriction as the following integral constraint for eagjeat

T
P;(t)dt < E. (6)
0
The game is said to terminate when any one agent runs out of
power, that is (6) is violated.

In addition to the energy constraints, there are limitation the
maximum power level of the devices that are used onboard each
agent for the purpose of communication. For each playey cibm-
straint is modeled by the following set of inequalities:

0 < P*(t), P! (t) < Prax- )

At every instant, each agent has to decide on the fractiomef t
power that needs to be allocated for communication and jagmi
Table[d provides a list of decision variables for the playtbrat
models this allocation. Each decision variable is a noratieg
real number and lies in the intervfil, 1]. The decision variables
belonging to each row add up to one. The fraction of the total
power allocated by the player in roivto the player in columny

is given by the first entry in the ce{t, j). This allocated power
is used for jamming if the player in columhbelongs to the other
team; otherwise, it is used to communicate with the agenhén t
same team. Similarly, the distance between the agent in aovd
the agent in columry is given by the second entry in cell, j).
Since distance is a symmetric quantify, = ¢’* andd,; = d;;.

Figure[1 summarizes the power allocation between the menaber
the same team as well as between the members of differens team

In the above game, each agent has to compute the followirig var
ables at every instant:

1. The instantaneous contral; (¢).
2. The instantaneous power level,(t).

3. All the decision variables present in the row correspondi
to the agent in Tablgl 1.

Table 1. Decision variables and distances among agents.

1° 20 1@ 2@

1| ydi | y2,ds 2, d*?

2| Af,dt | 43, d3 | 97 dM

lb 5127d12 6%7d% 6%7d%

2b 5217 d21 6%7 d% 6%7 d%

Figure 1. Power allocation among the agents for communica-
tion aswell asjamming.

In the next section, we analyze the problem of computing the o
mal controls for each agent.

3. OPTIMAL CONTROL PROBLEM

From the problem formulation presented in the previousicect
we can conclude that the objective functions of the two tearas
in conflict. The tuplg(u$*, ug*, u*, u%*) is said to be optimal (or,
in pair-wise saddle-point equilibrium) for the playerstitatisfies
the following conditions:

* o ak b b ax* * bk bx
m[Xo, UT™, u3™, U7, us] < wXo, Ui, us™, ug", Us 8

* * bk bx bx  bx
7[Xo, Ut us™, us", us"] < mXo,UT, U3, Uq, Us 9

In simple terms, the above equations imply that agents imTea
A are solving a joint optimization problem of minimizing tioert-
come. Similarly, agents in Team B are solving a joint optitian
problem of maximizing the outcome. Moreover, the two teames a
playing a zero-sum game against one another. In this casealie



of the game, denoted by the function: X — R, can be defined Additionally, the gradient of the value function satisfibe tetro-

as follows: gressive path equation®PE) given by the following partial dif-
J(X) = X0, u%*, ug*, ub*, ul” (10) ferential equation:
The value of the game is unique at a paiitin the state-space. aaw = %_I;
T

An important property satisfied by the value of the game is the
Nash equilibriumproperty. The tuplgu$*, ug*, ub*, u*) is said wherer is the retrograde time or time left for termination.
to be in Nash equilibrium if no unilateral deviation in segy by

a player can lead to a better outcome for that player. Heheeet ~ The RPE leads to the following equations for the players.
is no motivation for the players to deviate from their edurilim

strategies. In terms of the outcome of the game, the stemtegi Team A

(ug*,ug*, ub*, us*) are in Nash equilibrium (for the 4-player game) afa (x a 1(.ay(,a _ a
if they satisfy the following property: Joo =VJ - ngg ) +a [skg (381(296):2 ) n
i k=1,2
7T[X07 utll*7 u5*7 ul{*v Ug] ax ax  bx _ bx ’ )
< mXo,U3",us", U, U i
7_(_[)(07 utll*7 Ug*7 ull77 Ug* >~ 7T[ 0,41 ,U2 , U , U2 ] Szgl(sllé)P’.’”flw'y}c(w? — xi)}
(@) @+

7[Xo, uf, ug*, ul*, uh]

a* a* bx* bx*
Xo, U7 , Uz , Uy ,Ug | < 11 i a I(.a a
mXo, Ui, Uz", U, U —{ 7[Xo, UP*, ug, ut*, u%*] (11) oo = V- 0fy,(x) [Skg'(Sk)(y?—yi) n
i a 12)2
0y; k=1,2 (d2)
In general, there may be multiple sets of strategies for tageps sbg'(st

