
28 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

A tool for symbolic manipulation of arc functions in Symmetric Net models

Publisher:

Published version:

DOI:10.4108/icst.valuetools.2013.254407

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

ICST, Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering

This is the author's manuscript

This version is available http://hdl.handle.net/2318/147950 since 2016-06-30T09:02:15Z



Author’s post-print version:
Copyright 2013 ACM. This is the author’s version of the
work. It is posted here by permission of ACM for your per-
sonal use. Not for redistribution. The definitive version was
published in “ValueTools ’13 Proceedings of the 7th Interna-
tional Conference on Performance Evaluation Methodologies
and Tools”
http://doi.acm.org/10.4108/icst.valuetools.2013.254407



A tool for symbolic manipulation of arc functions in
Symmetric Net models

Lorenzo Capra
Università di Milano

Dipartimento di Informatica
Milano, Italy

Massimiliano De Pierro
Università di Torino

Dipartimento di Informatica
Torino, Italy

Giuliana Franceschinis
Univ. del Piemonte Orientale

Di.S.I.T.
Alessandria, Italy

ABSTRACT
The computation of structural properties of models expressed
with the Symmetric Nets formalism (formerly Well-Formed
Nets, a High Level Petri Net formalism), their structural
reduction, or the efficient detection of transition instances
enabled in a given state can benefit from the availability of
a calculus for symbolic manipulation of arc functions. In pre-
vious works the theoretical basis of such calculus has been
presented. In this paper a library implementing the calcu-
lus is described, and its use is demonstrated on a simple
distributed system model.

1. INTRODUCTION
High Level Petri Nets (HLPN) formalisms have been pro-

posed as extensions of the original Petri Net (PN) formal-
ism to ease the task of modellers in designing complex sys-
tems. These mathematically sound graphical languages fea-
ture several different algorithms for studying interesting prop-
erties of systems. The analysis of HLPN models is usu-
ally performed through simulation or state space exploration
techniques (e.g., model checking), but it can also work on
their graph structure: structural analysis can be performed
preliminarily to state space generation (e.g., to ensure bound-
edness), as a quick check for (un)desired behaviours (e.g.,
livelocks), as a model reduction technique [4] or as a support
to specification of model parameters in stochastic HLPN (de-
tecting potentially conflicting transitions [2] is a prerequisite
for a correct parameters setting). Finally, structural infor-
mation can significantly improve the efficiency of both sim-
ulation and state space generation.

The success of these formalisms is also motivated by the
availability of software tools supporting design and analysis
of models1. In this paper a tool for structural analysis of
Symmetric Nets (SN) [1] is described. The tool builds on
a language L extending the SN arc expressions, by which

1
Petri Nets Tool Database http://www.informatik.uni-

hamburg.de/TGI/PetriNets/tools/db.html. Petri Nets Model
Checking Contest http://mcc.lip6.fr

ValueTools’13, December 10 – 12 2013, Turin, Italy
.

various kinds of structural properties can be expressed in a
compact and parametric form.

The tool implements a rewriting system able to trans-
form the complex expressions representing structural for-
mulae (involving arc functions, transition guards, as well as
functional operators such as intersection, union, transpose,
and composition), into a normalized form in L. Since L has
a syntax very similar to that of SN arc expressions, its in-
terpretation does not require too much effort. The task of
normalizing an expression is in general long and error prone,
so that its complete automation is a prerequisite for appli-
cability of a structural calculus to SNs.

2. AN OVERVIEW OF SN
Figure 1 shows an example of a SN modeling a simple

distributed system. The SN structure is a bipartite graph
whose nodes are places (circles) and transitions (white and
black bars). Places are state variables, characterized by
a color domain defining the variables’ type and expressed
as a Cartesian product of basic color classes (pairwise dis-
joint finite sets, denoted with capital letters A, B, . . . , Z,
which may be partitioned into two or more static subclasses,
and may be circularly ordered). Each place can contain a
multiset of tuples from its color domain: this is called its
marking. The SN of the example represents the behavior
of k sites, whose identities correspond to the colors in class
A = {s1, . . . , sk}. The marking of place Sites indicates
the active sites: initially (marking m0) all sites are in this
state. Each site sends some data, embedding it in a se-
quence of packets. Packets are represented by color class M
which is partitioned into M1 ∪M2: M1 = {ack} represents
an acknowledge message while M2 = {d1, . . . , dh} represents
data packets. Each data packet is associated with a header
containing the sender and destination identifiers, and sent
through the network. The subnet between places T-buffer

