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ABSTRACT
We study the maximum flow on random weighted directed
graphs and hypergraphs, that generalize Erdös-Rényi graphs.
We show that, for a single unicast connection chosen at
random, its capacity, determined by the max-flow between
source and sink, converges in probability to the capacity
around the source or sink. Using results from network cod-
ing, we generalize this result to different types multicast con-
nections, whose capacity is given by the max-flow between
the source(s) and sinks. Our convergence results indicate
that the capacity of unicast and multicast connections us-
ing network coding are, with high probability, unaffected by
network size in random networks. Our results generalize to
networks with random erasures.

General Terms
Theory

Keywords
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1. INTRODUCTION
Network coding [1] has shown that the capacity of mul-

ticast connections is given by the min-cut max-flow upper
bound between source(s) and sinks, thus generalizing the
unicast results of Ford-Fulkerson to multicast connections.
Indeed, network coding can be used to show the classical
Ford-Fulkerson flow achievability results from an algebraic
point of view [10]. Such cuts can be considered over hy-
pergraphs [12], which provide a useful representation of the
broadcast nature of wireless links. Moreover, the max-flow
achievability of the network min-cut holds, for networks with
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ergodic random erasures, if we consider the mean of the flow
and of the cut [12].

For a single source and sink, the problem of determining
the behavior of the max-flow in random graphs was first
envisaged in [5] and in [4]. These papers present results
on undirected complete graphs with capacities that are ran-
domly selected with a distribution that does not depend on
node distance. Note that such results, obtained on undi-
rected graphs, may not be illustrative of the behavior of di-
rected graphs. For example, in directed graphs, the gain that
network coding can obtain, in multicast connection capac-
ity, over uncoded approaches, which are based upon convex
combinations of Steiner trees, is arbitrarily large [8]. On the
hand, the Kriesell conjecture [11] states that network coding
in undirected graphs cannot more than double the capacity
of a multicast connection, and [16] has shown the bound is
bounded by 6.5. While results on max-flow in undirected
graphs may not be readily applicable to directed graphs,
there is little work, to the authors’ knowledge, on max-flow
in directed random graphs. Reference [15] provides, with-
out proof, results for the problem of max-flow for a single
source and sink in directed random graphs, with the restric-
tion that arcs can only exist in a single direction between
two nodes.

The capacity of random graphs using network coding was
first considered in [14]. In that article, the first random
graphs considered are directed random graphs built over
complete graphs, where the existence of an edge from one
node to another implies the existence of a reverse edge of
equal capacity. Moreover, the probability of the edge’s ex-
istence is constant. The second model presented in [14] is
that of a geometric random graph.

Our work, after some corrections of a technical flaw in
the original proof of [14], expands upon the ideas that [14]
presented in the context of random graphs. Our results al-
low us to consider a rich set of random graph and hyper-
graph models, neither of which need to be geometric, and of
types of connections, including different types of multicast
connections, such as multi-source multicast, two-level multi-
cast and disjoint multicast [10]. Moreover, vis-à-vis [14], we
sharpen the types of convergence results that can be shown,
by establishing convergence in probability, and are able to
consider networks with ergodic random erasures, in a man-
ner akin to [12]. Our approach is akin to the percolation
results of [3] about the connectivity of random graphs, but



we consider instead the dimension of connections, by char-
acterizing the convergence, in probability, of the max-flow
of our random graphs.

Our contribution is different from the scaling laws pre-
sented by Gupta and Kumar in [6] and from the extensive
literature on scaling laws with network coding, see for in-
stance [17]. This literature envisages a number of unicast
connections that increases with the number of nodes. In
such systems, bottlenecks arise at relay nodes in the inte-
rior of the networks, whereas our results establish that the
bottlenecks are at the source or sink nodes.

The rest of this article is organized as follows. In Section 2,
we define our random graph model and flows on graphs. In
Section 3, we establish the convergence in probability of the
max-flow of our random graphs. In Section 4, we define our
random hypergraph model and flows on hypergraphs. In
Section 5, we establish the convergence in probability of the
max-flow of our random hypergraphs. Finally, we conclude
in section 6.