Pmaz : ?— b
that are in Nash equilibrium. Assuming the existence of ae/al zd ),<Zi(§)/ yk)}

as defined in[(70), and the existence of a unique Nash equitibr

we can conclude that the Nash equilibrium concept of pebsen-

person optimality given irf{11) is a necessary conditionegatis- Team B
fied for the value of the game. Further, obtaining the setratest

gies that are in Nash equilibrium yields the optimal stregedor ) 3ff-i (x) Z [SZQI(SZ)@C? —z7)
the players. In the following analysis, we assume the aferem e oz (d12)?
tioned conditions in order to compute the optimal strategie

7
k

+
k=1,2

SZQI(SZ)Pmawf;?(mg - CUZ)]
The Hamiltonian of the system is given by the following exgre (dF)—(at2)
ston: ; o1,x) ko' (51w} — 1)
Js = J- Yy k k J i
H = L+VJ-f(x) vy v dyb + O‘k;2 [ (d12)2 +
_ a a _ b _ b X ' a ’ ) "
= pi(t) +pa(t) —p1(t) —p2(t) + VJ - f(x) (12) 529" (52) Praad (y} — yk)]
(@) =+

In order to compute the optimal control of the players, we usk

the Isaacs’ conditions [17] which are the following: Here, () denotes derivative with respect to retrograde time. Since

termination is only a function of the power of each playgis in-

dependent of the position of the players on the terminal fakhi
1. Therefore,VJ = 0 at termination. This forms the boundary con-

HIx u‘”‘7 ug* ub”‘7 ub ax  ax . . dition for the RPE.
[ o 117,* §*7 l% bf] S H[X()yul 7u2 7ul{ 7u127 ]
H[X07ul 7u2 7u17u2] . .
In the next section, we address the problem of power allocati
H{xo,uf, ug”, up*, us*

bt g, ot u) < o bl o 4. POWER ALLOCATION

2. H[X07u(1”7u5*7u117*7ul27*] =0 . .
From [4), the SINR received by each agent in terms of the power

. L . levels of the other agents as well as their mutual distarecgivén
The agents in Team A want to minimize the Hamiltonian at every by the following expressions

instant, and the agents in Team B want to maximize it. The dy-

namics of the agents are decoupled. Therefore, the Haraittos e Py (t)y* (d'?) "
separable in its controls and, hence, the order of takingxtrema ! 2 + PP(t)01(d})=> + Py (t)d3(d5)~
becomes inconsequential. As a consequence, the optim@blson o 12/ 12 —a
. . . o P (t)y ~(d™)
of the players are given by the following expression fronatsa 85 = — — ——
first condition. Z + Pp()63(di) > + Py(t)63(d3)
(Uf", U3, ui", uy") = arg max min H s = Py (t)d21 (cha)
U g VU3 ZE PO () + PR (&)~
The optimal control; is obtained by the following expression: s = Pr()0ra(cha) (13)
P Z g 9 expression 7+ PrO(dh) = + PE (003 (&)~

2% — minge 2L . £2(x%¢, u® o
U T By Fi (5 Ui, 1) } i=1.2 From the expression i (.2), we can conclude that the pover al
)

bx oJ bryb (b . . . .
U; = maxyp E [ (X, 07, 1) cation among the agents only affects the térin the Hamiltonian.



Therefore, Isaacs’ first condition leads to the followingveo allo-
cation problem among the agents.

41 TeamA

The objective of each agent is to minimize

1. Player 1:
. . a b b
min L= min —p1 — 14
P2yl 312 P2 yiv3 12 (u}_p%) (14)
Ly
subject to:
Pla(t) S Pmax
NA+m+yE =1 M2 >0=ye A’
2. Player 2:
min L= min b —pb 15
Pg,y2 42,721 Pg 2,432,421 (w) (19)
L3
subject to:
P2a(t) S Pmax
Yi4+wn+yt =1 et 0= ye A
42 TeamB
The objective of each agent is to maximize
1. Player 1:
max L= max (p{+ps—p5) (16)
PP 51,681,612 PP 61,63 ,610 N———t
Lb
1
subject to:
Py (t) < Prax
01+ 6;4+012=1, 61,61,612>0
2. Player 2:
max L= max (p]+p5— pl{) a7)
P} ,63,62,601 P) 63,62 ,60) N m—

b
L2

subject to:
P}(t) < Prax

5;+6§+521:17 6%765752120

Since the players do not communicate, they possess infamat
only about their own decision variables. This makes the powe
allocation problem a continuous kernel non-zero sum ganangm
the players.

