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ABSTRACT

The modeling, analysis and performance evaluation of large-
scale systems are difficult tasks. Due to the size and complex-
ity of the considered systems, an approach typically followed
by engineers consists in performing simulations of systems
models to obtain statistical estimations of quantitative prop-
erties. Similarly, a technique used by computer scientists
working on quantitative analysis is Statistical Model Check-
ing (SMC), where rigorous mathematical languages (typi-
cally logics) are used to express systems properties of interest.
Such properties can then be automatically estimated by tools
performing simulations of the model at hand. These property
specifications languages, often not popular among engineers,
provide a formal, compact and elegant way to express systems
properties without needing to hard-code them in the model
definition. This paper presents MultiVeStA, a statistical anal-
ysis tool which can be easily integrated with existing discrete
event simulators, enriching them with efficient distributed
statistical analysis and SMC capabilities.

Categories and Subject Descriptors

D.2.4 [Software/Program Verification|: Model checking,
Statistical methods; 1.6.8 [Types of Simulation]: Discrete
event; D.3.2 [Language Classifications]: Constraint and
logic languages

Keywords
Discrete event simulation, quantitative analysis, statistical
analysis, statistical model checking.

1. INTRODUCTION

Many complex systems can be modeled as sets of interacting
components. When dealing with large numbers of compo-
nents, an analytical approach to their study may be too
complex to handle. In these cases, a statistical approach
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based on simulations can be a viable solution to cope with
the large-scale nature of the considered systems.

A possible way to model the systems dynamics is via dis-
crete event simulations (DESs), where the system evolves in
discrete steps according to the generation (and execution)
of events, which model internal actions of components as
well as interactions among them. In a DES, events occur
at discrete points in time, and the time-flow is discretized
in jumps among their occurrence, simplifying the modeling
of the evolution of the systems. Intuitively, this abstraction
is justified by the fact that not all the time instants are
interesting, i.e. if there are neither events nor changes in the
state. The popularity of DES is witnessed by the wide set of
existing DES-based tools. We cite among others: ns-3 [27],
OMNeT++ [35], PeerSim [22], DEUS [4], Alchemist [24].

Exact quantitative systems analysis can be done via Proba-
bilistic Model Checking [9]. With such a technique, roughly,
systems are abstracted in mathematically rigorous models,
while systems properties are expressed in rigorous formalisms
(typically logics), and are evaluated by exhaustively exploring
models state-spaces. Although being powerful, this approach
suffers the well known state-space explosion problem, i.e. it
does not scale well when the system complexity grows.

A possible solution is the use of statistical analysis technique
like Statistical Model Checking (SMC) |31], where systems
properties are statistically estimated by resorting to simula-
tions. The main advantage of SMC is that it only requires to
simulate models, rather than generating theirs state-spaces.
This in turn implies that SMC algorithms can be easily dis-
tributed, by distributing the simulations. Conversely, the
main drawback is that it does not provide exact results, but
only statistical guarantees on the evaluated properties.

Contribution. In this paper we present MultiVeStA, a
lightweight Java tool which allows to enrich existing discrete
event simulators with distributed statistical analysis capabili-
ties. The tool extends VeStA [1}32] and PVeStA [2]. To sum
up, MultiVeStA offers: (1) a clean way to integrate existing
discrete event simulators; (2) a language (MultiQuaTEx) to
compactly express systems properties; (3) the estimation
of the expected values of MultiQuaTEx expressions wrt n
independent simulations, with n large enough to respect a
user-specified confidence interval; (4) the plot of the results
in a minimal GUI, and the generation of gnuplot input files;
(5) a client-server architecture to distribute simulations.



We validate our proposal by discussing the integration of
MultiVeStA with DEUS, and prove the usefulness of the
integration by analyzing a model of a cloud computing system.
The scenario, which will be used throughout the paper to
ease presentation, regards the sharing of computing resources
among groups of volunteers autonomous entities. One of the
challenges raised in the design of such kind of systems is
the distribution of the tasks requests among the participant
nodes. In a recent paper [30] we proposed an approach
based on Ant Colony Optimization (ACO) |16] to solve the
task distribution problem, where a colored pheromone field
is used to create a distributed guide for the search of a
node willing to execute a task. We distinguish among two
classes of tasks, namely large and small, characterizing tasks
with high resources requirements and low Quality of Service
(QoS) restrictions, and vice-versa, respectively. Interesting
observations for such systems are the number of tasks that
the system is able to satisfy respecting the associated QoS.

Synopsis. {2 outlines the main characteristics of VeStA and
PVeStA. Then §3]and §4] discuss the main improvements in-
troduced in MultiVeStA: §3]focuses on the extended property
specification language, while §4] focuses on the integration of
new simulators and on the improved presentation of results.
validates our tool wrt DEUS, discusses some related
works, while §7]reports concluding remarks and future works.

2. VeStA, PVeStA and QuaTEx

VeStA [32] is a statistical model checker and quantitative
analyzer for probabilistic systems. The tool performs a statis-
tical evaluation (Monte Carlo based) of properties expressed
as quantitative temporal expressions (QuaTEx) [1], allowing
to query about expected values of observations performed on
simulations of a probabilistic model. Some example queries
that have been encoded are: “What is the expected probabil-
ity that at least n robots reach their goal?” [14], or “What is
the expected fraction of clients that successfully connect to
a server under denial of service attack?” |17].

The tool also supports the transient fragment of probabilistic
computation tree logic (PCTL) [19] and continuous stochastic
logic (CSL) [8,/10], for which SMC algorithms based on the
invocation of a series of inter-dependent statistical hypothesis
testing are implemented [31]. However, in this work we focus
on QuaTEx as it generalizes the two logics [1].