2. MODEL OF WIRED NETWORK : RAN-
DOM WEIGHTED DIRECTED GRAPH

2.1 Definitions and Notation

2.1.1 A Weighted Directed Graph
In this article, wired networks will be modeled by weighted

directed graphs.

Definition 1. A directed graph G = (N,E) is a pair of
which the first element is the set of nodes N and the second
is the set of edges E, a subset of N ×N .

A weight function is added to the model whereby, for each
edge, a weight is assigned corresponding to the capacity of
the link in the network.

Definition 2. A weighted directed graph (G = (N,E),W )
is a pair where the first element is a directed graph G and
the second is a non-negative function from N ×N , with the
constraint that We = 0 if e /∈ E. The value We is called the
weight of the edge e.

2.1.2 Flow in a Weighted Directed Graph
Our results will center on the maximum value of flows on

the graph we consider. Our definition of flow is given below.

Definition 3. A flow from the source node i to the sink
node j in a weighted directed graph is a function f on edges
that satisfy these conditions:

1. the flow is less than the weight, i.e., for all nodes u,v,

f ((u, v)) ≤W(u,v); (1)

2. there is no incoming flow to i and outgoing flow from
j, i.e., for all nodes u,

f ((u, i)) = f ((j, u)) = 0; (2)

3. the outgoing flow from i is equal to the incoming flow
to j and has value F :∑

v∈N
(i,v)∈E

f ((i, v)) =
∑
u∈N

(u,j)∈E

f ((u, j)) = F ; (3)

Figure 1: Min-cut from the set of the right nodes to
the set of the left nodes.

4. conservation: for each node except i and j, the in-
coming flow is equal to the outgoing flow, i.e., for all
u 6= i, j, ∑

v∈N
(v,u)∈E

f ((v, u)) =
∑
v′∈N

(u,v′)∈E

f
(
(u, v′)

)
. (4)

Definition 4. The max-flow from i to j is a flow with the
maximal value. We will denote FG(i,j) the value of this flow.

Our aim will be to evaluate this max-flow in large random
graphs.

2.1.3 Cut in a Weighted Directed Graph
In order to characterize the max-flow of a graph, we shall

study its min-cut. Below, we define a cut and the associated
concept of min-cut.

Definition 5. A cut from the set of nodes N0 to the set
of nodes N1 is a set S of edges such that if the edges in S
are removed, then there is no directed path from u to v for
any u ∈ N0 and v ∈ N1 . The value of a cut is the sum of
weights of its edges.

Definition 6. The min-cut from the set of nodes N0 to
the set of nodes N1 is a cut whose value is minimum. We
denote this value CG(N0,N1).

The following theorem gives the value of the min-cut from
a subset N0 of nodes to its complementary Nc

0 . It is illus-
trated by the figure 1.

Theorem 1. For any graph G and any subset N0 of N ,
we have

CG(N0,N
c
0 ) =

∑
u∈N0

∑
v∈Nc0

W(u,v). (5)

The link between the max-flow and the min-cut of a graph
is established by the min-cut max-flow theorem that was
proven for the first time by Menger on unweighted undi-
rected graphs. A proof for weighted directed graphs can be
found in [13].

Theorem 2 (Min-cut max-flow theorem). For any
weighted directed graph G, the max-flow from i to j is equal
to the min-cut from {i} to {j}, i.e.,

FG(i,j) = CG({i},{j}). (6)
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Figure 2: The distribution of the existence of the
edges of two nodes u and v.

A corollary of this theorem links the max-flow from i to j
to the min of the min-cuts between all 2-partitions of nodes
where i and j are not in the same. This will be useful since
it is easier to evaluate.

Theorem 3. For any weighted directed graph G, we have

FG(i,j) = min
N0⊂N\{j},i∈N0

CG(N0,N
c
0 ). (7)

2.2 Studied Random Weighted Directed Graphs
As in many problems on random graphs, our results hold

only for random graphs that satisfy some conditions. There-
fore, in this article, results established will concern only this
type of random graphs.

