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ABSTRACT
In this pedagogical note, we present some algebraic proper-
ties of a particular class of probability transition matrices,
namely, Hamiltonian transition matrices. Each matrix P

in this class corresponds to a Hamiltonian cycle in a given
graph G on n nodes and to an irreducible, periodic, Markov
chain. We show that a number of important matrices tradi-
tionally associated with Markov chains, namely, the station-
ary, fundamental, deviation and the hitting time matrix all
have elegant expansions in the first n−1 powers of P , whose
coefficients can be explicitly derived. We also consider the
resolvent-like matrices associated with any given Hamilto-
nian cycle and its reverse cycle and prove an identity about
the product of these matrices.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Path and
Circuit Problems; G.3 [Probability and Statistics]: Markov
Processes

General Terms
Theory

Keywords
Hamiltonia Path Problem, Hamiltonian Transition Matri-
ces, Markov Chains

1. INTRODUCTION
One of the central concepts in graph theory is the Hamil-
tonian cycle. Given a graph G, a simple path that starts
from one node, visits all nodes exactly once and returns to
the initial node is called a Hamiltonian cycle or a tour. It
should be noted that in this context, terms“Hamiltonian cy-
cle” and “tour” are used, interchangeably. Accordingly, we
can define the Hamiltonian Cycle Problem (HCP), which is
a well-known problem in graph theory. Particularly, given a
directed graph G, we are asked to determine whether it con-
tains at least one tour or not. If G contains at least one tour,

then the graph is called Hamiltonian and otherwise, that is,
if there exists no tour in G, it is called a non-Hamiltonian
graph. In spite of its simple appearance, HCP is an NP-
complete problem [4, Chapter 3].

One of the approaches to tackle this problem was proposed
in Filar and Krass [2], where the deterministic Hamiltonian
cycle problem is converted to a particular average-reward
Markov decision process. That paper, was the motivation
of a new line of research for the HCP that was summarized
in [3]. Essential in this approach are the expansions of key
matrices such as the stationary and fundamental matrices
associated with various Markov chains induced by the graph
G under consideration. Of course, in general, these expan-
sions are infinite series. However, if we restrict ourselves to
probability transition matrices induced by Hamiltonian cy-
cles, the preceding expansions reduce to elegant finite series
with easily computable coefficients.

The bulk of this pedagogical note is devoted to collecting and
deriving the above series expansions with the help of Markov
chains techniques. To the best of our knowledge the explicit
forms of all these series - with closed form expressions for
their coefficients - have not been reported elsewhere. In
addition, we derive (by similar techniques) an apparently
novel identity for the product of the resolvent-like matrices
associated with a Hamiltonian cycle and its reverse. Recall
that, in an undirected graph, every Hamiltonian cycle is
accompanied by a reverse cycle whose probability transition
matrix is simply the transpose of that corresponding to the
original cycle.

We omit all the proofs which will appear in a journal version
of the present work.

2. HAMILTONIAN TRANSITION MATRI-
CES

Consider a given labeled graph G on n nodes. Suppose V =
{1, 2, . . . , n} and A are, respectively, sets of all nodes and
arcs in graph G. If G is Hamiltonian, then corresponding to
each tour τ in G, we can construct a probability transition
matrix, namely Hamiltonian transition matrix.

Definition 2.1. Suppose the Hamiltonian graph G is given
and τ is a tour in G. We say the probability transition ma-
trix P is “Hamiltonian transition matrix”, if it is a 0 − 1
matrix such that its positive elements trace out tour τ in G.
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For instance, the components of the Hamiltonian transition
matrix1 P associated with the standard tour “1 → 2 →
· · · → n → 1” is

pij =

8

>

<

>

:

1 for i = 1, 2, . . . , n − 1 , j = i + 1

1 for i = n , j = 1

0 otherwise

.