Coming to the model specification languages (and their un-
derlying simulation engines), the tool supports a language
to express discrete- and continuous-time Markov chains, and
PMaude, an executable algebraic specification language to
describe models as probabilistic rewrite theories [1].

The analysis algorithms of VeStA are independent of the
model specification languages: it is only assumed that DES
can be performed on the model. Thus, in principle, as
discussed in [32] VeStA could be plugged to any discrete
event simulator offering: a method to initialize a simulation,
a method to compute one step of simulation, and a method
that duplicates and returns the current state. By doing this,
VeStA would enrich the underlying simulator with a property
specification language (QuaTEx), and would automate the
analysis tasks by means of statistical analysis and SMC
capabilities. Unfortunately, it is not possible to integrate new

tO0p() = if { s.rval(0) == 1.0 } then s.rval(6)
else #t0p () fi;
eval E[ t0p() 1 ;

Listing 1: The QuaTEx expression Q;

simulators in VeStA, as it does not offer this feature, and thus
it would be necessary to study and modify its non publicly
available source code. One of the extensions proposed in this
paper is a clean way to integrate new simulators.

VeStA estimates the expected value of QuaTEx expressions
wrt two user-defined parameters: « and ¢§. Specifically,
estimations are computed as the mean value of n samples
(obtained from n simulations), with n large enough to grant
that the size of the (1 —a)*100% Confidence Interval (CI) is
bounded by §. The CI, computed using the Student’s t-test,
has center in T and radius t,,_1,a/21/6/n, where t,,_1 o/2
is computed with the Student’s t-distribution, and & is the
sample variance [33]. The ¢ defines a stopping criteria to the
samples generation, i.e. when the CI radius is less or equal to
6/2. Thus, with probability (1 — «), the sample values are in
the provided CI, or, in other words, if a QuaTEx expression
is estimated as T, then, with probability (1 — «), its actual
expected value belongs to the interval [T — /2,7 + §/2].

Before defining a QuaTEx expression, it is necessary to spec-
ify the state characteristics of interest to be observed. This
model-specific step is necessary to “connect” QuaTEx with
the simulated model. The state observations have to be
offered via the rval(i) predicate which returns a number
in the real domain (i.e. it is a real-typed predicate) for each
observation i. For example, for the considered cloud scenario,
s.rval(0) is defined such that it reduces to 1.0 if the simula-
tion is completed in the current simulation state (denoted by
the keyword s), and 0.0 otherwise. While s.rval(1) returns
the current simulated time, s.rval(2) counts the number of
performed steps of simulation, s.rval(5) corresponds to the
average time spent by tasks in queues, s.rval(6) returns
the number of running or executed tasks, and s.rval(11),
s.rval(12), s.rval(13) correspond, respectively, to the ra-
tio of successfully executed small, large and all tasks.

A detailed description of QuaTEx and of the procedure to
estimate its expressions is given in [1]. This section discusses
the syntax of the language with the help of the expression
Q1 of Listing [T} which, intuitively, reads as: “compute the
expected number of tasks executed in a simulation”.

Listing [2] presents QuaTEx’s syntax. A QuaTEx expression
(line 1) consists of a set of parameterized recursive temporal
operators “DS” (Q1 has just one named t0p()), followed by

Q = DS eval E[PEzp];
DS = set of Defn
Defn = N(z1,...,zm) = PExp;
SEzp = c | rval(i) | F(SEzp1,...,SExpy) | x;
PEzp = SExp | #N (SExp,,...,SExp,) |

if SExp then PFEzp, else PExp, fi

Listing 2: QuaTEx syntax

N =

DU W N



—

an eval clause “eval E[PExpl”. A definition of a temporal
operator “Defn” (line 3) consists of the name of the operator
(e.g. t0p()) and of a path expression representing its body.

Line 4 specifies state expressions “SExp”, i.e. real-typed ex-
pressions evaluated on a simulation state. Where an SEzxp is
either a real number, an invocation of rval, an arithmetic or
boolean expression involving state expressions, or a variable.

Finally, “PFEzp” (lines 5-6) is a path expression, i.e. a real-
typed predicate possibly evaluated after performing steps of
simulation. A PFExp is either a state expression, a temporal
operator preceded by the symbol #, or an if_then_else
statement. The if_then_else statement behaves as ex-
pected, instead #N(SExzp,,...,SEzp,) means: “perform a
step of simulation, and evaluate N(SEzp,,...,SEzp,) in
the obtained state”. In fact, the operator # (named “next”),
triggers the execution of a step of simulation (in standard
terminology [9], it is a primitive one-step temporal operator).
Noteworthy, if it is used in recursive temporal operator def-
initions (like in Q1), # allows to query properties of states
obtained after an unspecified number of steps of simulation.

It is assumed that expressions are properly typed: the guards
of if_then_else statements must be booleans, while the
PEzp appearing in eval E[PFEzp] must be real. Moreover,
the semantics is given for a subset of the QuaTEx expressions
named bounded expressions, where the value of any PEzp can
be determined from a finite number of steps of simulation.

Q@1 is now discussed in detail. VeStA associates s to the initial
state of the simulation, and then evaluates the guard of the
if_then_else statement (s.rval(0) == 1.0): “is rval(0)
equal to 1.0 in s?”, i.e. “is s a final state of the simulation?”.
If the guard is evaluated to true, then s.rval(6) is returned,
i.e. the number of executed tasks. Otherwise the expression is
evaluated as #t0p(): VeStA orders the simulator to advance
of one step, updates s, and then recursively evaluates t0Op.
This is done until a state where rval(0) is evaluated to 1.0
is reached. The evaluation is repeated for several simulations,
until the mean T of the obtained results satisfies the user-
specified confidence interval, and T is returned as result.
Noteworthy, suppose to have defined another rval(j), such
that it evaluates to 1.0 in case a certain event e happens
in a simulation, and to 0.0 otherwise. Then, by replacing
rval(6) with rval(y), Q1 would estimate the probability of
e in a simulation. Indeed, rval(j) can be thought of as a
random variable following a Bernoulli distribution, and thus
its expected value represents the probability of e.

