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ABSTRACT
Quantitative analysis of computer systems is often based on
Markovian models. Among the formalisms that are used in
practice, Markovian process algebras have found many ap-
plications, also thanks to their compositional nature that
allows one to specify systems as interacting individual au-
tomata that carry out actions. Nevertheless, as with all
state-based modelling techniques, Markovian process alge-
bras suffer from the well-known state space explosion prob-
lem. State aggregation, specifically lumping, is one of the
possible methods for tackling this problem. In this paper we
revisit the notion of Markovian bisimulation which has previ-
ously been shown to induce a lumpable relation in the under-
lying Markov process. Here we consider the coarser relation
of contextual lumpability, and taking the specific example of
strong equivalence in PEPA, we propose a slightly relaxed
definition of Markovian bisimulation, named lumpable bisim-
ilarity, and prove that this is a characterisation of the notion
of contextual lumpability for PEPA components. Moreover,
we show that lumpable bisimilarity induces the largest con-
textual lumping over the Markov process underlying any
PEPA component. We provide an algorithm for lumpable
bisimilarity and study both its time and space complexity.

1. INTRODUCTION
Performance evaluation of computer systems often relies on
stochastic models whose underlying processes are Continu-
ous Time Markov Chains (CTMCs). However, specifying
complex hardware and/or software architectures by explic-
itly defining all the possible transitions between all the possi-
ble states of the models can be very complicated and prone
to design errors. Higher level formalisms allow for com-
pact, modular and often hierarchical descriptions of complex
systems consisting of numerous components. Examples of
higher level formalisms are queueing networks [16], stochas-
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tic Petri nets [18, 20] (SPNs), and Markovian process alge-
bras [12, 13]. Specifically, in this paper we will focus on the
Performance Evaluation Process Algebra (PEPA) which is
one of the most popular Markovian process algebras. When
dealing with models that consist of several components inter-
acting with each other the number of states of the underlying
CTMC may grow exponentially or more than exponentially
with the number of components as happens for instance in
SPNs. This problem, known as the state space explosion,
makes the general algorithms for the performance and reli-
ability analysis time and space consuming and numerically
unstable [22].

Related work. At the stochastic process level of abstraction,
several approaches, both exact and approximate, have been
proposed to cope with the state space explosion problem.
Hereafter we focus on lumping methods. In [14, Ch. 6]
the authors introduce the notion of lumping of states in a
Discrete Time Markov Chain (DTMC) but the concept can
be straightforwardly extended to CTMCs. In strong lump-
ing the states of the Markov chain are clustered according
to some structural properties of the transition rate matrix
so that a CTMC with a smaller number of states can be
defined. Since the complexity of the analysis of this latter
chain is lower than that required by the original one, lump-
ing can be an effective way for studying the properties of
large Markov chains. However, although some clustering of
states can be suggested by intrinsic symmetries of the con-
sidered models, in general the complexity required for find-
ing an optimal lumping can be prohibitive since it is still
exponential with the number of model’s components when
the state space explosion occurs. The problem of defining
efficient algorithms for lumping CTMCs is addressed in sev-
eral papers, e.g., [2, 10, 23]. These papers propose different
algorithms for solving the problem of deriving a lumping of
the CTMC, however they can be applied once the joint pro-
cess of the model is built and hence they do not affect the
complexity of its generation.

A structural-based approach to lumping for SPNs is studied
in [1, 3], where structural symmetries of the net are exploited
to derive a lumped underlying CTMC in an efficient way. In
the context of Markovian process algebras, structural pro-
cess properties are studied in [4, 5, 6, 8, 13, 17] for state
space reduction purposes by means of equivalence relations
inspired by bisimulation. In [4, 8] Markovian bisimulations
are deeply studied for Interactive Markov Chains and we
will review their results in Section 3. In [5, 6, 13] the lump-
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(α, r).P
(α,r)−−−→ P

P
(α,r)−−−→ P ′

P +Q
(α,r)−−−→ P ′

Q
(α,r)−−−→ Q′

P +Q
(α,r)−−−→ Q′

P
(α,r)−−−→ P ′

P/L
(α,r)−−−→ P ′/L

(α 6∈ L)
P

(α,r)−−−→ P ′

P/L
(τ,r)−−−→ P ′/L

(α ∈ L)

P
(α,r)−−−→ P ′

A
(α,r)−−−→ P ′

(A
def
= P )

P
(α,r)−−−→ P ′

P ��
L
Q

(α,r)−−−→ P ′ ��
L
Q

(α 6∈ L)
Q

(α,r)−−−→ Q′

P ��
L
Q

(α,r)−−−→ P ��
L
Q′

(α 6∈ L)

P
(α,r1)−−−−→ P ′ Q

(α,r2)−−−−→ Q′

P ��
L
Q

(α,R)−−−→ P ′ ��
L
Q′

R =
r1

rα(P )

r2
rα(Q)

min(rα(P ), rα(Q)) (α ∈ L)

Table 1: Operational semantics for PEPA components

ing is applied to the single components rather than to the
joint process. The approach is interesting because the com-
plexity of lumping a single component is much lower than
that required by lumping the joint process and hence one
can obtain a strong reduction of the cardinality of the state
space with an acceptable computational complexity. In par-
ticular, an equivalence relation in the style of bisimulation
(coinductive definition) is introduced. If two components are
equivalent it is possible to replace one of them (that with
more states) with the other without affecting the behaviour
of the remaining parts of the system. Specifically, in [5, 6]
the author proposes different weak Markovian bisimulation
equivalences in the context of a Markovian process calcu-
lus. In all cases he shows that the CTMC-level aggregation
induced by the bisimulation is a lumping only for specific
classes of processes. Conversely, the notion of strong equiva-
lence for PEPA processes introduced in [13] always induces a
lumping of the CTMC underlying a PEPA process, although
in general the opposite is not true.

Contribution. In this paper we propose a notion of Marko-
vian bisimulation which is a characterization of a lumpable
relation over the terms of a stochastic process algebra pre-
serving contextuality and inducing a lumping in the underly-
ing Markov processes. Specifically, we introduce the relation
of contextual lumpability for PEPA components which is a
congruence for the particular class of evaluation (or static
[19]) contexts and complies with the ordinary lumping for
Markov processes. Moreover, we require that terms in the
same equivalence class may next engage in the same set of
action types. We define a Markovian bisimulation, named
lumpable bisimilarity, for PEPA terms which is a slightly re-
laxed variant of strong equivalence [13] and prove that this
is a characterisation of the notion of contextual lumpability
for PEPA components. Moreover, we show that lumpable
bisimilarity induces the largest contextual lumping over the
Markov process underlying any PEPA component. To the
best of our knowledge, this is the first characterization of the
class of processes in a Markovian process algebra whose un-
derlying CTMC is (contextually) lumpable. Finally, starting
from [23], we provide an algorithm for lumpable bisimilarity
and study both its time and space complexity.