THEOREM 1. The optimal value of the power consumption for
each player iSPmax-

PrROOF. Consider Playet®. The ratep? is a decreasing func-
tion of P1(t). Also, p% andp} are increasing functions dp. (t).
Therefore,(p3 —p5 — p3) is a decreasing function d@t. (). Hence
the optimal value ofP. (t) = Pmax. Using the same argument for
the other players leads to the conclusion that the optimued tef
power consumption of every player&nax. [

The next corollary then follows regarding the time horizdrthe
differential game.

COROLLARY 1. The entire game terminates in a fixed tiffie=
% irrespective of the initial position of the agents.

PrRooF From Theorenfi]l and}(6), we conclude that fhe=
B . .
Y- for aI_I play_ers. All the players consume their e_ntlre enagy
the same time, i.eZ'. Therefore, the game ends at tifie [

Now we consider the problem of computing the optimal value of
the decision variables for the players. In order to do so, 8& u
preexisting results from continuous kernel games thatmsgnted
here in Theorem 2 and Theorem 3 and are stated without proof.

THEOREM 2. [2] An N-person nonzero-sum game in which the
finite-dimensional action spacég (i € N) are compact and cost
functionalsJ® (i € N) are continuous o/* x - -- x U™ admits a
mixed strategy Nash equilibrium (MSNE).

From the above theorem, we can conclude that the power alloca
tion game has a Nash equilibrium in mixed strategies sine@¢h
cision variables of each player lie on a simplex which is caotp
Moreover, L is a continuous function of the decision variables of
all the players. Therefore, the game admits a MSNE. Althotigh
MSNE has been computed for some games by exploiting some spe-
cial characteristics in the cost functions, there are nodsted tech-
nigues to compute MSNE for general continuous-kernel gd®:s

2]. Therefore, we search for the conditions under which theqy
allocation game admits a pure strategy Nash EquilibriuniNE)S

THEOREM 3. [2] Let U be a closed, bounded and convex sub-
set ofR™, and for eachi € N the cost functional/* : U — R be
continuous ori/ and convex inu’ for everyu? ¢ U7, 5 € N,j ¢ i.
Then, the associated N-person nonzero-sum game admitsi@.PSN

The above theorem provides the conditions under which we can
guarantee existence of a PSNE. Let us consider the case mf age
1%. The expressions for SINR provided [n]13) relevant to the op
timization problem being solved by can be written in a concise
form as shown below:

sf=an?, = =B
¢+ e1+ 73
where
1
al =

- a2 \ 7@ a2\’
Pz + 0 (i) + 03 (%)

o = ma ()



Note thata1, b1, c1,d; ande; are independent of the decision of
1°.

THEOREM 4. The power allocation team game has a unique
Nash equilibrium in pure strategies if the following cofatits hold
for Team A:

g"(s7) >0, (18)
2 i

g"(s1) + & (ci +1)g (s1) <0, (19)

1, b 2 i\ 17 b
g (s2) + E(ei +72)9 (s2) <0, (20)

and equivalent conditions hold for Team B:

g"(s0) > 0, (1)

1 a 2 ! a
g (51)+T(mi+53)g (s1) <0, (22)

a 2 a
g"(s3) + —(0; + 57)g'(s5) <0, (23)

7

wherei € {1, 2}.

The constanté., c2, ds, €i, l;, m4, ni, ando; are obtained by re-
writing the SINR expressions as done above; their expressian
be found in the Appendix.