Another interesting expression is Q2 of Listing[3] which reads:
compute the expected value of the mean time spent in queues
by tasks, imposing 30 as mazimum simulated time. Q2 shows
that temporal operators can have parameters (variables).
Variables have to be bounded, i.e. if they are in the right-

U(p1,¢2) = if { ¢2 } then 1
else if { ¢1 } then #U (¢p1,¢2)
else 0 fi fi;

t0pB(z) = if { s.rval(l) >= z } then s.rval(5)
else #t0pB({z}) fi;

eval E[ t0p(30.0) 1]

Listing 3: The QuaTEx expression (2

Listing 4: The Until temporal operator

hand-side of a Defn (i.e. after =), then they also have to be
in its left-hand-side, so that a value can be assigned to them.

To ease presentation, only “simple” expressions like ()1 or
Q2 are considered in this paper. However, it is worth to
remark that VeStA allows to express also more interesting
properties, not easily definable without resorting to a prop-
erty specification language. Some interesting examples are
discussed in [1]. It is possible e.g. to encode well-known
temporal operators [9], like the until one ¢p1U 2 defined in
Listing with ¢; being boolean SEzp. In a simulation, such
operator evaluates to 1 if ¢2 evaluates to true in a state s,
and ¢ evaluates to true in all states before s. Consider-
ing for example a scenario where a message has to be sent,
and assuming that s.rval(20) evaluates to true if a second
copy of the message is sent in s, while s.rval(21) evaluates
to true if the message has been received. Then, with eval
E[U(—s.rval(20),s.rval(21))], the probability that the
message is received without resending it is queried. Other
examples shown in |1 regard expressions counting the occur-
rences of determined events, or more involved ones like the
“probability that if a message is sent in a given state, then it
is received within 100 time units.”.

In principle, it would be possible to distribute the simulations
performed by VeStA, obtaining better performance. This
feature is offered by the recently proposed PVeStA [2]. The
two tools have been exploited to analyze scenarios ranging
from self-assembling robotic scenarios to service stability
protocols in cloud systems (e.g. [3,/14,/17]).

3. MultiQuaTEx

QuaTEx allows to query only a measure at a time (e.g.
rval(6) in Q1, or rval(5) in Q2), while one may be inter-
ested in more. For example, it may be interesting to study
both the expected number of tasks executed in a simulation
(@1), and the average time spent by them in queues (Q2).
Even if in principle it would be possible to evaluate the two
properties by performing different observations on the same
simulations, it is necessary to define two expressions (i.e.
@1 and Q-2), and to separately analyze them via distinct
simulation sets. To overcome this limitation we propose Mul-
tiQuaTEx, which extends QuaTEx allowing to query more
measures at a time via multiple observations on the same
simulations. This improves both the usability of the language,
and the performance when evaluating several expressions.

3.1 Defining parametric multi-expressions

The proposed extension is minimal: as depicted in Listing [5]
the only difference wrt QuaTEx is that a multi-expression
“MQ@” (i.e. a MultiQuaTEx expression) is composed by a
set of temporal operator definitions followed by a list of
eval clauses “E'L”, rather than just one. Intuitively, a multi-
expression with n eval clauses corresponds to n QuaTEx ex-
pressions sharing the same temporal operators and having

N =
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MQ@Q ::= DS EL
::= list of eval E[PExpl;
DS, Defn, SExp and PExp as in Listing [J]

Listing 5: MultiQuaTEx syntax

one of the eval clauses. However, the multi-expression is
more compact and is evaluated performing less simulations:
just the maximal number of simulations required individually
by the corresponding QuaTEx expressions.

Listing [f] provides a simple multi-expression M @1, having
two temporal operators (tOp() and tOpB(z)), and two eval
clauses. It is not difficult to see that M@ corresponds to
the two previously presented @1 and Q2. Noteworthy, M Q1
evaluates the expected value of rval(6) in final states, and
that of rval(5) in states obtained after 30 units of simu-
lated time. Thus, the observations rval(6) and rval(5) are
done in different steps of the simulations, however this does
not create inconsistencies, because by evaluating tOp() and
t0pB(x) they either return a real-typed value and terminate,
or require to perform one step of simulation.

Listingm provides another interesting multi-expression (M Q2).

Recalling that s.rval(2) returns the number of steps of
simulation performed to reach state s, tOpC(z) causes the
execution of new steps of simulation until reaching the value
specified by x, and then evaluates rval(5). Thus, the eval
clauses (lines 3-5) allow to obtain the expected values of
rval(5) at the varying of the number of steps (i.e. at steps
5, 15, 25, 35, 45 and 55).

We believe that properties like M Q2 are quite useful, and
we have thus introduced some syntactic sugar to facilitate
their writing. In particular, we introduced the concept of
parametric multi-expression (or parametric expression in
short), i.e. a macro that allows to concisely write multi-
expressions evaluated at the varying of a parameter. List-
ing [8] depicts a parametric expression corresponding to M Q2.
In line 3 the new keyword “parametric” is used: provided
a path expression (t0pC(z)), a variable (z) and a range
of values specified as min (5.0), increment (10.0) and max
(55.0), the keyword is unrolled in the corresponding list of
eval clauses (in this case those of Listing[7)). Following the
spirit of MultiQuaTEx, one may be interested in analyzing
more path expressions at the varying of a parameter. For
this reason, the first argument of parametric is actually a
list of path expressions (each enclosed in E[-] to ease pars-
ing). Thus, it is possible to write expressions like the one
sketched in Lis‘cing@7 where parametric is unrolled by instan-
tiating each path expression: i.e. eval E[tOp1(m)] ; eval
E[t0p2(m)] ; eval E[tOp3(m)] ; ... eval E[tOp1(M)] ;
eval E[t0p2(M)] ; eval E[tOp3(M)].