Structure of the paper. Section 2 introduces the syntax and

the semantics of PEPA. In Section 3 we give the definition of
contextual lumpability and in Section 4 we provide a coin-
ductive characterisation of it. Section 5 presents an algo-
rithm to derive the optimal lumping according to our char-
acterisation. Section 6 concludes the paper.

2. THE CALCULUS
PEPA (Performance Evaluation Process Algebra) [13] is an
algebraic calculus based on a classical process algebra and
enhanced with stochastic timing information. It provides
an expressive formal language which may be used to cal-
culate performance measures as well as deduce functional
system properties.

The basic elements of PEPA are components and activities.
Each activity is represented by a pair (α, r) where α is a
label, or action type, identifying it, and r is its activity rate,
that is the parameter of a negative exponential distribu-
tion determining its duration. We assume that there is a
countable set, A, of possible action types, including a dis-
tinguished type, τ , which can be regarded as the unknown
type. Activity rates may be any positive real number, or the
distinguished symbol > which should be read as unspecified.

The syntax for PEPA terms is defined by the grammar:

P ::= P ��
L
P | P/L | S

S ::= (α, r).S | S + S | A

where S denotes a sequential component, while P denotes a
model component which executes in parallel. A stands for
constants which denote sequential components. We write C
for the set of all possible components.

Operational semantics. PEPA is given a structural oper-
ational semantics, as shown in Table 1. The component
(α, r).P carries out the activity (α, r) of type α at rate r
and subsequently behaves as P . When a = (α, r), the com-
ponent (α, r).P may be written as a.P . The component
P + Q represents a system which may behave either as P
or as Q. P + Q enables all the current activities of both
P and Q. The first activity to complete distinguishes one
of the components, P or Q. The other component of the
choice is discarded. The continuous nature of the proba-
bility distributions ensures that the probability of P and Q



(A) (B)

PEmpty P1 P2
PN

PWait

tr,⊤
tr,⊤tr,⊤tr,⊤

τ, µ τ, 2µ

τ, ν

send, γsend, γsend, γ

tr, η

τ, δ comp, ε

τ, δ τ, ϕ

τ, ξ

QThink QCompute QSend

QErrorQRecovery

Figure 1: Producer (A) and consumer (B) models considered in Example 1

both completing an activity at the same time is zero. The

cooperation combinator ��
L

is in fact an indexed family
of combinators, one for each possible set of action types,
L ⊆ A\{τ}. The cooperation set L defines the action types
on which the components must synchronise or cooperate (the
unknown action type, τ , may not appear in any cooperation
set). It is assumed that each component proceeds indepen-
dently with any activities whose types do not occur in the
cooperation set L (individual activities). However, activi-
ties with action types in the set L require the simultaneous
involvement of both components (shared activities). These

shared activities will only be enabled in P ��
L
Q when they

are enabled in both P and Q. The shared activity will have
the same action type as the two contributing activities and
a rate reflecting the rate of the slower participant. If an
activity has an unspecified rate in a component, the com-
ponent is passive with respect to that action type. In this
case the rate of the shared activity will be completely de-
termined by the other component. In general, the rate of a
shared activity will reflect the capacity of each component
to carry out activities of that type. For a given P and action
type α, this is the apparent rate of α in P , denoted rα(P ),
that is the sum of the rates of the α activities enabled in P .
The component P/L behaves as P except that any activity
of type within the set L are hidden, i.e., they are relabelled
with the unknown type τ . Finally, we assume that there
is also a countable set of constants. Constants are compo-
nents whose meaning is given by a defining equation such

as A
def
= P which gives the constant A the behaviour of the

component P .

The semantics of each term in PEPA is given via a labelled
multi-transition system where the multiplicities of arcs are
significant. In the transition system, a state or derivative
corresponds to each syntactic term of the language and an
arc represents the activity which causes one derivative to
evolve into another. The set of reachable states of a model
P is termed the derivative set of P (ds(P )) and constitutes
the set of nodes of the derivation graph of P (D(P )) obtained
by applying the semantic rules exhaustively. We denote by
A(P ) the set of all the current action types of P , i.e., the set
of action types which the component P may next engage in.
We denote by Act(P ) the multiset of all the current activi-
ties of P . For any component P , the exit rate from P will
be the sum of the activity rates of all the activities enabled
in P , i.e., q(P ) =

∑
a∈Act(P ) ra, where hereafter ra denotes

the rate of activity a. If P enables more than one activity,
|Act(P )| > 1, then the dynamic behaviour of the model is
determined by a race condition. This has the effect of re-
placing the nondeterministic branching of the pure process
algebra with probabilistic branching. The probability that

a particular activity completes is given by the ratio of the
activity rate to the exit rate from P .

The underlying CTMC. The derivation graph describing the
possible behaviour of any PEPA component is the basis of
the construction of the underlying Continuous Time Markov
Chain (CTMC). To form the underlying CTMC a state
is associated with each component of the derivative set of
P (ds(P )) and the transitions between states are derived
from the arcs of the derivation graph. The total transi-
tion rate between two states will be the sum of the activity
rates labelling arcs connecting the corresponding nodes in
the derivation graph. This use of the derivation graph is
analogous to the use of the reachability graph in stochastic
extensions of Petri nets such as SPNs [20]. We assume that
the model is finite, i.e., the number of nodes in the derivation
graph is finite. The following theorem holds [13].

Theorem 1. For any finite PEPA model P
def
= P0 with

ds(P ) = {P0, . . . , Pn}, if we define the stochastic process
X(t), such that X(t) = Pi indicates that the system behaves
as component Pi at time t, then X(t) is a continuous time
Markov chain.

The transition rate between two components Pi and Pj , de-
noted q(Pi, Pj), is the rate at which the system changes from
behaving as component Pi to behaving as Pj . It is the sum
of the activity rates labelling arcs which connect the node
corresponding to Pi to the node corresponding to Pj in the
derivation graph, i.e.,

q(Pi, Pj) =
∑
a∈Act(Pi|Pj) ra

where Pi 6= Pj and Act(Pi|Pj) = {| a ∈ Act(Pi)| Pi
a−→ Pj |}.