and R-buffer models the network and contains messages
stored in the transmit/receive buffers, represented by tuples
〈si, sj , dk〉 whose first, second, and third element identify
the sender, (si ∈ A), the destination (sj ∈ A), and the data
packet (dk ∈M), respectively.

Also transitions have a color domain, as they describe
parametric events; the parameters are variables denoted with
small letters with a subscript, implicitly defining the vari-
able’s type: the color class denoted by the corresponding
capital letter; subscripts are thus used to distinguish pa-
rameters of same type associated with the same transition.
Transitions can have guards, expressed in terms of predi-
cates on the transition’s variables.

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html
http://mcc.lip6.fr


Sites:

R(buffer:T(buffer:

ha1i

A

A2 ⇥ M A2 ⇥ M

ha2i

ha1, a2, SM2iha1, a2, SM1i

ha1, a2, mi ha1, a2, mi

ha1, a2, SM2i

ha2, a1, SM1i
[a1 6= a2]

[d(m) = M2]

M = {d1, . . . , dh, ack}
M1 = {ack}
M2 = {d1, . . . , dh}

A = {s1, . . . , sk}

t1t2
t3

t4

t2:

t1:

t3:

t4:
a1 2 A, a2 2 A

a1 2 A, a2 2 A

a1 2 A, a2 2 A

a1 2 A, a2 2 A, m 2 M

m0

m0 =
X

i

si

Figure 1: An example of communication system.

Transitions t1, t2, t3 have color domain A2, their variables
are shown in Figure 1. Transition t1 represents the sending
of data packets by site a1 to site a2, with a1 6= a2. Transi-
tion t4 has color domain A2 ×M and represents the trans-
mission of each packet queued at the network transmission
buffer. Transition t3 represents the receiver process active
on each site, it collects all the data packets sent to it; once
all packets from a given sender have arrived, it sends back
to the sender an acknowledge message, represented by a tu-
ple with parametric sender and destination a2 ∈ A, a1 ∈ A
and content ack ∈ M1. Transition t2 ends the transmis-
sion process: when the site that started data transmission
receives the acknowledge packet, it moves from the waiting
state back to the active one, where it can decide to send
other data packets out.

The model evolution in time can be simulated by starting
from an initial marking and firing one of the enabled transi-
tion instances. An instance of transition t is an element of
t’s color domain (cd(t))) and corresponds to an assignment
of colors to t’s parameters (binding). A binding is valid
only if it satisfies the transition guard. The arcs connecting
transitions to their input, output and inhibitor places are an-
notated with functions (denoted by W−(p, t), W+(p, t) and
Wh(p, t), respectively) cd(t) → Bag(cd(p)). Input and in-
hibitor functions express the transition enabling conditions,
while the difference C(p, t) = W+(p, t)(b)−W−(p, t)(b) de-
fines the effect on p of firing the (enabled) instance b of t.

The particular syntax of SN arc functions and guards
highlights the structural and behavioral symmetry of the
modeled system: this can be exploited for analysis purposes.

Definition 1 (Guards syntax). Guards are boolean
expressions whose terms are basic predicates. The set of
basic predicates is: [var1 = var2], true when var1 and
var2 are bound to the same color; [var1 =!var2], true when
var1 is bound to the successor of the color assigned to var2;
[d(var1) = Ssubclass id], true when the color assigned to
var1 belongs to static subclass subclass id), and [d(var1) =
d(var2)], true when the colors assigned to var1 and var2
belong to the same static subclass.