Of course, Hamiltonian matrices can also be seen as special
permutation matrices but, in this note, it is their nature
as special probability transition matrices of Markov chains
that we focus on. Undoubtedly, results we present here could
also be derived by other methods that do not exploit Markov
chain interpretations but matrices such as the fundamental,
deviation and stationary distribution matrix are, perhaps,
of most interest to researchers using Markov chains as mod-
elling tools.

It should be noted that in all subsequent sections, we sup-
pose that P is a Hamiltonian matrix induced by a tour in the
Hamiltonian graph G on n nodes, unless, otherwise stated.
Also, we adopt the convention that matrix AT denotes the
transpose of the matrix A.

We begin by recalling, a number of obvious properties of
Hamiltonian matrices that follow directly definitions and
Chapman-Kolmogorov equations. These are summarised in
the following lemma.

Lemma 2.2. Suppose that the Hamiltonian matrix P is
induced by the tour τ : “ℓ0( = i ) → ℓ1 → · · · → ℓn−1 →
ℓ0”.

(i) For values of r = 0, 1, . . . , n− 1, the ijth component of
matrix P r will be equal to

p
(r)
ij = δℓr j ,

where, δ is the Kronecker’s delta.

(ii) The Hamiltonian matrix P has period n and, more gen-
erally

P
kn+r = P

r for k = 0, 1, 2, . . .

and r = 0, 1, 2, . . . , n − 1 . (1)

(iii) The eigenvalues of P are the n roots of unity.

3. MARKOV CHAINS
According to Definition 2.1, any Hamiltonian matrix is a
probability transition matrix. This implies that we can
derive all properties of probability transition matrices for
them, as well.

Remark 3.1. According to Lemma 2.2, for each pair of

i, j ∈ V, we have p
(r)
ij > 0 for some r ∈ {0, 1, . . . , n−1}. This

implies that all states in V communicate with each other and
consequently, the Markov chain defined by each Hamiltonian
matrix is irreducible.

1Henceforth, for simplicity, we call Hamiltonian transition
matrices just as Hamiltonian matrices.

Remark 3.1 indicates that for each Hamiltonian matrix, there
exists a unique stationary distribution, as well as, Ceasro
limit matrix. In the following two lemmas, we derive an
explicit equation for each of them.

Lemma 3.2. The stationary distribution of the Hamilto-
nian matrix P , say π, follows the uniform distribution.

Proposition 3.3. For Hamiltonian matrix P ,

(i) the Cesaro limit matrix, say P ∗, is equal to 1
n
J, where

J is a square matrix with all entries equal to 1;

(ii) matrix P ∗ can be expressed in a finite sum of powers
of P as follows

P
∗ =

1

n

n−1
X

r=0

P
r
.

One may be interested in defining the (first) hitting time
matrix H , such that its ijth component, hij , identifies the
expected hitting time of node j, starting from node i and
following Markov chain defined by the Hamiltonian matrix
P . From Lemma 2.2, it is readily seen that

hij = min
0≤r≤n−1

{r| p
(r)
ij > 0} .

Accordingly, we can express the hitting time matrix in terms
of the first n powers of P .

Lemma 3.4. For a Hamiltonian matrix P , the hitting time
matrix can be expressed in terms of the first n powers of P

as follows

H =

n−1
X

r=0

rP
r
. (2)

Surprisingly, irrespective of the Hamiltonian cycle that de-
fines matrix P , we can show that the inverse of correspond-
ing hitting time matrix H can be expressed in sum of finite
powers of P , as well. For this purpose, firstly, we need to
show the following lemma.

Lemma 3.5. Consider the Hamiltonian matrix P and its
corresponding hitting time matrix H. We have

(i) HP = H − J + nI ;

(ii) HJ = n(n−1)
2

J .

Proposition 3.6. Consider the Hamiltonian matrix P

and its corresponding hitting time matrix H. The inverse
of matrix H exists and can be expressed as a finite sum of
powers of matrix P as follows:

H
−1 = −

n2 − n − 2

n2(n − 1)
I +

n2 − n + 2

n2(n − 1)
P +

2

n2(n − 1)

n−1
X

r=2

P
r
.