Clearly if Pj is not a one-step derivative of Pi, q(Pi, Pj) = 0.
The q(Pi, Pj) (also denoted qij), are the off-diagonal ele-
ments of the infinitesimal generator matrix of the Markov
process, Q. Diagonal elements are formed as the nega-
tive sum of the non-diagonal elements of each row, i.e.,
qii = −q(Pi). For any finite and irreducible PEPA model
P , the steady-state distribution Π(·) exists and it may be
found by solving the normalization equation and the global
balance equations:

∑
Pi∈ds(P ) Π(Pi) = 1 and ΠQ = 0. The

conditional transition rate from Pi to Pj via an action type
α is denoted q(Pi, Pj , α). This is the sum of the activity
rates labelling arcs connecting the corresponding nodes in
the derivation graph which are also labelled by the action



Producer Consumer

QThink
def
= (τ, δ).QCompute PEmpty

def
= (tr,>).P1

QCompute
def
= (comp, ε).QSend + (τ, ϕ).QError Pi

def
= (τ, iµ).Pi+1 + (tr,>).Pi+1 + (send, γ).PWait 1 ≤ i < N

QSend
def
= (tr, η).QThink PN

def
= (tr,>).PN + (send, γ).PWait

QError
def
= (τ, ξ).QRecovery PWait

def
= (τ, ν).PEmpty

QRecovery
def
= (τ, δ).QCompute

Table 2: PEPA equations for the models of Example 1

type α. It is the rate at which a system behaving as compo-
nent Pi evolves to behaving as component Pj as the result
of completing a type α activity.

Definition 1. (Total conditional transition rate) For a
PEPA component P and a set of possible derivatives S ⊆
ds(P ), the total conditional transition rate from P to S,
denoted q[P, S, α], is defined as

q[P, S, α] =
∑
P ′∈S

q(P, P ′, α)

where q(P, P ′, α) =
∑
P

(α,rα)−−−−→P ′
rα.

Example 1. We consider a model of a system consisting
of a producer-like process and a consumer-like process. The
former alternates a thinking-phase, a computing phase and
then sends the output to the consumer. During the computa-
tion phase some errors may arise and hence, after a recov-
ering phase, the computation must be newly done. The con-
sumer enqueues the jobs worked by the producer and trans-
mits them in batches. A maximum buffer size of N jobs
is set and, in case of saturation, further arrivals are lost.
Each of the jobs waiting to be sent can generate other jobs
(e.g., because the time spent in the queue causes an update of
the information stored in the jobs). The transition diagrams
of the producer and the consumer are shown in Figure 1-(A)
and (B), respectively, while their encoding in PEPA is shown
in Table 2. The whole system is modelled by:

S
def
= PEmpty ��{tr}QThink .

The independence and exponential distribution of the tran-
sition times are assumed.

3. CONTEXTUAL LUMPABILITY
In order to tackle the state space explosion problem, a va-
riety of model simplification techniques have been proposed
at the level of the Markov process. Among them, aggre-
gation, can be formalized in terms of equivalence relations
over the state space of the model. Any such equivalence
induces a partition on the state space of the model and ag-
gregation is achieved by aggregating equivalent states into
macro-states, thus reducing the overall state space. If the
original state space is {X0, X1, . . . , Xn} then the aggregated
state space is some {X[0], X[1], . . . , X[N ]}, where N ≤ n, ide-
ally N � n. In general, when a CTMC is aggregated the
resulting stochastic process will not have the Markov prop-
erty.
However if the partition can be shown to satisfy the so-called

lumpability condition [14, 2], the property is preserved and
the aggregation is said to be exact.

Definition 2. (Lumpability) A CTMC, {Xi}, is lum-
pable with respect to some partition χ = {X[k]} if for any
X[k], X[l] ∈χ with k 6= l and Xi, Xj ∈ X[k],

q(Xi, X[l]) = q(Xj , X[l])

where q(Xi, X[l]) is the aggregated transistion rate from Xi
to all states in X[l], i.e., q(Xi, X[l]) =

∑
Xm∈X[l]

q(Xi, Xm).

Since an equivalence relation R ⊆ C ×C over PEPA compo-
nents partitions the set of components C, if it is restricted
to the derivative set of any component P , the relation par-
titions this set. Let ds(P )/R denote the set of equivalence
classes generated in this way. Clearly, this induces also a par-
tition on the state space of the CTMC underlying P . Hence,
at the level of PEPA models, the concept of lumpability can
be expressed as a relation between PEPA components.

Definition 3. (Lumpable relation) A relation R ⊆ C×C
over PEPA components is lumpable if for any component P ,
ds(P )/R induces a lumpable partition on the state space of
the CTMC corresponding to P .

By definition of lumpability, a lumpable relation is an equiv-
alence relation. Moreover, the union of lumpable relations
is itself a lumpable relation.

Proposition 1. Let I be a set of indices and Ri be a
lumpable relation for all i ∈ I. Then the union, R = ∪i∈IRi,
is also a lumpable relation.

Proof. Given a component P , any equivalence relation
over C will partition the set ds(P ) into equivalences classes.
Let ds(P )/R and ds(P )/Ri denote these sets of equivalence
classes for R and each Ri, respectively. For i ∈ I, any
equivalence class T i ∈ ds(P )/Ri is wholly contained within
some equivalence class T ∈ ds(P )/R; moreover there is some
set J i such that T = ∪j∈JiT ij . Let S and T be two dis-
tinct equivalence classes in ds(P )/R and X,Y ∈ S. Since
(X,Y ) ∈ R, we have (X,Y ) ∈ Ri for some i ∈ I. Therefore:

q(X,T ) =
∑
j∈Ji

q(X,T ij ) =
∑
j∈Ji

q(Y, T ij ) = q(Y, T )



One of the main advantages of considering models derived
from a process algebra such as PEPA is the possibility of
establishing useful algebraic compositional properties of the
behaviours of systems. In this paper we focus on contex-
tuality. In particular, we restrict our attention to standard
evaluation (or static [19]) contexts which are PEPA compo-
nents with a hole that does not occur under a prefix or a
choice operator. Formally, an evaluation context is a term
with a hole [·] defined by the grammar:

C[·] ::= [·] | [·] ��
L
P | P ��

L
[·] | [·]/L

An equivalence relation is contextual if substituting an equiv-
alent component within a context gives rise to an equivalent

model, e.g., if P is equivalent to P ′, then P ��
L
Q is equiva-

lent to P ′ ��
L
Q.

Definition 4. (Contextuality) A relation R ⊆ C×C over
PEPA components is contextual if for all PEPA components
P,Q such that (P,Q) ∈ R and for all contexts C[·],

(C[P ], C[Q]) ∈ R

Finally, we are interested in equivalence relations preserving
the current action types of equivalent terms.

Definition 5. (Current action type preservation) A re-
lation R ⊆ C × C over PEPA components is current action
type preserving if for all PEPA components P,Q such that
(P,Q) ∈ R, A(P ) = A(Q).

The notion of contextual lumpability for PEPA models is
defined as follows.

Definition 6. (Contextual lumpability) Contextual lum-
pability, denoted ∼=l, is the largest contextual, current action
type preserving, lumpable relation over PEPA terms.