PrROOF Let us consider the case df. From Theorem 2, we
can conclude that a pure strategy Nash equilibrium existg' ifs
convex in its arguments when the decision variables of therot
players are fixed. From[8],¢ is convex if and only iftV2L$ > 0
(For Team B,L!? is concave if and only ivV2L? < 0), where the
HessianV2L¢ is given in [2). This constitutes that'(s3) >
0,9" ()4 (c1471)g'(s1) < 0,andg” (s3)+ 2 (e1+72)g'(s3) <
0. The theorem then follows by following similar steps to ¥eri
V2L$ >0, V2L8 < 0,andV3L <0. O

Applying the KKT conditions[[18], in addition to the assurnqpis
provided in the theorem that guarantee strict convexitifafgives
us the following equations that need to be satisfied by thieadip
unique optimal solutiorf?y):

3
VLI(3) + > AiVhi(3) + nVh(7) =0
=1

Aihi(%) =0 .
)\i7(77)>0 } 1€ {1,2,3}
where
m@E) = =<0
ha(3) = —m <0
ha(¥) = =72 <0
N 12 1 1 _
h(¥) = 7 +mn+712-1=0

Now, we present the necessary and sufficient conditionshéoso-
lution to the optimization problem for the agents. Let ussider

To this end, we obtain:

[ a1g'(s3) 1
o b1g’(s%) _
VL] = (c1+'yll)2 ,Vh(’y) = 1
big’(s5) 1
L (c1+73)2

1] 0 0
Vha(¥) =10 [, Vhe(¥)=| 1 | ,Vhs(y)=] 0
0 0 1

Sincey € A3, at most three of the constraints can be active at any
given point. Hence, the gradient of the constraints at aagifde
point are always linearly independent.

If two of the three constraints amoRé@ , h2, hs } are active, thefy

has a unique solution that is given by the vertex of the simlat
satisfies the two constraints. If only one of the constraam®ng
{h1, h2, h3} is active, then we have the following cases depending
on the active constraint

1. hi(3Y) = 0: 41 = (0,~71*, 1 — 41*) satisfies the following
equations
g'(s3) b

T

. E— g'(s?)

lex + (1 —1%)P? '

2. ha(7%) = 0: 72 = (1 — v3*,0,~3") satisfies the following
equations

dig'(s3)

(o1 + 112 (26)

arg'(s3) =

3. h3(7®) = 0: 7% = (1 — 4%, 7417, 0) satisfies the following

equations
1/ a blgl(sll))
a S = 27
19( 2) (Cl +711*)2 ( )
If none of the inequality constraints are active, then
ﬁ/l = (1 - ’Y%* - ’Y%*7’Y%*7721*)7
N——
712*
is the solution to the following equations:
AT e — L R
[er +71%]2
' a d1 /b
a S —_— S =0 28
19( 2) [61 +,Y%*]29( 2) (28)

Here,7 lies in the se{ (1, 0,0), (0, 1,0), (0,0, 1), 7", 7%, 7%, 7*}.

An important point to note is that;, b1, c1,d; ande; depend on
the decision of the other players. Therefore, the compirtabf
the decision variables depend on the value of the decisigablas
of the rest of the players. A possible way to deal with thisbpro
lem is to use iterative schemes for computation of strasegjg]
provides some insights into the efficacy of such schemes fhem
point of view of convergence and stability. In this work, vesame

the case of“. The assumptions in Theorem 4 regarding strict con- that each agent has enough computational power so as toeempl
vexity of L¢ render the KKT conditions to be necessary as well as these iterations in a negligible amount of time comparetedatal

sufficient conditions for the unique global minimum.

horizon of the game.



aig”(s3) , 0 0
Vi = 0 —ﬁ[gn(slf) + %(Cl +71)9'(s1)] 0 (24)
d? " /
0 0 —ernrle”(s2) + F (e +72)g' (52)]
In the next section, we express the conditions for the exigtef or:
PSNE in terms of limitations imposed by the physical comroani o 3 .
tions layer. Py > g(dlz) . (33)

5. EXISTENCE OF PSNE UNDER M-QAM
MODULATION SCHEMES

The bit error rate (BER) depends on the SINR, the modulation
scheme, and the error control coding scheme utilized. Camuau
tions literature contains closed-form expressions ara tigunds
that can be used to calculajés) when the noise and interference

By following similar steps, we can show th&f{33) is suffitiéor
(20) to hold. In fact, conditio (33) is also sufficient foretiaon-
vexity of L5. For Team B, a sufficient condition for the concavity
of L andL} is

o B

> d12 7&7
Pmazp 3( )

which can be derived following similar steps to the above.e Th

(34)

are assumed to be Gaussian|[12]. For example, using uncoded M theorem follows from[(33) and (34).00