t0pC(x) = if { s.rval(2) <= z } then s.rval(5h)
else #t0pC({z}) fi;

; eval E[ t0pC(15.0) 1 ;

; eval E[ t0pC(35.0) 1 ;

; eval E[ t0pC(55.0) 1 ;

eval E[ t0pC( 5.0) 1]
eval E[ t0pC(25.0) 1
eval E[ t0pC(45.0) 1]

Listing 7: The MultiQuaTEx expression M Q2

t0pC(x) = if { s.rval(2) <= z } then s.rval(5)
else #t0pC({z}) fi;
eval parametric(E[ t0pC(z) 1,2,5.0,10.0,55.0) ;

t0p() = if { s.rval(0) == 1.0 } then s.rval(6)

else #t0p () fi;
} then s.rval(5)

else #t0pB({z}) fi;
; eval E[ t0pB(30.0) 1 ;

t0pB(z) = if { s.rval(l) >= x

eval E[ t0p() 1

Listing 8: M(@2 as a parametric expression

Noteworthy, the eval clauses of a multi-expression may re-
gard values of different orders of magnitude. For this reason,
as discussed in Section [f:2] the user can specify a list of ds
other than just one. If the list is provided, then, respectively,
one § per eval clause for multi-expressions, and one per path
expression appearing in parametric for parametric multi-
expressions are required. If just one ¢ is provided, than it is
considered for all the eval clauses.

MultiQuaTEx provides a further extension to QuaTEx: the
last operator. This extension comes from two observations:
the first one is that, typically, discrete event simulators have
built-in mechanisms to specify the maximal “length” of a
simulation, i.e. by setting a maximal number of steps or a
maximal simulated time. The second observation is related
to the frequent interest in properties regarding final states of
the simulations only. In these cases it should be possible to
let MultiVeStA to ask to compute whole simulations rather
than just single steps. In this way the overhead introduced by
these extra computations would be avoided (although in our
experiments we noticed quite small overheads). For this rea-
son, MultiVeStA allows the user to specify how to interpret
the # operator by means of a newly introduced flag, whose
value can be either ONESTEP or WHOLESIMULATION. In
the case the user specifies WHOLESIMULATION, then Mul-
tiVeStA will ask the simulator to compute a whole simulation
rather than just a step. In our experience, this efficiency
trick should be used with great care, as it contrasts with
the spirit of multi-expressions, and furthermore may lead to
unintended interpretations of MultiQuaTEx expressions.

3.2 Evaluating parametric multi-expressions
MultiQuaTEx’s extensions have to be reflected in the proce-
dure to evaluate (multi-)expressions. Listing [10|shows the
pseudo-code of a schematic version of the new procedure,
where, to ease presentation, the distribution of simulations,
the last operator, and lists of Js are omitted.

The procedure evalOnceME (lines 16-33) evaluates the results
(one per eval clause) of a multi-expression in a simulation.

t0p1(x) = ... ; tOp2(x) = ... ; tOp3(x) = ... ;
eval parametric(E[t0pl(z)],E[t0p2(x)],E[t0p3(x)],z,m,
increment ,M) ;

Listing 6: The MultiQuaTEx expression MQ:

Listing 9: A sample parametric multi-expression

Uk W N

W N =
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double [] evalME(mq,«,d)
//initialization phase

evals := array of eval clauses of (unrolled) mq;
nEvals := size of evals;

CIsReached := array of nEvals false;

results := array of nEvals empty arrays of double;

//iterative invocation of evalOnceME
while(at least a false in CIsReached)
initializeSimulatorWithNewRandomSeed () ;
s := obtain initial state of simulation;
resIteration := evalOnceME(s,DS(mq),evals,nEvals,
CIsReached);
results := updateResults(results,resIteration);
CIsReached := checkCIs(results,CIsReached);
return computeMeansOfEachEval (results);

double [] evalOnceME(s, t0Ops,evals,nEvals,CIsReached)
moreStepsRequired := array of nEvals true;
resIteration := array of nEvals 0.0;
//perform the simulation step-by-step
while(at least a true in moreStepsRequired)
foreach(eval in evals)
//evals to be considered in this simulation
if (CIsReached[eval]l] == false)
//evaluation not completed yet
if (moreStepsRequired[eval]l == true)
newEval := compute(s,eval,tOps);
//evaluation completed
if (newEval is a real number)

moreStepsRequired[eval]l == false;

resIteration[eval]l = newEval;
else

eval := newEval;

return reslteration;

Listing 10: Evaluation of a multi-expression

These values are exploited by evalME (lines 1-14), the main
procedure, which iteratively invokes evalOnceME to perform
new simulations. At every iteration, evalME updates the
means of the obtained results (one mean per eval clause),
and terminates returning them to the user if the CI has been

reached for every eval clause, or performs another iteration.

Note that each eval clause may require a different number
of simulations to reach the CI. Once the CI of an eval clause
has been reached, it is ignored by evalOnceME.

The main procedure takes as parameters the multi-expression
mq, and the specification of the required CI (line 1), and is
composed by an initialization phase (lines 3-6) followed by
the iterative invocation of evalOnceME (lines 8-13). In the
initialization phase, the eval clauses of (the unrolled version
of) mq are stored in the array evals, and then the arrays
CIsReached and results, having the same size of evals, are
created. The former is an array of booleans initialized to
false (line 5) used to keep track of the eval clauses for which
the required CI has been reached, and it is thus also used in
the halting condition of the iterative phase (i.e. when it does
not contain any false). results (line 6) is instead an array
of arrays of double: each position of results regards one
of the eval clauses, and in particular stores all the results
obtained in the performed simulations for that eval clause.