Contextual lumpability is thus a congruence with respect to
the cooperation and hiding operators.

Example 2. In order to support the intuition of Defini-
tion 6, we illustrate the following toy-example. Consider

two PEPA terms: P
def
= (a, λ).P and Q

def
= (a, µ).Q. We

show that a necessary and sufficient condition for a relation
R to be a contextual lumpability containing the pair (P,Q)
is that λ = µ. The sufficiency is trivial, we prove that it
is necessary. Let us suppose that λ 6= µ and that P ∼=l

Q. Among the possible contexts we choose the following:

C[·] def
= R��

{a}
[·] where R = (a,>).R′ and R′ = (b, γ).R. Let

C′[·] def
= R′ ��

{a}
[·]. By contextuality, we have that P ∼=l Q im-

plies C[P ] ∼=l C[Q]. The set of derivatives of C[P ] and C[Q]
is {C[P ], C[Q], C′[P ], C′[Q]}. Since A(C[P ]) = A(C[Q]) =
{a} and A(C′[P ]) = A(C′[Q]) = {b}, there are two equiv-
alence classes, i.e., {C[P ], C[Q]} and {C′[P ], C′[Q]}. It is
easy to see that this is a lumping in the underlying Markov
chain only if λ = µ. Hence, there cannot be any contextual
lumpability such that P ∼=l Q if λ 6= µ.

4. COINDUCTIVE CHARACTERIZATION
In a process algebra, actions, rather than states, are taken
to capture the behaviour of a system or model. This leads
to a formally defined notion of equivalence, bisimulation, in
which components are regarded as equal if, under observa-
tion, they appear to perform exactly the same actions. In
this section we introduce a bisimulation-like relation, called
lumpable bisimulation, for PEPA models which provides a
coinductive characterisation of contextual lumpability.

Lumpable bisimulation is developed in the style of Larsen
and Skou’s bisimulation [15]: in PEPA transition rates are
used analogously to probabilities in their probabilistic pro-
cess algebra.

Two PEPA components are lumpably bisimilar if there is
an equivalence relation between them such that, for any ac-
tion type α different from τ , the total conditional transition
rates from those components to any equivalence class, via
activities of this type, are the same.

Definition 7. (Lumpable bisimulation) An equivalence
relation over PEPA components, R ⊆ C × C, is a lumpable
bisimulation if whenever (P,Q) ∈ R then for all α ∈ A and
for all S ∈ C/R such that

• either α 6= τ ,

• or α = τ and P,Q 6∈ S,

it holds

q[P, S, α] = q[Q,S, α]

where q[·] is as introduced in Definition 1.

Remark 1. (Comparison with strong equivalence) Ac-
cording to [13], an equivalence relation R ⊆ C×C is a strong
equivalence if whenever (P,Q) ∈ R then for all α ∈ A and
for all S ∈ C/R we have q[P, S, α] = q[Q,S, α]. Notice
that this definition is stricter than that of lumpable bisimula-
tion because the latter allows arbitrary activities with type τ
among components belonging to the same equivalence class.
Later on, we will study the properties of lumpable bisimu-
lation showing that it is a congruence with respect to the
cooperation and hiding operators, but not for the choice and
the prefix. Roughly speaking, we can say that in general
the lumpable bisimulation induces a coarser lumping than
the strong equivalence but has stricter congruence properties.
Nevertheless, although the lumpable bisimulation is contex-
tual only for the particular class of evaluation contexts, this
is what one expects in most practical cases in which different
components cooperate using the �� operator.

Remark 2. (Comparison with prior weak bisimulations)
In [4] a notion of weak bisimulation for CTMCs is intro-
duced. This is based on the idea that the time-abstract be-
haviour of equivalent states is weakly bisimilar and that the
“relative speed” of these states to move to a different equiv-
alence class is equal. The authors show that this intuition



is captured by a definition of weak-bisimulation which re-
sembles our notion of lumpable bisimulation if we ignore ac-
tion types and labels. Differently from our setting, in [4]
the authors deal with CTMC without any notion of com-
positionality and hence of contextuality. Compositionality
is considered in [7, 8, 9], where definitions of contextual
weak bisimilarities for stochastic process algebra based on
the classical concept of weak action are proposed. Our ap-
proach shares with these bisimilarities the idea of ignoring
the rates for non-synchronizing (labelled τ) transitions be-
tween a state and the others belonging to the same equiva-
lence class. With respect to these results, we explicitly study
the relationships between our lumpable bisimulation at the
process algebra level and the induced lumping of the under-
lying Markov chains. This leads to a coinductive character-
isation of contextual lumpability that is novel, to the best of
our knowledge. Moreover, it is important to observe that,
due to the different nature of synchronisation, the results
proposed for PEPA can not be applied to the process calculi
considered in [7, 8, 9], and vice versa.

It is clear that the identity relation is a lumpable bisimula-
tion. We are interested in the relation which is the largest
lumpable bisimulation, formed by the union of all lumpable
bisimulations. However, it is not straightforward to see that
this will indeed be a lumpable bisimulation.

The following proposition states that any union of lumpable
bisimulations generates a lumpable bisimulation.

Proposition 2. Let I be a set of indices and Ri be a
lumpable bisimulation for all i ∈ I. Then the transitive
closure of their union, R = (∪i∈IRi)∗, is also a lumpable
bisimulation.

Based on the above result we define the maximal lumpable
bisimulation as the union of all lumpable bisimulations.

Definition 8. (Lumpable bisimilarity) Two PEPA com-
ponents P and Q are lumpably bisimilar, written P ≈l Q,
if (P,Q) ∈ R for some lumpable bisimulation R, i.e.,

≈l =
⋃
{R | R is a lumpable bisimulation}.

≈l is called lumpable bisimilarity and it is the largest sym-
metric lumpable bisimulation over PEPA components.

It is easy to show that lumpable bisimilarity is a congruence
for evaluation contexts.

Proposition 3. If P1 ≈l P2 then

• for all L ⊆ A, P1 ��
L
Q ≈l P2 ��

L
Q;

• P1/L ≈l P2/L.

Proof. The proof is analogous to that of Proposition 8.3.1,
items 3 and 4, in [13].

Moreover, lumpable bisimilarity is a lumpable relation.

Proposition 4. For all PEPA components P,Q such that
P ≈l Q and for all S ∈ C/≈l such that P,Q 6∈ S, q(P, S) =
q(Q,S).

Proof. Let P,Q such that P ≈l Q and S ∈ C/≈l such
that P,Q 6∈ S. By Definition 7, q[P, S, α] = q[Q,S, α] for all
α ∈ A. Hence, q(P, S) =

∑
α∈A q[P, S, α] =

∑
α∈A q[Q,S, α] =

q(Q,S).

The next Theorem shows that lumpable bisimilarity is a
characterization of contextual lumpability.