QAM, where Gray encoding is used to map the bits into the sym-
bols of the constellation, the BER can be approximated b} [23

log(CM) Q (\/@) ’

where¢ = 4(1 — 1/vVM), B = 3/(M — 1), and Q(.) is the
tail probability of the standard Gaussian distribution ethcan be
expressed in terms of the error function:

—l—lerf =z
2002 V2)'

The conditions of Theoreild 4 depend primarily on the employed
modulation and coding schemes.

g(s) ~ (29)

Q)

THEOREM 5. When all players employ uncoded M-QAM mod-

ulation schemes, the power allocation team game has a unique

PSNE solution if the following condition is satisfied:

BoPrmax (min{du7 d12}) < 30, (30)

PrRoOF The conditions of Theorefd 4 need to be satisfied for a
unique pure strategies solution to exist. We first verifystnoondi-
tions for Player ¥ when uncoded M-QAM modulations are used.
To this end, we differentiat€ {R9) in to obtain:

0= gz (5
9"(s) exp (—gs) .

_ CVB(L+8Vs?) (31)
4log(M)V2ms3
From [31), we conclude that conditidn {18) holds for any eab
a1 and~!2. Condition [I9) holds given that

ca > §b1 -,

or equivalently
c1 > gbh
which we can re-write as

g
Pmacvp

+ yf(d%)ia > §521(d12)7a7 (32)

Note that the left hand side of inequality_{30) depends elytir
on physical design parameters; this is of particular ingwé for
design purposes. Moreover, sufficient conditions for ThedB

can be expressed in terms of the received SNRs for all players
which could be more insightful from a communication systems
prospective. Consider, for example, Playér and let SN =
Pmam"/zp(dz)ia and SNRy _ Pynawémy;(dym)ia-

— Expression
(32) can then be written as

3

SNRy1 < B(SNR% +1).

Similarly, condition [2D) holds if
SNRy2 < %(SNPS +1).

Yet another useful way to interpret conditi@n(30) is regagdt as
a minimum rate condition:

PPraz (min{dm, d12}) e

)

The specific conditions for Player* Icorresponding to[ (25J=(27)
when M-QAM modulations are utilized are:

R>log<1+

whereR = log(M).

3
S—l{ 2exp —é(sb—sb) bl 0
812, 2 1 2 dl )
1
b\ 2
s9 @ b ardy
— | exp|—=(s s — = 0,
() o (-56-9) - %o
N
(ﬂ) ’ exp (——(sa sb)) ___aih =0
55 o (c14+71)? ‘
Also, (Z28) in this case becomes
(1) (- f-5) - =
55 P o (e1+72)? ’
1
(s—l{) ’ exp (—é(s sb)) ___aih =0
55 27 (c14+71)?
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Figure 3: Trajectories of the agents on the plane

6. SIMULATION RESULTS

In this section, we present some simulation results. Rirspresent
simulations for arbitrarily chosen values of maximum powgr,
frequenciesf, f2, modulation scheme sizk/, and speeds of the
playersu satisfying the convexity conditions in the previous sec-
tion. We then change the value of one parameter, while fixieg t
rest, and present simulation results for the variants obtiginal
problem.

Figure[2 shows the trajectories of the agents, distancesebet
agents, and the values of the decision variables 28@time steps.
The kinematics of all the agents are given by the followingaeq

tions
&; =wuicosbi, i =u;sinb;

We used the following values for the parameters in the sitimna:

e Prax = 100
e f1 =300 MHz and f> = 100 MHz

e Typical values of M ar@, 4, 16, 64, and256. For simulation
purposes, we fix the value aff at 2.

° u‘f:ugzul{:ugzl

Figured B[4, anf]5 contain four subfigures each repeatingpbne
the above simulations for a variation of the original partereas
follows:

Different Speedsu$ = 5,u$ = 1,u} = 3, andu} = 4
Different Modulation:M = 16

Different terminal conditions.

P w0 DN PF

Frequency exchang¢i = 100MHz and f> = 300MHz

In each case, we present the simulation results when allaieenp
eters are fixed except for the one listed above.