In the iterative phase, the simulator is initialized with a
new random seed to perform a new simulation (lines 9-10).
Then, by invoking evalOnceME, the simulation is triggered,
obtaining a real-typed evaluation for each eval clause. Those
results are stored in the array of double resIteration (line
11). In line 12, results is updated with the obtained values,

and finally in line 13 it is checked if any of the Cls has been
satisfied (updating accordingly checkCIs). The iterations
terminate once the Cls of every eval clause are satisfied (line
8), and an array containing the means of the results of each
eval clause (i.e. their expected value) is returned.

The procedure evalOnceME takes as parameters the initial
state of the simulation (s), the temporal operator definitions
of mq, the eval clauses (and their number) of mq, and CIs-
Reached. The latter is used to ignore the eval clauses for
which the required CI has been already reached. Line 17 de-
fines an array of booleans with size nEvals initialized to true:
as discussed, each eval clause may require a different num-
ber of steps of simulations to be evaluated, due to recursive
temporal operators. This array is used to keep trace of those
clauses whose evaluation has not terminated yet. Line 18 de-
fines the array resIteration which will store the evaluations
of the evals. Then, in lines 20-32 the step-by-step simula-
tion is iteratively performed until all the evals have been
evaluated (see line 20), when the results are returned (line
33). At each step of the simulation, only the eval clauses
that have not reached the desired CI in a previous simulation
(line 23), and whose evaluation has not been completed yet
in this simulation (line 25) are considered. In particular, in
line 26 each of the selected clauses is evaluated in the current
state: if by evaluating one of them a real number is obtained,
then its evaluation has been completed for this simulation
(lines 28-30), otherwise the eval clause is updated with the
newly obtained path expression (line 32), which will be in
turn evaluated after another step of simulation.

4. MULTIVESTA

MultiVeStA comes as an extension of VeStA (and PVeStA),
from which it inherits the license of Department of Computer
Science at the University of Illinois at Urbana-Champaign,
(©2013 The Board of Trustees of the University of Illinois.
Section [3] discussed how MultiQuaTEx extends QuaTEx by
providing better usability and performance. MultiVeStA fur-
ther extends the two tools by allowing to integrate existing
discrete event simulators in addition to the originally sup-
ported ones, and by improving the presentation of results.

4.1 Integrating a simulator and its models

MultiVeStA can coordinate and analyze the simulations per-
formed by discrete event simulators. Essentially, the require-
ments are: (1) the support for the step-by-step simulations,
and (2) the ability to inspect the states of the simulations to
obtain real-typed observations. The downloadable version
of MultiVeStA [23] supports some simulators, namely Al-
chemist [24], DEUS [4], MISSCEL [11], and the two originally
supported ones [32] (i.e. PMaude and a CTMC engine).

The integration of Java-based simulators is straightforward,
as it only requires to extend one Java class. The procedure
for non Java-based simulators is the same, but in addition it
is necessary to apply wrapping-like approaches to overcome
the barriers introduced by the use of different programming
languages. Noteworthy, the non Java-based PMaude has been
integrated exploiting ExpectJ [18|, a Java library allowing to
interact with external processes. Moreover, we are currently
integrating the swarm robotic simulator ARGoS [6] (coming
as a C++ library), exploiting the Java Native Interface |21],
which enriches Java with support for native code (i.e. C/C++).



Few steps are required to allow a new user to exploit Multi-
VeStA. Basically, it is necessary to extend the tool to support
the new simulator engine, and then, for each model, it is
needed to specify the relevant states observations. The steps
that must be performed are sketched in the flow-chart of
Figure [1 The dark ones are simulation-specific steps, and
thus have to be tackled only once for each newly supported
simulator. The bright ones instead are model-specific steps,
i.e. they have to be tackled for every newly defined model.
The blocks “Extend NewState” and “Define the model-specific
state observations” are represented with thicker borders to
stress the fact that their implementations are influenced by
the programming language used to develop the simulator.

4.1.1 Extending support for a new simulator

In order to support a new simulator it is necessary to follow
the dark blocks of Figure [l First of all, MultiVeStA.jar
must be downloaded from MultiVeStA’s website [23|, then
a Java project referencing it must be created. As next step,
the class NewState, the only point of interaction among
MultiVeStA and the simulators, must be extended. Section
exemplifies the class DeusState integrating the Java-based
simulator DEUS [4]. Essentially, three methods invoked by
MultiVeStA have to be overridden (plus an optional one):

e setSimulatorForNewSimulation(int randomSeed), in-
voked to (re)set the underlying simulator before per-
forming a simulation run. The parameter is the seed
that has to be used to initialize pseudo-random number
generator of the simulator;

e performOneStepOfSimulation(), invoked to order the
simulator to perform one step of simulation;

e rval(int observation), invoked to obtain observa-
tions on the current state of the simulation. This
method can be refined depending on the model at hand
(see Section , however observations common to
any model can be defined here once (e.g. the current
simulation time);

e performWholeSimualtion(), an optional method in-
voked instead of performOneStepOfSimulation() if
the user specifies the option WHOLESIMULATION,
as discussed in Section 31l This method is invoked to
order the simulator to perform a whole simulation.