Theorem 2. Let P and Q be two PEPA components. It
holds that: P ≈l Q if and only if P ∼=l Q.

Proof. [Soundness]: ≈l⊆∼=l. Indeed, ≈l is symmetric
(since, by Definitions 7 and 8, ≈l is an equivalence relation),
contextual (by Proposition 3), current action type preserv-
ing and a lumpable relation (by Proposition 4).

[Completeness]: ∼=l⊆≈l. It is sufficient to show that R =
{(P,Q)| P ∼=l Q} is a lumpable bisimulation. Let (P,Q) ∈ R
with P ∼=l Q. Then A(P ) = A(Q).

We first prove the following claim.

Claim 1. Let P and Q be two PEPA components such
that their derivation graphs, D(P ) and D(Q), are graph iso-
morphic. Then P ∼=l Q.

Proof of Claim. From the fact that D(P ) and D(Q) are
graph isomorphic, there exists a bijection f from ds(P ) to

ds(Q) such that Q = f(P ) and P
a−→ P ′ if and only if

f(P )
a−→ f(P ′). Let S ∈ C/∼=l. It trivially follows that

{(P ′, f(P ′)| P ′ ∈ ds(P )} is a lumpable bisimulation. Hence,
by the fact that Q = f(P ) and that lumpable bisimulation
implies contextual lumpability, we have P ∼=l Q.

We are now in position to prove that for any α 6= τ and
S ∈ C/R, q[P, S, α] = q[Q,S, α].

For a component P , let ~A(P ) = ∪Pi∈ds(P )A(Pi). Let α ∈
A(P ) = A(Q). Let ᾱ 6∈ ~A(P )∪ ~A(Q) = {α, β1, . . . , βn} with
ᾱ 6= τ . Consider the context

C[·] def
= R��

L
[·]

R
def
= (α,>).R′ + (ᾱ, r).R′

R′
def
= (α,>).R′ + (β1,>).R′ + · · ·+ (βn,>).R′

for some rate r and L = {α, β1, . . . , βn}. Let S ∈ C/R. By

definition of R and by contextuality, SC = {R′ ��
L
X| X ∈

S} ⊆ T ∈ C/∼=l for some T . Any one-step derivative of C[P ]
(resp. C[Q]) has one of the following forms:

• R��
L
P ′ with P

(τ,r′)−−−→ P ′ for some rate r′ (resp. R��
L
Q′

with Q
(τ,r′)−−−→ Q′ for some rate r′);



• R′ ��
L
P ′ with P

(α,r′)−−−−→ P ′ for some rate r′ (resp.

R′ ��
L
Q′ with Q

(α,r′)−−−−→ Q′ for some rate r′);

• R′ ��
L
P (resp. R′ ��

L
Q).

Since A(R′ ��
L
P ) 6= A(R��

L
P ′) for all P ′ ∈ ds(P )∪ds(Q),

we have thatR��
L
P ′ 6∈ T , and in particular, it holdsR��

L
P,R��

L
Q 6∈

T . Since for any P ′ ∈ C, the derivation graphs of R′ ��
L
P ′

and P ′ are isomorphic, by the above claim we haveR′ ��
L
P ′ ∼=l

P ′ for all P ′ ∈ C. Hence, S = T . From P ∼=l Q, we have
C[P ] ∼=l C[Q] and hence q(C[P ], T ) = q(C[Q], T ). More-
over,

q(C[P ], T ) = q(C[P ], T, α) + q(C[P ], T, ᾱ)
= q(C[P ], T, α) + r
= q[P, S, α] + r.

Similarly, we can prove that q(C[Q], T ) = q[Q,S, α] + r.
Hence, q[P, S, α] = q[Q,S, α].

We now prove that for any S ∈ C/R such that P,Q 6∈ S,
q[P, S, τ ] = q[Q,S, τ ]. Let S ∈ C/R such that P,Q 6∈ S.
By definition of R, S ∈ C/∼=l. From the fact that P ∼=l Q,
we have q(P, S) = q(Q,S). Precisely,

q(P, S) =
∑
α∈A(P ) q[P, S, α] + q[P, S, τ ]

q(Q,S) =
∑
α∈A(Q) q[Q,S, α] + q[Q,S, τ ]

Since A(P ) = A(Q) and, as proved above, for any α 6= τ
and S ∈ C/R, q[P, S, α] = q[Q,S, α], we have q[P, S, τ ] =
q[Q,S, τ ].

Example 3. Let us consider the model depicted in Exam-
ple 1. If we consider the producer component (Figure 1-(A))
we notice that QThink ≈l QRecovery and hence they belong
to the same equivalence class, say [Q′]. The lumped pro-
ducer component is shown in Figure 2-(A). If we consider
the consumer, we observe that P1 ≈l P2 ≈l · · · ≈l PN and
let [P ′] be the associated equivalence class. Figure 2-(B)
shows the lumped consumer model. Notice that, while we
can say that QThink is strongly equivalent to QRecovery (see
the analysis of a similar model in [11]) we can show that Pi
is not strongly equivalent to Pj, i 6= j. Indeed, the total rate
of the action with type τ outgoing from term Pi is iµ for
1 ≤ i < N , and is 0 if i = N , i.e., different for each term
P1, . . . , PN . Therefore, the joint model obtained by apply-
ing lumpable bisimilarity has less states than that obtained
by strong equivalence.

5. AN ALGORITHM FOR CONTEXTUAL
LUMPABILITY

In [23], Valmari and Franceschinis proposed an algorithm
for computing lumpability over Markov Chains, i.e., directed
weighted graphs. In particular, the algorithm exploits a par-
tition refinement strategy, similar to that of Paige-Tarjan’s
algorithm for bisimulation [21], enriched with sorting of clas-
ses. In this section we exploit Valmari and Franceschinis’ al-
gorithm to design a procedure for computing the contextual
lumpability. We first reformulate the notion of lumpable
bisimulation.

Lemma 1. An equivalence relation over PEPA components,
R ⊆ C × C, is a lumpable bisimulation if the following con-
ditions hold:

• for each α ∈ A with α 6= τ , for each S, S′ ∈ C/R if
P,Q ∈ S′, then q[P, S, α] = q[Q,S, α];

• for each S, S′ ∈ C/R with S′ 6= S, if P,Q ∈ S′, then
q[P, S, τ ] = q[Q,S, τ ].

Proof. This is an immediate consequence of the fact that
(P,Q) ∈ R implies that there exists S′ ∈ C/R such that
P,Q ∈ S′. Hence, (P,Q) ∈ R and P,Q 6∈ S implies that
there exists S′ ∈ C/R such that P,Q ∈ S′ and S′ 6= S.