Definition 7. Random weighted directed graphs studied
in this article satisfy these conditions:

1. an edge exists with probability pl;

2. the weight of an edge is distributed as a random vari-
able of density function fW and of mean µ, i.e., for all
nodes u,v,

P
(
W(u,v) ≥ w

)
=

{
1 if w = 0,

pl
∫∞
w
fW (x) dx else;

(8)

3. for each subset N0 of nodes, the edges implied in the
min-cut from N0 to Nc

0 are independent, i.e., for all
N0 subset of N ,(

W(u,v)

)
u∈N0,v∈Nc0

are independent. (9)

In particular, we shall consider four types of such random
graphs that have, already, been studied in the literature.

1. For the first type, for each pair of nodes {u, v}, we as-
sociate p0,{u,v} the probability for two nodes to be not
linked (i.e., (u, v) and (v, u) do not exist), we denote
p1,{u,v} the probability to have the edge (u, v) (resp.
(v, u)) without (v, u) (resp. (u, v)) and p2,{u,v} to have
the two edges (u, v) and (v, u) (as illustrated figure 2)
such that p1,{u,v}+ p2,{u,v} = pl. Then, the capacities
W(u,v) and W(v,u) can either be independent and dis-
tributed according to density function fW , or map to
the same random variable W{u,v}, whose distribution
is given by the density function fW .

2. If, for all nodes u,v, p1,{u,v} = 0 and W(u,v) = W(v,u),
then the model obtained is the one discussed in [14],
where edges are two-way edges and each two-way edge
has the same capacity on the two directions. This
model could be extended to a weighted undirected
graph.

3. If, for all nodes u,v, p2,{u,v} = 0, then we obtain the
model discussed in [15] where edges are one-sided. This
can be seen like a random weighted undirected graph
where sides of directed edges are chosen independently
and uniformly.

4. If, for all nodes u,v, p1,{u,v} = pl(1 − pl), p2,{u,v} =

p2
l and W(u,v) and W(v,u) are independent, then we

obtain an Erdös-Rényi weighted random graph, since
all directed edges are generated independently in this
case.

3. UNICAST AND MULTICAST CONNEC-
TIONS ON RANDOM GRAPHS

3.1 Unicast
The unicast connection problem, to which we shall refer

simply as the unicast problem, consists in characterizing the
max-flow FG(i,j) from a node i to a node j. The aim of this

section is to evaluate the value of the max-flow FG(i,j) in a
large random graph G as defined in the previous section.

Some results about the unicast problem on random graph
already exist. Grimett and Welsh, in [5], established results
about particular type of random graphs when the probabil-
ity pl is fixed. Suen, in [15], provided, for random graphs
where an edge between two nodes is unique and has a unique
direction, convergence results when pl can converge quickly
to 0, but the results are given without proof. More recently,
Ramamoorthy et al. in [14], established some results for
random graphs where, for every edge between two nodes,
there exists one in the opposite direction, and for graphs
with a fixed pl. This two kinds of random graphs will be
two sub-classes of random graphs we study here.

Theorem 4. Consider a random weighted directed graph
with n+ 1 nodes. Let i and j be two nodes, with i the source
and j the sink. If

npl
lnn

→∞ (10)

and, for all subset of nodes N0 of N such that i ∈ N0 and
j /∈ N0, (

W(u,v)

)
u∈N0,v∈Nc0

are independent (11)

then

FG(i,j)
nplµ

p→ 1. (12)

In particular, the min-cut is around the source i or the
sink j. Therefore, in a random network, the capacity is
limited by what happens locally around the source and the
sink and not in the rest of the network.

In certain cases, the condition (10) can be relaxed. In
particular, for a constant weight, this condition becomes:
there exist c > 1 such that npl

lnn
→ 32c, as we can see in the

following proof.