Clearly, in order to implement these methods, the created
project needs to have visibility of the simulator. As a general
guideline, if the simulator is Java-based then the project
should refer to a jar containing the simulator kernel classes,
while the class extending NewState should have an instance
of the simulator engine as a private field. Such a case is
exemplified in Section [5] If the simulator comes as a black-
box external process, then it is possible to exploit the ExpectJ
library, which allows to easily interact with external processes.
As mentioned above, PMaude has been integrated following
this approach: the PMaudeState class has as private field
the class provided by ExpectJ to abstract external processes,
while appropriate methods of the library are used to interact
with the stdin and stdout of the PMaude process. A third
option is that the simulator comes as a C/C++ library. In
this case it is possible to exploit the Java Native Interface to

Download MultiVeStA jar

v

~Is your simulator - ho
- already supported? '

Create a new Java project
importing MultiVeStA jar

yes ‘, )
Define the model—gpemflc Extend NewState
state observations

v v

Define the desired Package the project in a
MultiQuaTEx expressions new version of MultiVeStA
+ supporting your simulator

Launch MultiVeStA

Figure 1: Steps necessary to exploit MultiVeStA.

create a Java class wrapping the main class of the simulator,
thus reducing the issue to the case of a Java-based simulator.

Finally, the project can be packaged in a new version of
MultiVeStA supporting the new simulator.

4.1.2 Defining model-specific state observations
Once a simulator is supported, before performing the analysis
tasks it is necessary to refine the rval method defining the
state observations of interest for the model at hand.

As a general guideline, if the simulator is Java-based, then
the IStateEvaluator interface should be implemented. This
simple interface consists of just the method double get-
Val(int observation, NewState state), whose implemen-
tations compute model-specific observations accessing to the
simulator state. When evaluating a MultiQuaTEx property,
it is possible to provide the name of the class of a state evalu-
ator, which is dynamically loaded and offered by the getSta-
teEvaluator () method of NewState. Listing[T1] schematizes
a typical implementation of rval for a Java-based simulator.

If the simulator is not Java-based, then the interface ISta-
teEvaluator may still be similarly instantiated. However it
may happen that the internal state of the simulator can-
not be accessed from Java. In these cases the computation
of the observations should be dealt by the simulator (e.g.
specified in the model definition), and thus rval should just
forward requests to the simulator without requiring any state
evaluator. This is the case of PMaude.

public double rval(int observation) {
switch (observation) {
case 0: return getTime ();
case 1: return getNumber0fSteps();
// other common observations for this simulator
case ...
//model -specific observations
default: return getStateEvaluator ().getVal(
observation, this);

Listing 11: Sample rval for Java-based simulators
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m, f, [osws], [ssp], sd, [se], simulations seeds

Figure 2: MultiVeStA architecture.

4.2 Architecture

Figure |2] adapted from [2], sketches the client-server archi-
tecture that MultiVeStA inherited from PVeStA. A concrete
instance of MultiVeStA consists of a client interacting with
the user and with a set of servers, each in turn interacting
with an instance of the same simulator. The client coordi-
nates the servers by sending them the parameters, collecting
the results, computing statistical measures, and terminating
the evaluation when the required accuracy is met. Different
outputs are provided to the user by the client, depending on
the MultiQuaTEx expression: the required expected values
for multi-expressions, or plots visualized in a minimal GUI
(realized using the JMathPlot library [20]) and gnuplot input
files for parametric multi-expressions.

An user provides several parameters to the client: the file
name of the model definition (m), the MultiQuaTEx expres-
sion to be evaluated (f), the optional flag WHOLESIMULA-
TION (osws), the a and § specifying the CI, the optional
list of ds (ds), the IP network addresses of the servers (1),
and the root seed (sots). The latter is used to initialize a
pseudo-random number generator, which in turn creates the
seeds for the simulations performed by the servers. A simula-
tor may require additional parameters other than the model
specification: if needed, those can be provided using the ssp
option. Furthermore, the user provides the name of the Java
class extending NewState (sd), and an optional state evalu-
ator (se) to compute the model-specific state observations.
As discussed, MultiQuaTEx expressions are iteratively esti-
mated by performing blocks of simulations until the desired
CI is reached. The number of simulations performed at each
iteration can be specified via “simulations blocks size” (bs).
Finally, it is possible to specify a stopping criteria through
the maximum number of simulation runs to be performed
(ms). This is indeed a further extension introduced in Multi-
VeStA. In this case, due to the interruption of the evaluation,
properties may not have been computed with the required
CI. Thus, other than the result of the query, also the sizes of
the computed confidence intervals are returned to the user.

The client and servers interact as follows: each server receives
m, the MultiQuaTEx property f’ obtained by preprocessing
f, sd, and the optional parameters osws, ssp and se. Fur-
thermore, servers receive the number of simulations to be

vs® | MultiVeStA Server ( Simulator
S L J

Slists | MultiVeStA Server & Simulator

private Engine deusInstance;
private AutomatorParser deusAP;

public DeusState (ParametersForState params){
super (params) ;
deusAP = new AutomatorParser (getModelName ());

}

public void setSimulatorForNewSimulation(int seed) {
deusAP.getEngine () .setSeedAndResetSimulator (seed);
deusInstance = deusAP.getEngine();

}

public void performOneStepOfSimulation (){
deusInstance.runStep () ;

}

public void performWholeSimulation (){
deusInstance.run();

}

public double rval(int which) {
switch (which) {

case 0: if(simulationCompleted()) return 1.0;
else return 0.0;

case 1: return getTime();

case 2: return getNumberOfSteps();

case 3: return deusInstance.getNodes().size();

case 4: return deusInstance.getEvents().size();
default: return getStateEvaluator().getVal(
observation, this);
}
}

private boolean simulationCompleted (){
return getTime() >= deusInstance.getMaxTime() ||
deusInstance.getEvents () .size() == 0;

}

public double getTime () {
return deusInstance.getVirtualTime();

}

public Engine getDeusInstance() {
return deusInstance;

}

Listing 12: DeusState class extending NewState

performed in an iteration ([bs/number of servers]), and the
list of simulations’ seeds. Then, for each simulation, a server
interacts with the simulator to initialize it and evaluate f’.