Notice that C is infinite, since it contains all PEPA compo-
nents. However, when we are interested in testing P ≈l Q it
is sufficient to consider the set of components ds(P )∪ds(Q),
which can be finite.

Definition 9. (Lumpable bisimulation over a set of com-
ponents) Let D be a set of PEPA components, R ⊆ D × D
is a lumpable bisimulation over D if:

• for each α ∈ A with α 6= τ , for each S, S′ ∈ D/R if
P,Q ∈ S′, then q[P, S, α] = q[Q,S, α];

• for each S, S′ ∈ D/R with S′ 6= S, if P,Q ∈ S′, then
q[P, S, τ ] = q[Q,S, τ ].

Of course we are interested in lumpable bisimulations only
in the case of sets of components D which are closed un-
der derivative behaviours, i.e., such that D = ds(D), where
ds(D) = ∪P∈Dds(P ).

Lemma 2. Let D be closed under derivative behaviours,
i.e., D = ds(D).

(a) If R is a lumpable bisimulation, then R ∩ (D × D) is
a lumpable bisimulation over D;

(b) If R is a lumpable bisimulation over D, then R ∪ Id,
where Id is the identity relation over C, is a lumpable
bisimulation.

Proof. First we prove item (a). Let RD = R∩ (D×D).

Let α ∈ A \ {τ}, S, S′ ∈ D/RD, and P,Q ∈ S′. Since
P,Q ∈ S′, there exists S′ ∈ C/R such that P,Q ∈ S′ (i.e.,
S′ = S′∩D). Moreover, there exists S such that S = S∩D.
Since D = ds(D) we have that for each O ∈ D it holds
q[O,S, α] = q[O,S, α]. So, since P,Q ∈ D, P,Q ∈ S′ ∈
C/R, and R is a lumpable bisimulation, we get q[P, S, α] =
q[P, S, α] = q[Q,S, α] = q[Q,S, α].

As far as τ is concerned, since P,Q ∈ S′ ⊆ S′ and S′ = S′ ∩
D 6= S = S ∩ D we have S′ 6= S. So, again, since P,Q ∈ D,
P,Q ∈ S′ ∈ C/R, and R is a lumpable bisimulation, we get
q[P, S, τ ] = q[P, S, τ ] = q[Q,S, τ ] = q[Q,S, τ ].
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Figure 2: (A)- Lumping of the producer model of Figure 1-(A) (B)- Lumping of the consumer model of Figure 1-(B)

We now prove item (b). Let R′ = R ∪ Id. We have that
C/R = D/R ∪ {{O} | O ∈ C \ D}. So if |S′| = 1, we imme-
diately get that for each α (including τ), for each S ∈ C/R,
it holds that if P,Q ∈ S′, then q[P, S, α] = q[Q,S, α], since
P = Q.

On the other hand, if |S′| > 1, then S′ ∈ D/R. Since
D = ds(D) we get that for each O ∈ D and for each S ∈
(C/R)\(D/R) it holds q[O,S, α] = 0. Hence, for each P,Q ∈
S′ we get that:

• for each α ∈ A \ {τ}, for each S ∈ C/R it holds
q[P, S, α] = q[Q,S, α];

• for each S ∈ C/R with S′ 6= S it holds q[P, S, τ ] =
q[Q,S, τ ].

This proves that R′ is a lumpable bisimulation.

The largest bisimulation over a set of components closed
under derivative behaviours can be characterised as follows.

Proposition 5. Let D be a set of PEPA components such
that D = ds(D). The largest lumpable bisimulation over D
is the union of all lumpable bisimulations over D and it co-
incides with ≈l ∩(D ×D).

Proof. This is an immediate consequence of Lemma 2.

In particular, when we are interested in P ≈l Q, the follow-
ing lemma characterises lumpable bisimulations exploiting
the smallest possible sets of components.

Lemma 3. Let P and Q be two PEPA components. P ≈l
Q if and only if (P,Q) ∈ R for some lumpable bisimulation
R over ds(P ) ∪ ds(Q).

Proof. Let D = ds(P ) ∪ ds(Q). We have ds(D) = D.

Hence if P ≈l Q then there exists a lumpable bisimulation
R such that (P,Q) ∈ R. By Lemma 2 (a) we have that
(P,Q) ∈ R∩ (D×D) and R∩ (D×D) is a lumpable bisim-
ulation over D.

On the other hand, if there exists R which is a lumpable
bisimulation over D such that (P,Q) ∈ R, then, by Lemma
2 (b), R∪Id is a lumpable bisimulation and (P,Q) ∈ R, i.e.,
P ≈l Q.

Hence, from now on we focus on sets of components D such
that ds(D) = D.

A weighted directed graph is a triple G = (D,∆,W ) such
that:

• D is a set of nodes;

• ∆ ⊆ D ×D is a set of edges;

• W : ∆ → R is a weight function which assigns a real
value to each edge.

If G = (D,∆,W ) is a weighted directed graph and P,Q ∈ D
are nodes, with a slight abuse of notation, W (P,Q) is used to
denote W (〈P,Q〉) when 〈P,Q〉 ∈ ∆ and 0 otherwise. More-
over, if S ⊆ D is a set of nodes, W (P, S) is

∑
Q∈SW (P,Q).

Given a set D of PEPA components we introduce a weighted
directed graph GDα = (D,∆Dα ,WDα ), for each action type
α ∈ A. We call such a graph the conditional CTMC of D
under action type α.

Definition 10. (Conditional CTMC of D under action
type α) Let D be a set of components such that D = ds(D)
and let α ∈ A be an action type. We define the condi-
tional CTMC of D under action type α, denoted by GDα =
(D,∆Dα ,WDα ), as the weighted directed graph such that:

• D is the set of nodes;

• ∆Dα = {〈Ci, Cj〉|Ci, Cj ∈ D, Ci
(α,r)−−−→ Cj for some r}

is the set of edges;

• WDα : ∆Dα → R is the weight function defined as
WDα (〈Ci, Cj〉) = q[Ci, {Cj}, α].

In the above definition q[Ci, {Cj}, α] is the sum of the ac-
tivity rates labelling arcs connecting Ci to Cj and having
action type α, also in the case Cj = Ci.

Notice that WDα (Ci, S) is equal to q[Ci, S, α].



Moreover, we introduce the weighted directed graph called

the variant of GDα and denoted by ĜDα . In the algorithm GDα
will be used for all α 6= τ , while ĜDτ will replace GDτ .

Definition 11. (Variant of GDα ) Let D be a set of com-
ponents such that D = ds(D) and let α ∈ A be an action
type. We define the variant of the conditional CTMC of D
under action type α, denoted by ĜDα = (D, ∆̂Dα , ŴDα ), as the
weighted directed graph such that:

• D is the set of nodes;

• ∆̂Dα = {〈Ci, Ci〉 | Ci ∈ D} ∪∆Dα is the set of edges;

• ŴDα : ∆̂Dα → R is the weight function defined as

ŴDα (〈Ci, Cj〉) =

{
WDα (Ci, Cj) if Ci 6= Cj
−WDα (Ci,D \ {Ci}) if Ci = Cj

We consider the following definition taken from [23].