Definition 2 (Arc functions syntax). A SN func-
tion W labeling an (input, output or inhibitor) arc connect-
ing transition t and place p, is a mapping W (p, t) : cd(t)→
Bag

(
cd(p)

)
whose form is:

W (p, t) =
∑
i

λi.Ti[pi], λi ∈ N+ (1)

where the sum is a multiset sum and λi are scalars, Ti =
〈f1, . . . , fn〉 are tuples of class functions, and pi is a guard.

Class functions syntax (referring to class C) is:

fi =

m∑
k=1

αk.ck +

||C||∑
q=1

βq.SCq +

m∑
k=1

γk.!ck; αk, βk, γk ∈ Z (2)

In (2) scalars αk, βk, γk must be such that no negative coef-
ficient result by evaluating fi for any color satisfying pi.

Summarizing, an arc function is a weighted sum of possi-
bly guarded tuples (Ti) of class functions (fk). Class func-
tions are linear combinations of: projection (ck), successor
(!ck, defined only for ordered classes), synchronization/dif-
fusion (Sclass id) function. An arc function is evaluated on a
binding b ∈ cd(t), and 〈f1 . . . fn〉(b) =

⊗
k:1...n fk(b) (where⊗

denotes the Cartesian product). The projection evalu-
ates to the color assigned to the corresponding variable, the
successor evaluates to the successor of that color, the dif-
fusion/synchronization function evaluates to the whole set
of elements in class id. If class C is partitioned into static
subclasses Ci, 1 ≤ i ≤ ||C||, it is possible to use the diffu-
sion/synchronization function on a static subclass (SCi).

A guarded tuple is evaluated as follows: if for a given bind-
ing the guard is false it evaluates to the empty (multi)set,
otherwise its value corresponds to its standard evaluation.

An example of valid binding for t1 is b : (a1 = si, a2 =
sj): it satisfies the guard [a1 6= a2]. When enabled it may
fire, consuming a token 〈a1〉(b) = 〈si〉 from Sites and pro-
ducing 〈a1, a2, SM2〉(b) =

∑
k=1...h〈si, sj , dk〉 in T-buffer.

3. THE LANGUAGE
In this section the syntax of the language used to express

the SN structural relations is introduced, together with the
set of operators that the symbolic calculus handled by the
library can deal with. The expressions of L have a syntax
which resembles the arc function syntax defined in equations
(1) and (2), but there are some additional constraints on the
functions used as elementary building blocks, however the
expressive power is actually extended.

Let Σ = {A,B, . . . , Z} be the set of basic color classes.
A class function in the new language is any function with
domain D (expressed as Cartesian product of basic color
classes in Σ) and expressed as sum of intersections of the
following elementary symbols:

{var, Ssubclass, Sclass, S − var, !nvar, S−!nvar} (3)

Some class function examples follow: (S − a1)∩ (S − a2);
a2 ∩ (S − a3); m3∩!4m1; d1 + (S−!d3).

Definition 3 (Language). Let Σ = {A,B, . . . , Z} be
the set of (finite and disjoint) basic color classes, and let D

be any color domain built as Cartesian product of classes in
Σ, (D = AeA ×BeB × ...×ZeZ , e∗ ∈ N). Let Ti be functions
on D with values in D′ and [g′i] and [gi] standard predicates
respectively on D′ and D (as defined in the SN formalism).

The set of expressions:

L =
{
F : F =

∑
i

λi.[g
′
i]Ti[gi], λi ∈ N+

}
is the language used to express SN structural relations

(where the Ti = 〈f1, . . . , fl〉 are composed of class functions
fi: intersections of elementary functions listed in (3)).

The main difference with respect to SN arc functions is
the use of intersection in class functions, and the presence



of two predicates associated with each tuple in the sum: [gi]
is called guard and is already present in Eq. (1) while [g′i]
is called filter, a new feature of the language that allows
the elements satisfying predicate g′i to be selected from the
result of the application of the guarded tuple Ti[gi].