5. VALIDATION

In order to demonstrate the feasibility and benefits of the
integration of existing discrete event simulators with Mul-
tiVeStA, this section discusses the integration of DEUS [4],
and shows some examples of the analysis done for the already
mentioned volunteer cloud computing scenario. DEUS [4] is
a general-purpose, open-source, Java-based simulation envi-
ronment for the analysis of complex and large scale systems,
characterized by extreme ease of use and flexibility.

5.1 Integrating MultiVeStA and DEUS

The steps of Figure [I| have to be followed in order to inte-
grate DEUS. Listingreports the class DeusState (omitting
unnecessary details), which extends NewState. As discussed
in Section DeusState has an instance of the simulator
engine as private field (lines 1-2). In the constructor (lines
4-7), all the parameters are contained in params. Those
common to any simulator (e.g. the file name of the model
definition) are handled by the constructor of NewState (line
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5). Eventual simulator-specific parameters can be parsed
from the string params . getOtherParameters (). In line 6 the
DEUS-specific initialization code is performed: i.e. the model
definition is loaded (once for each MultiVeStA server). The
actual (re)initilization of the simulator is done in setSimula-
torForNewSimulation (lines 9-12), invoked before any new
simulation to set a new seed, to obtain the initial state of the
simulation, and to reset the internal state of the simulator.
The methods performOneStep0fSimulation and performW-
holeSimulation order DEUS, respectively, to perform a step
of simulation or to independently perform a simulation until
an internal halting condition is met. Finally, rval evaluates
state observations common to every DEUS model (e.g. the
number of performed steps), and supports eventual model-
specific state evaluators (line 30).

It may be worth to remark that such a step was done once
and for all: since then, DEUS is supported by MultiVeStA.

5.2 Test: volunteer cloud simulation

It is now possible to define and evaluate properties of interest,
like the ratio of successfully executed tasks (Hit+Running
ratio) during the simulation progress, for small, large and
all tasks. The corresponding parametric multi-expression is
reported in Listing Here, new steps of simulations are
triggered upon reaching the simulation times specified by the
variable . Once such states are reached, the observations
number 11, 12 and 13, corresponding to the ratios of tasks
executed or still running for different types of tasks, are
evaluated. Note that the expression is estimated for = ranging
from 100 to 360000 (i.e. 1 hour of simulated time), with step
of 10000. In order to evaluate such properties, s.rval(l)
must be associated to the simulated time, while s.rval(11),
s.rval(12), and s.rval(13), respectively, to the ratio of
executed tasks for small, large and both. The first is not
model-specific, and in fact it is handled in rval of Listing
While for the others a state evaluator must be defined, as
sketched in Listing [[4]

The expression of Listing [[3] has been evaluated on a laptop
having a 2.0 Ghz Quad Core and 16 GB of RAM. The client
was launched with the parameters reported in Listing
Thus, the expected values have been computed wrt a 95% CI
with a radius of 0.002, while 3 servers were used. Moreover,
the batch block size was fixed to 6, and 100 was setted as
maximum number of simulations. Finally, the state evaluator
of Listing [[4] has been specified. For easiness of presentation,
Listing[14]just sketches the evaluator. In line 4, the simulator
engine is extracted from the DeusState, and it is used in
line 5 to build the object simulationInfo, which contains
information about received and missed tasks. Such an object
is then used to perform the model-specific state observations.

public class VolunteerCloudStateEvaluator implements
IStateEvaluator {

public double getVal(int which, NewState state) {
Engine engine = ((DeusState)state).
getDeusInstance () ;
//Access engine to build the object "
simulationInfo"” which contains information
about received and missed tasks

switch (which){
case 11: return 1.0 - (simulationInfo.
getSmallTasks () .getMiss () / simulationInfo.
getSmallTasks () .getSize ());
case 12:
case 13:

313

Listing 14: IDeusStateEvaluator for the cloud

-m examples/acoLoadBalancing_s1.xml

-1 examples/serverlist3

-f examples/quatex/acoPerformancelndicators_mp.quatex

-bs 6 -a 0.05 -d1 0.004

-se it.imtlucca.cloud.multivesta.
VolunteerCloudStateEvaluator

-osws ONESTEP -sots 12345 -sd deus.DeusState -ms 100

HitSmall(z) = if {s.rval(1l) >= z} then {s.rval(11)}
else #HitSmall ({z}) fi ;
HitLarge(z) = if {s.rval(1)
else #HitLarge ({z}) fi ;
HitOverall(xz) = if {s.rval(1) >= z} then {s.rval(13)}

else #HitOverall ({z}) fi ;
eval parametric(E[HitSmall(z)], E[HitLarge(x)], E[
HitOverall(z)],x,100.0,10000.0,360000.0) ;

>= z} then {s.rval(12)}

Listing 13: Ratios of executed tasks on time

Listing 15: Parameters of the MultiVeStA client

About 4 hours have been required to evaluate the expression.
Noteworthy, the setted maximum number of simulations did
not constitute a restriction, since the required é has been
reached after just 18 simulations, distributed in the 3 servers
in groups of 6 simulations. The plot in Figure[3] depicting
the evaluation of the expression, has been generated using
the gnuplot input file returned by MultiVeStA.

The compactness and expressiveness of MultiQuaTEx has fa-
cilitated the evaluation of the ACO approach in distributing
tasks in a volunteer cloud. Without detailing the obtained
results, it is important to note that, by evaluating a single
multi-expression, it has been possible to study three prop-
erties (ratios of executed small, large and all tasks) at the
varying of the simulated time: each point of the three lines
is actually an expected value of the corresponding property,
when instantiating the parameter x.