Definition 12. (Relation compatible with G) Let G =
(D,∆,W ) be a weighted directed graph. An equivalence rela-
tion R over D is compatible with G if for each S, S′ ∈ D/R
if P,Q ∈ S′, then W (P, S) = W (Q,S).

Given G = (D,∆,W ) with D finite, an initial equivalence
relation I over D, and an action type α, we consider the
problem of finding the largest equivalence relation R ⊆ D×
D compatible with GDα .

Lemma 4. Let D be a set of components such that D =
ds(D). Let R be an equivalence relation over D such that
≈l ∩(D×D) ⊆ R. Let α ∈ A\{τ} and R′ ⊆ R be the largest
equivalence relation compatible with GDα . It holds that:

≈l ∩(D ×D) ⊆ R′

Proof. We start by proving the following general result.

Claim 2. Let G = (D,∆,W ) be a weighted directed graph.
Let R be an equivalence relation over D. Let V1, V2 ⊆ R be
two equivalence relations included in R and compatible with
G. Let V1 tV2 be the smallest equivalence relation such that
V1, V2 ⊆ V1 t V2. It holds that V1 t V2 ⊆ R and V1 t V2 is
compatible with G.

Proof of Claim. We recall from the theory of lattices of
equivalence relations that V1 t V2 is the transitive closure
of V1 ∪ V2. In other terms (P,Q) ∈ V1 t V2 if and only if
there exists a finite sequence P1, . . . , Pn such that P1 = P ,
Pn = Q, and for each 1 ≤ i ≤ n − 1 it holds (Pi, Pi+1) ∈
Vk(i) with k(i) ∈ {1, 2}. Similarly, as far as D/(V1 t V2) is
concerned, S ∈ D/(V1 t V2) can be seen both as union of
blocks of D/V1 and as union of blocks of D/V2, i.e., there
exist S1, . . . , Sm ∈ D/V1 (T1, . . . , Tp ∈ D/V2) such that S =
∪mi=1Si (S = ∪pi=1Ti, respectively).

It trivially holds that V1 t V2 ⊆ R, since V1, V2 ⊆ R and
V1 t V2 is the smallest equivalence relation containing both
V1 and V2.

We have to prove that V1 t V2 is compatible with G. Let
S, S′ ∈ D/(V1tV2) and P,Q ∈ S′. This means that (P,Q) ∈
V1 t V2, i.e., there exists a finite sequence P1, . . . , Pn such
that P1 = P , Pn = Q, and for each 1 ≤ i ≤ n − 1 it holds
(Pi, Pi+1) ∈ Vk(i) with k(i) ∈ {1, 2}. By induction on n we
prove that W (P, S) = W (Q,S).

Basis n = 2. This means that either (P,Q) ∈ V1 or (P,Q) ∈
V2. It is not restrictive to assume (P,Q) ∈ V1. We know
that there exist S1, . . . , Sm ∈ D/V1 such that S = ∪mi=1Si.
Hence, since V1 is compatible with G, we get W (P, S) =∑m
i=1W (P, Si) =

∑m
i=1W (Q,Si) = W (Q,S).

Inductive Step. By inductive hypothesis we have thatW (P, S) =
W (Pn−1, S) and W (Pn−1, S) = W (Q,S). By transitivity of
=, we get W (P, S) = W (Q,S).

From the above claim we get that R′ = ti∈IRi where the
Ri are all the equivalence relations included in R and com-
patible with GDα . Hence, if we prove that ≈l ∩(D × D)
is compatible with GDα we get the thesis. The fact that
≈l ∩(D × D) is compatible with GDα immediately follows
from Definitions 9, 10, 12, and Proposition 5.

As in [23] we consider also a variant notion of compatibility
(for S is different from S′).

Definition 13. (Relation variant compatible withG) Let
G = (D,∆,W ) be a weighted directed graph. An equiva-
lence relation R over D is variant compatible with W if
for each S, S′ ∈ D/R with S′ 6= S, if P,Q ∈ S′, then
W (P, S) = W (Q,S).

This definition is useful to deal with actions of type τ .

Lemma 5. Let D be a set of components such that D =
ds(D). Let R be an equivalence relation over D such that
≈l ∩(D × D) ⊆ R. Let R′ ⊆ R be the largest equivalence
relation variant compatible with GDτ . It holds that:

≈l ∩(D ×D) ⊆ R′

Proof. The proof is analogous to that of Lemma 4.

Lemma 6. Let D be a set of components such that D =
ds(D). Let R be an equivalence relation over D. If

• for each α ∈ A\{τ}, the relation R is compatible with
GDα and

• the relation R is variant compatible with GDτ ,

then R is a lumpable bisimulation over D.



Proof. We prove that both conditions of Definition 9
hold for R.

Let α ∈ A \ {τ}, S, S′ ∈ D/R, and P,Q ∈ S′. Since R is
compatible with GDα , we have that WDα (P, S) = WDα (Q,S).
From the definition ofWDα we get that q[P, S, α] = q[Q,S, α].

Let S, S′ ∈ D/R, with S′ 6= S, and P,Q ∈ S′. Since R
is variant compatible with GDτ , we have that WDτ (P, S) =
WDτ (Q,S). From the definition of WDτ , we get q[P, S, τ ] =
q[Q,S, τ ].

The authors of [2] proved that the largest equivalence rela-
tion R ⊆ I over D variant compatible with G = (D,∆,W )
is the largest equivalence relation R ⊆ I over D compatible

with Ĝ = (D,∆, Ŵ ), where Ŵ (P,Q) = W (P,Q), if P 6= Q,

while Ŵ (P, P ) = −W (P,D\{P}) (see [23] Section 2 Propo-
sition 1). As a consequence we get the following result.

Proposition 6. The largest equivalence relation R′ ⊆ R
over D variant compatible with GDτ is the largest equivalence

relation R′ ⊆ R over D compatible with ĜDτ .

The algorithm proposed in [23] that, in this paper, we call
Lumpability(G = (D,∆,W ),I), computes the largest equiv-
alence relation R ⊆ I over D compatible with G. We exploit
it inside our algorithm to compute contextual lumpability.
Given a finite set of components D closed under deriva-
tive behaviours, the function reported in Algorithm named

Contextual Lumpability({GDα }α∈A\{τ},ĜDτ ) returns the
relation ≈l ∩(D×D), i.e., the largest lumpable bisimulation
over D.