It is possible to show that the SN arc functions W−(p, t),
W+(p, t), Wh(p, t) can be reformulated as elements of L.
On L the following functional operators are defined:

Operator Semantics Operator Semantics

F Support F ∩ F ′ Intersection
F − F ′ Difference F + F ′ Sum

F t Transpose F ◦ F ′ Composition

All operators in the above table, except composition, ap-
ply to functions that map to multisets. The composition
operator instead, in its current definition and implementa-
tion, applies only to functions that map to sets (this is why
in the table the support of composition operands is used ).
Hence the composition actually works on a subset of L.

In the sequel the term expression will be used to indicate
formulae that contain language functions and operators from
the table above. The symbolic calculus implemented by the
library is able to solve all the considered operators: appro-
priate rewriting rules have been defined that simplify the
expressions containing any operator until an element of L

is obtained. Hence the language is closed w.r.t. the above
operators. Each rewriting rule is based on the algebraic
properties of functions appearing as operands.

A detailed description of these rules can be found in [2],
where the difference, intersection, transpose operators rewrit-
ing rules have been first introduced.

4. THE TOOL FRONTEND
The net in Fig. 1 will be used to show the application

of the calculus implemented by the tool. In particular the
examples will concern the verification of colored invariance
properties and the computation of structural conflicts. The
interaction with the library is performed through a Com-
mand Line Interface (CLI).

The verification of structural invariance properties of the
model is based on the incidence matrix: the one of the model
in Fig.1 is shown in Tab. 1. We will verify that the follow-
ing expression corresponds to a structural invariant of the
distributed system model:
〈a1, SM2

〉.Sites+〈a1,m〉.R-buffer+〈a1,m〉[d(m) = M2].T-buffer+

〈a2, SM2
〉[d(m) = M1].T-buffer = K

where K is a constant multiset on A×M (color domain of
the invariant), which depends on the initial marking m0. It
is possible to express the invariant as a P-indexed array:

Sites T-buffer R-buffer
i: 〈a1, SM2

〉 〈a1,m〉[d(m) = M2]+ 〈a1,m〉
+ 〈a2, SM2

〉[d(m) = M1]

We need to verify the following matrix equation: i◦C = 0.
The second example shows how the calculus may be ap-

plied to identify potential conflicts between different instances
of a given transition. Let us consider transition t1, the fol-
lowing computation is performed through the library:

SC(t1, t1) = W+(t1, p)t ◦W−(t1, p)− id =
= 〈a1〉[a1 6= a2]

t ◦ 〈a1〉[a1 6= a2]− id

where id is the identity function in A × A, i.e. 〈a1, a2〉.
SC(t1, t1) is a function that states which instances of t1
may disable a given instance of the same transition.

The CLI implements a command-line interpreter that ac-
cepts in input any valid expression of the symbolic calculus
and, using the library to apply the appropriate rewriting

rules, returns a simplified expression of the language. It has
been designed as a utility to test the library functionality,
rather than with the aim of providing a user friendly envi-
ronment, despite this, it does not restrict the possibility to
experiment any practical case that may arise from the struc-
tural analysis of SN models. Let us introduce the syntax and
grammar of the strings accepted by the CLI through exam-
ples. The following table lists all the operators that may
appear in any expression to be simplified.

CLI Operator CLI Predicate Operator
* Intersection != Unequality
. Composition = Equality
’ Transpose in Memebership

-, + Difference, Sum and,or Boolean AND, OR

The set of color classes is defined by default: there are
26 color classes identified by the (capital) letters of the al-
phabet A-Z. By default the classes are not ordered, are not
partitioned into static subclasses and have a parametric size
n where2 n ≥ 2. Commands are provided to modify the
default definition of a class, according to the modeling re-
quirements. For instance, referring to the distributed sys-
tem model introduced in the previous section, class M can
be defined using the following syntax: set M := {1,[2,n]},
meaning that M comprises two static subclasses: the first
(M1) has size 1, while the second (M2) has parametric size
n, with n ≥ 2. In general, the size of each static subclass
can be either fixed, or parametric: in the latter case it is
specified using an interval notation indicating the lower and
upper bound for the size of the subclass; the upper bound
can be fixed or parametric, and in the latter case it is de-
noted by n. The library currently requires that at most one
static subclass has parametric size (an extension relaxing
this constraint is under study). An ordered class is instead
declared through the command set N ordered; it cannot
be partitioned into static subclasses.