5.3 Experience using DEUS with MultiVeStA
By integrating DEUS with MultiVeStA, the former has been
enriched with capabilities far from those usually offered by
simulation tools. Mainly, it is now possible to define in a clean
and compact way the properties of interest, to decouple them
from the model definition, and to automatize their evaluation.
Furthermore, distribution of simulations is now supported.
Another important benefit is the ability of evaluating more
properties at once via parametric multi-expressions, thus
reducing the number of required simulations.

In the following, we discuss how the analysis described in
Section [5.2] would be much more complex by using either
DEUS alone or with PVeStA. As discussed in Section [31] a
MultiQuaTEx expression corresponds to a set of QuaTEx ex-
pressions sharing the same temporal operators, and each hav-
ing one of the eval clauses of the MultiQuaTEx expression.
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The MultiQuaTEx expression of Listing [[3] has three eval
clauses (HitSmall(zx), HitLarge(x), and HitOverall(z)),
each having parameter x, instantiated with the 36 values from
100 to 360000, with step 10000. The MultiQuaTEx expres-
sion thus corresponds to 36 * 3 = 108 QuaTEx expressions.
MultiVeStA required 18 simulations to evaluate the Multi-
QuaTEx expression, meaning that 18 is the maximal number
of simulations required to reach the provided CI for each
of the 108 eval clauses. Hence, VeStA and PVeStA would
require in the order of 10818 = 1944 simulations rather than
18 to evaluate the 108 corresponding QuaTEx expressions.
MultiVeStA thus provide a dramatic performance improve-
ment. In [25], presenting the integration of MultiVeStA with
Alchemist, we show how MultiVeStA’s ability to reuse sim-
ulations allows to perform a 68 times faster analysis of an
expression regarding 5 parametric properties instantiated
with 50 values each, wrt the case of not reusing simulations.

An analysis similar to the one done with MultiVeStA, in-
cluding the reuse of simulations, can be performed using
DEUS alone, by logging the required measures during sim-
ulations. However, no CI evaluation facilities are provided,
thus it would be necessary to do it by hand by performing
the means of the obtained values, and launching new sim-
ulations if necessary. Moreover, each of the 18 simulations
performed by MultiVeStA required about 40 minutes on our
test machine, but given that 3 servers were used, 3 groups of
6 simulations were performed in parallel, requiring about 4
hours to evaluate the expression. Performing with DEUS sim-
ulations like the ones performed resorting to MultiVeStA still
requires about 40 minutes, in fact we noticed an overhead in
the order of few minutes. However, DEUS does not provide
distribution of simulations, and thus the required time would
be of the order of 18 % 40 = 720 minutes (or 12 hours).

To sum up, the advantage in chaining PVeStA to DEUS
(if this would be possible), would be the possibility to ex-
press complicated queries, and to automatize and distribute
their evaluation. However, the implicit ability of reusing
simulations by logging would be lost, leading to a sensible
degradation of performance when evaluating several expres-
sions. MultiVeStA shares the same benefits of PVeStA, but
not its drawbacks, as in addition it allows to reuse simula-
tions via MultiQuaTEx expressions, thus leading to sensible
improvements in both usability and performance of DEUS.

6. RELATED WORKS

In the literature there exist many tools supporting statistical
analysis. In particular, a partial list of those supporting SMC
is: APMC [5], COSMOS [15], YMER |[36], and SAM |2§].
Moreover, statistical extensions of established tools like BIP
[12], PRISM [26] and UPPAL [34] exist. However, differently
from MultiVeStA, most of these tools have their own engines
and model specification languages, as they do not aim at
exploiting and enriching existing discrete event simulators.

An interesting tool sharing our aims and motivations is
PLASMA-lab [13], which can be integrated to existing sim-
ulators via a plug in system. The tool allows to answer to
two kinds of questions: (1) “does a property is satisfied by
a model with a probability greater than a given threshold?”,
and (2) “what is the probability that a model satisfies a prop-
erty?”. In addition to probabilities, (Multi)VeStA further
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Figure 3: Evaluation of three properties at the vary-
ing of the simulated time.

allows to obtain expected values of real-typed properties, like
the latency of a probabilistic communication protocol, the
mean time spent by tasks in queue, or the number of entities
reaching a certain goal. This is a very important feature,
as users of discrete event simulators are often interested to
such a kind of measures when evaluating the performance
of a system. Moreover, it is not mentioned if PLASMA-lab
allows to reuse simulations when evaluating several proper-
ties, another important feature implicitly adopted by users
of discrete event simulators when logging measures of a sim-
ulation. Nevertheless, the tool seems quite interesting and
promising to us, as it is equipped with algorithms that use
importance sampling to reduce the number and the length of
simulations. It would be interesting to understand how these
algorithms could be integrated with the approach used by us
in reducing the number of required simulations by evaluating
more properties at once.

7. CONCLUSIONS AND FUTURE WORK

This paper presented MultiVeStA, a statistical analysis tool
which allows for an easy integration with existing discrete
event simulators, enriching them with distributed statistical
analysis capabilities. Moreover, MultiQuaTEx enables users
to express in a compact way system properties of interest,
and to efficiently evaluate them. The tool has been used to
reason on scenarios regarding collision-avoidance robots [11],
volunteer clouds [30] and crowd steering [25], in the context
of the European projects ASCENS [7], and SAPERE [29].

MultiVeStA currently supports the simulators Alchemist [24],
DEUS [4], MISSCEL [11], and the two originally supported
ones [32] (i.e. PMaude and a CTMC engine). As future work,
we plan to extend the set of supported simulators, e.g. it may
be interesting to consider ns-3 and OMNeT++. Moreover,
we plan to improve our GUI (possibly simplifying the de-
ployment and the management of the MultiVeStA servers in
the network), which currently consists in an interactive plot
of the results. Finally, it may be useful to provide the user
with the plot of the distribution of all the obtained samples,
and to analyze it by adding fitting function capabilities.
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