(3)
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4. MATRICES ASSOCIATED WITH MARKOV
CHAINS

In this section, we, mainly, want to derive explicit formula-
tion for classical matrices in Markov decision processes in-
duced by Hamiltonian matrices. At the outset, we recall
such matrices from [5, Appendix A]. It must be noted that
following definitions hold not only for Hamiltonian matrices,
but also for any probability transition matrix P .

The fundamental matrix is denoted by G and defined as
follows

F := (I − P + P
∗)−1

, (4)

where, P is a probability transition matrix and P ∗ is its Ce-
saro limit matrix. Accordingly, we can define the deviation
matrix through

D := F − P
∗
. (5)

The main properties of these matrices asserted in the fol-
lowing theorem (e.g., see [5, Appendix A]):

Theorem 4.1. If P is a probability transition matrix with
Cesaro limit matrix P ∗, then it is well-known that: (i) P ∗2 =
P ∗; (ii) PP ∗ = P ∗P = P ∗; (iii) (P−P ∗)k = P k − P ∗ for k =
1, 2, . . .; (iv) FP ∗ = P ∗F = P ∗; (v) DP ∗ = P ∗D = 0.

Based on mentioned definitions and notations, we want to
know if we can express the fundamental matrix, as well as,
the deviation matrix induced by a Hamiltonian matrix P as
a finite sum of powers of P .

Proposition 4.2. For a Hamiltonian matrix P , the cor-
responding fundamental matrix F and deviation matrix D,
can be expressed as follows:

F =
n−1
X

r=0

n + 1 − 2r

2n
P

r ; (6)

D =
n−1
X

r=0

n − 1 − 2r

2n
P

r
. (7)

Corollary 4.3. If P is a Hamiltonian matrix, then the
ijth component of its corresponding fundamental matrix F

is equal to

n + 1 − 2hij

2n
. (8)

Remark 4.4. Borkar et. al. [1] exploited the optional
sampling theorem to develop explicit formulae for entries of a
fundamental matrix F induced by a doubly stochastic matrix2

P . More precisely, they expressed each entry of F in terms
of expected hitting times. As each Hamiltonian matrix is
also a doubly stochastic matrix, naturally, (8) coincides with
results in [1].

2 A matrix is called doubly stochastic, if its entries are non-
negative, as well as, all rows and columns sum up to 1.

Corollary 4.5. For a given Hamiltonian matrix, the pow-
ers of corresponding fundamental matrix as well as deviation
matrix can be expressed as a sum of the first n powers of ma-
trix P , that is,

F
k =

n−1
X

r=0

f
k
r P

r for k = 1, 2, . . . (9)

D
k =

n−1
X

r=0

d
k
rP

r for k = 1, 2, . . . , (10)

where, fk
r and dk

r are real coefficients.

Now, one may be interested in finding coefficients fk
r and

dk
r . Obviously, from Proposition 4.2, we know that,

f
1
r =

n + 1 − 2r

2n
; d

1
r =

n − 1 − 2r

2n
,

for r = 0, 1, . . . , n − 1. Hence, if we can find a recursive
formulation for them, we will be able to calculate them,
directly.

Proposition 4.6. For a given Hamiltonian matrix P and
its corresponding fundamental matrix, the following hold for
k = 1, 2, . . .:

(i)

n−1
X

r=0

f
k
r = 1 ,

(ii)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

f
k+1
0 = f

k
0 +

1

n

n−1
X

s=1

sf
k
s −

n − 1

2n

f
k+1
r = f

k+1
0 +

r
X

s=1

f
k
s −

r

n
for r = 1, 2, . . . , n − 1

.

In order to derive analogous recursive formula for coefficients
dk

r , we first find a linear relationship between coefficients dk
r

and fk
r , and then, exploit Proposition 4.6.

Lemma 4.7. For a given Hamiltonian matrix P and the
corresponding fundamental and deviation matrices, we have

d
k
r = f

k
r −

1

n
for r = 0, 1, . . . , n − 1 , k = 1, 2, . . . .