The CLI maintains a table of symbols associated with
either functions or color domains. This is useful for an easier
input of complex formulae of the calculus, and for reusing
recurring expressions.

An example of association of a color domain to a symbol
is D:=@A^2,M. Color domain definitions always start with
symbol @, the classes in the color domain must appear in
alphabetical order (a requirement imposed by the library),
moreover the class repetitions are expressed using the ^ sym-
bol followed by the number of repetitions.

The association of language expressions to symbols is per-
formed as follows3:

i1 := @A <a_1 ,S_M{2}>
i2 := @A^2,M <a_1 ,m_1 >[m_1 in M{2}] + <a_2 ,S_M

{2}>[m_1 in M{1}]
i3 := @A^2,M <a_1 ,m_1 >

Observe that each expression must be preceded by the do-
main of the corresponding function, e.g. function i2 has
domain A2 ×M (the library performs a consistency check
on the domains of the class functions that appear in the ex-
pression). The expressions associated with symbols i1, i2
and i3 correspond to the three elements of vector i, and will
turn useful to verify the system of equations i ◦C = 0.

2
The library restriction on the minimal size of color classes is mo-

tivated by the observation that cardinality one color classes can be
removed without producing any change in the model behavior.
3
Character _ is used to introduce a subscript, while ^ introduces su-

perscripts.



Table 1: Incidence matrix

t1 t2 t3 t4

−〈a1〉 〈a2〉 0 0 Sites
C = 〈a1, a2, SM2

〉[a1 6= a2] −〈a1, a2, SM1
〉 〈a2, a1, SM1

〉 −〈a1, a2,m〉[d(m) = M2] T-buffer
0 0 −〈a1, a2, SM2

〉 〈a1, a2,m〉[d(m) = M2] R-buffer

Observe that static subclasses are denoted by a numeric
id within curly brackets following the class id, e.g. M{2}

denotes static subclass M2 in M . Concerning predicates
(expressing filters and guards), the only difference w.r.t. the
standard SN notation is the use of keyword in to denote
the membership relation: e.g. SN predicate [d(m1) = M2]
becomes [m_1 in M{2}].

To perform the calculus (simplification of the expressions
appearing in the four equations, one for each column of C)
the CLI uses the built-in procedure s(): let D:=@A^2,M

s(D i2.<a_1 ,a_2 ,S_M{2}>[a_1!=a_2]-i1.<a_1 >)
s(D i1.<a_2 > - i2.<a_1 ,a_2 ,S_M{1}>)
s(@A^2 i2.<a_2 ,a_1 ,S_M{1}>-i3.<a_1 ,a_2 ,S_M{2}>)
s(D i3.<a_1 ,a_2 ,m_1 >[m_1 in M{2}]-i2.<a_1 ,a_2 ,

m_1 >[m_1 in M{2}])

s() calls the library procedure that performs the normal-
ization of an expression by using the algebraic rules of the
calculus. It accepts in input any valid calculus expression
(preceded by its color domain). Dot symbol . represents
the composition operator. The rest of the syntax as well as
the precedence rules of operators are the same as in clas-
sical algebra.All four expressions above are simplified and
the composition operator removed, leading to the expected
result: in all cases < 0, 0 >, a constant “null” function, con-
firming the fact that i denotes an invariant induced by the
model structure, valid for any initial marking.

Let us show another example of computation of potential
conflicts among instances of a given transition t1 (called
auto-conflicts): SCSites(t1, t1). The following command se-
quence leads to the computation of such structural relation:
the example shows the possibility to break an expression
into simpler ones through the definition of symbols:

f := @A^2 <a_1 >[a_1!=a_2]
id := @A^2 <a_1 ,a_2 >
s(f’.f - id)

where f’ denotes the transpose of function f (i.e. ’ denotes
the transpose operator). The result returned by the CLI is:
<0,0> : |A|=2
<a_1 ,S-a_1 * S-a_2 > [a_1 != a_2] : 3<=|A|<=n

Observe that in this case the result provides two differ-
ent expressions, depending on the cardinality of parametric
class A. The intersection operator (*) is used to represent
certain legal SN functions: specifically the following equiva-
lence holds: (S−a1 ∩S−a2)[a1 6= a2] ≡ (S−a1−a2)[a1 6=a2].