:

Algorithm 1. Contextual Lumpability({GDα }α∈A\{τ},ĜDτ )

Require: D finite and D = ds(D);
R = ∅;
R = D ×D;
while R 6= R do

R = R;
for all α ∈ A \ {τ} do
R =Lumpability(GDα ,R);

end for

R =Lumpability(ĜDτ ,R);
end while
return R;

Theorem 3. (Correctness) Let D be a finite set of PEPA
components such that D = ds(D). A call to the function

Contextual Lumpability({GDα }α∈A\{τ},ĜDτ ) always ter-
minates and it returns ≈l ∩(D ×D).

Proof. Since Lumpability( ,R) always returns an equiv-
alence relation, it can only remove pairs from R, and D is
finite, we have that the while-loop terminates after at most
|D| iterations.

By Lemma 4 and the correctness of Lumpability( , ) proved
in [23], we have that if ≈l ∩(D × D) ⊆ R, then for any
α ∈ A \ {τ} algorithm Lumpability(GDα ,R) returns a rela-
tion R′ such that ≈l ∩(D ×D) ⊆ R′.

Hence, by induction on the number of iterations of the forall-
loop, we get that if ≈l ∩(D×D) ⊆ R holds at the beginning
of the forall-loop, then ≈l ∩(D × D) ⊆ R holds at the end
of the execution of the forall-loop.

Moreover, by Lemma 5, Proposition 6 and correctness of
Lumpability( , ), we get that if ≈l ∩(D × D) ⊆ R holds,

then Lumpability(ĜDτ ,R) returns a relation R′ such that
≈l ∩(D ×D) ⊆ R′ holds.

Hence, by induction on the number of iterations of the while-
loop, we get that if ≈l ∩(D×D) ⊆ R holds at the beginning
of the while-loop, then ≈l ∩(D × D) ⊆ R holds at the end
of the execution of the while-loop.

So, since at the beginning of the while-loop R = D × D,

we get that Contextual Lumpability({GDα }α∈A\{τ},ĜDτ )
returns a relation R such that ≈l ∩(D ×D) ⊆ R.

To conclude we notice that when the while-loop terminates
its last iteration has not modified the relation R. Hence,
by Lemma 6, Proposition 6, and correctness of function
Lumpability( , ), we get that R is a lumpable bisimula-
tion over D. Hence, since by Proposition 5 ≈l ∩(D × D)
is the union of all lumpable bisimulations over D, we can
conclude that R ⊆≈l ∩(D ×D).

Notice that Lumpability(ĜDτ ,D × D) (correctly) returns
D × D. However, in the general case with R 6= D × D
Lumpability(ĜDτ ,R) returns an equivalence relationR′ dif-
ferent from R. For the above reason in our algorithm we
start refining D × D on the action types different from τ .

A call to Lumpability(ĜDτ ,R) before the first execution of
the forall-loop would be correct, but useless.

Theorem 4. (Complexity) Let D be a finite set of PEPA
components such that D = ds(D). It holds that function

Contextual Lumpability({GDα }α∈A\{τ},ĜDτ ) runs in

O(|D|3 ∗ log |D|) time and O(|D|2) memory.

Proof. From [23], each execution of Lumpability(GDα ,R)
requires time O(|D|+ |∆Dα |∗ log |D|), while each execution of

Lumpability(ĜDτ ,R) requires time O(|D|+ |∆̂Dτ | ∗ log |D|).
Moreover, we already observed that the while-loop is ex-
ecuted at most |D| times, since it always refines equiva-
lence relations. Hence, we get a total time complexity of

O(|D|∗(|D|+max({|∆Dα |}α∈A\{τ}∪{|∆̂Dτ |})∗log |D|)). Since

both |∆Dα | and |∆̂Dτ | are at most |D|2, we get that func-

tion Contextual Lumpability({GDα }α∈A\{τ},ĜDτ ) runs in

O(|D|3 ∗ log |D|) time.

As far as memory is concerned, we recall that we have to
consider only the memory allocated during execution and
not the memory required for input and output. We no-
tice that after each call to Lumpability( , ) we can reuse



memory. Hence, the memory used during computation is
exactly the memory used by one execution of Lumpabil-
ity( , ) plus the memory used to store R and R. Storing
R and R as partitions, instead of as sets of pairs, they re-
quireO(|D|) memory. The calls to Lumpability( , ) require

Θ(|D| + max({|∆Dα |}α∈A\{τ} ∪ {|∆̂Dτ |})) memory. Since,

|∆Dα | and |∆̂Dτ | are at most |D|2, we obtain that our al-
gorithm requires O(|D|2) memory.

6. CONCLUSION
In this paper we have presented a notion of contextual lumpa-
bility for PEPA components and provided a coinductive
characterisation. Lumping a Markov chain, both in case
of discrete and continuous time, can be an efficient way to
reduce the model’s state space, so that the analyses (e.g., de-
riving the steady-state performance indices) can be carried
out efficiently [14, 1, 10, 23, 2]. Markovian process alge-
bras, such as PEPA, are widely appreciated thanks to their
compositionality properties. Informally, we can say that in
this paper, differently from [10, 23, 2], we aim at reducing
the state space of the CTMC underlying the whole model
by simplifying its components considered in isolation. To
this end, we have introduced a notion of contextual lump-
ing and its coinductive characterisation. We observe that,
with respect to the strong equivalence proposed in [13], the
lumpable bisimilarity is less restrictive since it allows arbi-
trary transition rates for activities with type τ among states
belonging to the same equivalence class, as illustrated in Ex-
ample 3. On the other hand, while the strong equivalence is a
congruence with respect to all the PEPA operators [13], the
lumpable bisimilarity is a congruence only for a particular
class of contexts, named evaluation contexts, that are PEPA
terms with a hole that does not occur under a prefix or a
choice operator. Evaluation contexts are widely accepted
in the analysis of contextual properties (these contexts are
called static contexts in [19]) since they describe environ-
ments which can communicate with the process being ob-
served without preventing its internal behaviour. Hence,

strong equivalence =⇒ lumpable bisimilarity

=⇒ lumping on the CTMC.

Observe that it is clearly untrue that a lumping on the
CTMC implies a lumpable bisimilarity over process alge-
bra’s terms. Indeed, according to the definition of lumpabil-
ity given in [14], the Markov chain with one state is always
a valid lumping, but clearly not interesting for application
purposes. However, lumpable bisimilarity is a full charac-
terisation of contextual lumpability. Finally, we have given
an algorithm to compute the optimal contextual lumping.
Observe that, although its asymptotic time complexity is
O(|D|3 log |D|), where |D| is the number of terms, in prac-
tice this turns to be not a real drawback under the reason-
able assumption that the components are much simpler (i.e.,
they have much less derivatives) than the joint model that
they form with their cooperation.
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