Corollary 4.8. For a given Hamiltonian matrix P and
the corresponding deviation matrix, the following hold for
k = 1, 2, . . .:

(i)
Pn−1

r=0 dk
r = 0 ,

(ii)

8

>

>

>

>

>

<

>

>

>

>

>

:

d
k+1
0 = d

k
0 +

1

n

n−1
X

s=0

sd
k
s

d
k+1
r = d

k+1
0 +

r
X

s=1

d
k
s for r = 1, 2, . . . , n − 1

.
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Another matrix that plays an essential role in the theory
of discounted Markov decision processes we shall name the
β-resolvent matrix. More precisely, if P is a probability
transition matrix and β ∈ (0, 1) is a discount factor, the
β-resolvent matrix, R(β), is defined as follows:

R(β) := (I − βP )−1
. (11)

Analogous to the fundamental and deviation matrices, for
the special case of Hamiltonian matrix P , we can derive a
finite sum of powers of matrix P for R(β), as expressed in
the following proposition.

Proposition 4.9. If P is a Hamiltonian matrix, then for
any value of discount factor β ∈ (0, 1), we will have

R(β) =
1

1 − βn

n−1
X

r=0

β
r
P

r
.

Corollary 4.10. If P is a Hamiltonian matrix, the ijth

component of its β-resolvent matrix R(β) is equal to

βhij

1 − βn
.

5. UNDIRECTED GRAPHS
A large subclass of all graphs is the class of undirected graphs.
Apparently, if a given undirected graph G is Hamiltonian,
then corresponding to each tour τ : “ℓ0 → ℓ1 → · · · →
ℓn−1 → ℓ0” in G, its reverse, τR : “ℓ0 → ℓn−1 → · · · →
ℓ1 → ℓ0”, also exists in G. Accordingly, if the Hamiltonian
matrix P is corresponding to tour τ , then its transpose, P T

is corresponding to the reverse tour τR. Hence, the following
result can be obtained, immediately. It should be noted that
in this section, our results concern undirected graphs, unless
otherwise is mentioned.

Lemma 5.1. For a Hamiltonian matrix P , PP T = I.

Corollary 5.2. For a Hamiltonian matrix P ,

(P T )r = P
n−r for r = 0, 1, . . . , n − 1 .

We can also derive the following result for hitting time ma-
trix in an undirected graph.

Lemma 5.3. Consider the Hamiltonian matrix P corre-
sponding to tour τ and its corresponding hitting time matrix
H. If HR denotes the hitting time matrix associated with
the reverse tour τR, we will have

(i) H
R =

n−1
X

r=1

(n − r)P r ;

(ii) H + H
R = n(J − I) .

Consider the Hamiltonian matrix P and its corresponding
β-resolvent matrix R(β). Let RR(β) denote the β-resolvent
matrix associated with the reverse tour corresponding to P ,
that is, RR(β) = (I−βP T )−1. The following proposition ex-
presses an interesting relationship between them. However,
we need the following lemma to prove it, in advance.

Lemma 5.4. For a Hamiltonian matrix P , the ijth com-
ponent of its corresponding matrix RR(β) is equal to

r
R
ij (β) =

βhji

1 − βn
.

Proposition 5.5. If P is a Hamiltonian matrix corre-
sponding to a tour τ , then for any value of discount factor
β ∈ (0, 1), we will have

R(β)RR(β) =
1

1 − β2

“

R(β) + R
R(β) − I

”

. (12)

6. CONCLUSION
In this paper, we presented algebraic properties of a partic-
ular class of probability transition matrices, namely, Hamil-
tonian matrices. In this class, each matrix corresponds to
a Hamiltonian cycle in a given graph G on n nodes. We
showed that such matrices are periodic with periodicity equal
to n. We considered several famous matrices in the context
of Markov chains and derive them as a convex combination
of the first n powers of corresponding Hamiltonian matrix
P .
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