In the current version of the tool the function operands of
all operators are interpreted as sets: work is in progress to
allow multiset operands (except for composition, since this
extension still requires some theoretical work).

5. LIBRARY ARCHITECTURE
The Java core library for the calculus, which interfaces

to the CLI, implements a (parametric) symbolic rewriting
system: a collection of rules (equations) which are used to
rewrite (evaluate) expressions in a symbolic fashion, until
no more rules apply, in which case the resulting term is in
”normal form”. For implementation convenience, the normal
form of expressions manipulated by the library is a particu-
lar sum of pairwise disjoint terms belonging to L.

The Interpreter, one of the original Design Patterns for ob-
ject oriented software, provides an elegant and natural way
of implementing a rewriting system. Its twofold intent is,
given a language, defining a representation for its grammar
along with an interpretation engine that uses that repre-
sentation to process sentences. A concrete class is used to
represent each grammar’s rule/symbol. A rule is either a
composite object (a rule that references to other rules) or a
terminal (a leaf node in a logical tree structure). The root
of the hierarchy is an abstract type declaring a method sim-

plify() that must be implemented by each concrete class.
Reducing a term to a normal form relies on the recursive
traversal of the underlying Composite structure.
In order to face design complexity, and to enable modular de-
bugging/testing, three separated hierarchies of cooperating
objects were defined, each formed by a few dozens classes:
their root types are ClassFunction, Guard, and TupleFunc-

tion. This choice reflects the structure of SN’s expressions.
Each hierarchy matches in fact an abstract ”Boolean al-

gebra”, hence rewriting any (sub-)expression involves using
logical equivalences such as the double complement elimi-
nation, De Morgan, associativity, commutativity, idempo-
tence, and so on. An implementation based on the original
Interpreter would result in a hard to maintain code, due to
pollution of generic and domain-specific aspects. For that
the library builds on a recent domain-parametric extension
of Interpreter [3] that significantly helps design rewriting-
based systems, by decoupling ”generic” rewriting rules from
type-specific ones. This approach heavily relies on generic
(abstract) types and methods, and exploits other original
patterns like Template Method, Factory Method, Command
and Singleton. A detailed description can be found in [3].

6. CONCLUSION AND FUTURE WORK
The current version of the library and its CLI can be

downloaded from http://www.di.unito.it/∼depierro/vt13.
The library is being extended to support multiset operands
for all operators. A Graphical User Interface will be devel-
oped, to allow the specification of the structural properties of
interest directly on a graphical representation of the model.

7. REFERENCES
[1] Standard published: ISO/IEC 15909-2:2011 Systems

and software engineering - High-level Petri nets - Part
2: Transfer format. See also http://pnml.lip6.fr.

[2] L. Capra, M. Pierro, and G. Franceschinis. A high level
language for structural relations in Well-formed Nets.
In Applications and Theory of Petri Nets 2005, volume
3536 of LNCS, pages 168–187. Springer, 2005.

[3] L. Capra and V. Stile. An extension of the interpreter
pattern to define domain-parametric rewriting systems.
In Proc. 15th Int. SYNASC’13. IEEE C.S.Press, 2013.

[4] S. Evangelista, S. Haddad, and J.-F. Pradat-Peyre.
Syntactical colored Petri nets reductions. In Automated
Technology for Verification and Analysis, volume 3707
of LNCS, pages 202–216. Springer, 2005.

http://www.di.unito.it/~depierro/vt13
http://pnml.lip6.fr

	Introduction
	An overview of SN
	The language
	The tool frontend
	Library architecture
	Conclusion and future work
	References