7. CONCLUSION AND FUTURE WORK

This paper has studied the power allocation problem for jargm
teams. The motion of the teams was modelled using the frankewo
of pursuit-evasion games and the optimal strategies wereede

An underlying static game was used to obtain the optimal powe
allocation, where the power budget of each user is split etw
communication and jamming powers. This work focused on the
analysis of teams consisting of two players only. Poteifitialre
directions include:

e Computation of Singular Surfacedn this work, we have
computed the trajectories based on the necessary corglition
of optimality imposed by the Isaacs’ conditions. In order
to complete the construction of the optimal trajectories of
the agents, we have to identify the singular surfaces in the
state space [2]. This is an interesting future researclc-dire
tion since the construction and nature of the singular sega
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would depend on the value of the decision variables obtained [6] S. Bhattacharya and T. Basar. Graph-theoretic apprt@ac

from the power allocation game. connectivity maintenance in mobile networks in the presenc
of a jammer. InProceedings of the IEEE Conference on
e Computation of MSNEAs discussed in Section 3, the power Decision and ContrglAtlanta, GA, Dec. 2010.
allocation games admits a MSNE without any constraints on  [7] S. Bhattacharya and T. Basar. Optimal strategies tdeva
the underlying communication model. An important future jamming in heterogeneous mobile networksPhoceedings
problem is to compute the MSNE for the power allocation of the Workshop on Search and Pursuit-Evasisnchorage,
game. AK, 2010.

[8] S. Boyd and L. Vandenbergh€onvex Optimizatian
Cambridge University Press, Cambridge, U.K., 2004.
Available at http://www.stanford.edu/ boyd/cvxbook/.

[9] L. Dong, Z. Han, A. Petropulu, and H. Poor. Improving
wireless physical layer security via cooperating relé&E
Transactions on Signal Processirg3(3):1875 —1888, 2010.

[10] T. EIBatt and A. Ephremides. Joint scheduling and power
control for wireless ad hoc networkK&EE Transactions on

e Power Control When multiple users are present, and due to Wireless Communication8(1):74 — 85, 2004. .
the broadcast nature of wireless systems, networks becomel11] L. Fu, S. C. Liew, and J. Huang. Fast algorithms for joint

e Scheduling Schemesn interesting direction would be ex-
ploring scheduling algorithms, similar to the one proposed
[11], in which players take turns in communicating or jam-
ming. For example, the users of a given team that are closest
in distance to the the other team could allocate all their re-
sources to jamming, while the other users allocate all their
resources to communicating with each other.

interference-limited. The transmission power of one uaer c power control and scheduling in wireless netwolllksEE
impede the links between other nodes due to the interference Transactions on Wireless Communicatio8§s):1186 —1197,
hence, it is important to regulate the transmission power of march 2010.
the users in order to, for example, maximize the total capac- [12] A. Goldsmith.Wireless Communication€ambridge
ity of the network. University Press, Cambridge, U.K., 2005.
[13] A. Goldsmith and S. Wicker. Design challenges for

e Routing Multihop routing improves the total throughput and energy-constrained ad hoc wireless netwokgeless
power efficiency of a network through relaying packets via Communications, IEEP(4):8 — 27, 2002.
intermediate nodes to their final destination. Because a por [14] S. Gorman, Y. J. Dreazen, and A. Cole. Insurgents ha&k U.
tion of the energy of each node has to be allocated to jam the drones, December 20009.
other team, determining the optimal route for transmission http:/online.wsj.com/article/SB12610224788909501rhl.
becomes a challenge, especially in the presence of mobility [15] z. Han, N. Marina, M. Debbah, and A. Hjorungnes. Phyisica
An investigation of routing protocols in the context of game layer security game: How to date a girl with her boyfriend on
is therefore essential for studying the overall perforneaoic the same table. IGame Theory for Networks, 2009.
the networks[[25]. GameNets '09. International Conference, pages 287

. o ) —294, May 2009.
* EavesdroppingWhenf, = f,, another security issue arises 1] 7 Han, N. Marina, M. Debbah, and A. Hjorungnes. Phylsica
as the ADMs of a given team can receive and decode mes- layer security game: Interaction between source

iages intended for internal cotmmunlcatkl]otns of Oth?(; teanc]st. eavesdropper, and friendly jammEURASIP Journal on
0 ensure secure communications, each team would need 0 yyjreless Communications and Networking, special issue on

aIIocatcT power_to_ jamh the savesdrolptpers. In faptt, ab;n(:_r e Wireless Physical Layer Securityage 10 pages, 2009.
e s et o e 17 R IsaacsDiferentlGamesWiey,New o, 1965
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APPENDIX

The following are the expressions of the quantities appgain
(@8)-(23) and inv?Lg, VLS, andV2L5:
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- o)
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