3.2 Proof
The proof generalizes the approach of [5] and [14].

3.2.1 P
(
FG(i,j)
nplµ

≤ 1− ε
)
→ 0



We shall carry out a proof by steps. First, we shall prove
the result when fW is a Dirac delta function (i.e., the ran-
dom variable for the weight is a Bernouilli of parameter pl).
Then, we generalize for fW that is a finite sum of Dirac delta
functions. Finally, we conclude the proof by approximating
a general fW by a sum of Dirac delta functions.

For fW a Dirac Function.
We consider, first, a distribution fW = δµ that is a Dirac

delta function (i.e., if the edge (u, v) exists then its weight
is the value of this Dirac delta function µ). We assume that
µ = 1 (we can do that since µ is independent of n and
multiplying all the edges by µ multiplies the flow by µ).

First, we establish a lemma about the probability that
the min-cut CG(N0,N

c
0 ) is less than nplµ when N0 6= {i} and

Nc
0 6= {j}.

Lemma 1. For any N0 subset of N such that i ∈ N0, but
N0 6= {i}, and j ∈ Nc

0 , but Nc
0 6= {j}, with |N0| = k + 1

(note that 1 ≤ k ≤ n− 2), we have

P
(
CG(N0,N

c
0 ) ≤ nplµ

)
≤ exp

(
−k(n− k − 1)

8
pl

)
. (13)

Proof. We have

CG(N0,N
c
0 ) =

∑
u∈N0

∑
v∈Nc0

W(u,v). (14)

Moreover, since
(
W(u,v)

)
u∈N0,v∈Nc0

are independent and

identically distributed Bernoulli random variables, we have
that CG(N0,N

c
0 ) has a binomial distribution of mean |N0|(n+

1− |N0|)E
[
W(u,v)

]
= (k + 1)(n− k)pl. Hence,

P
(
CG(N0,N

c
0 ) ≤ npl

)
= P

(
CG(N0,N

c
0 ) ≤ E

[
CG(N0,N

c
0 )

]
−k(n− k − 1)pl)

≤ exp
(
− (k(n−k−1)pl)

2

2(k+1)(n−k)pl

)
(see [2],p.12 or [9],p.26)

≤ exp
(
− k(n−k−1)

8
pl
)
.

Then, we continue the proof by looking what happens for
the min-cut not around the source.

P
(

minN0⊂N\{j},i∈N0,N0 6={i},Nc0 6={j} C
G
(N0,N

c
0 ) ≤ npl

)
= P (∃N0 ⊂ N\{j}, i ∈ N0, N0 6= {i}, Nc

0 6= {j},
CG(N0,N

c
0 ) ≤ npl

)
≤

∑n−2
k=1

(
n−1
k

)
exp

(
− k(n−k−1)

8
pl
)

=
∑n−1
k=0

(
n−1
k

)
β(n−1) k

n−1
(1− k

n−1
) − 2

≤ 2(1 +
√
β)n−1 − 2 (see [14])

where β = exp
(
− (n−1)pl

8

)
.

Then, since (n−1)pl
ln(n−1)

→∞, there exists N such that for all

n ≥ N ,

(n− 1)pl ≥ 32 ln(n− 1). (15)

Moreover,

(1 +
√
β)n−1 ∼ exp

(
(n− 1) exp

(
− (n− 1)pl

16

))
. (16)

Since for all n ≥ N ,

(n− 1) exp
(
− (n−1)pl

16

)
≤ (n− 1) exp

(
− 32 ln(n−1)

16

)
= n−1

(n−1)2

= 1
n−1
→ 0.

Therefore,

2(1 +
√
β)n−1 − 2→ 2− 2 = 0. (17)

Finally, we obtain

P

(
min

N0⊂N\{j},i∈N0,N0 6={i},Nc0 6={j}
CG(N0,N

c
0 ) ≤ npl

)
→ 0.

(18)
Now, around the source i and the sink j, we have, by the

law of large numbers

P
(
CG({i},{i}c) ≤ (1− ε)npl

)
→ 0,

P
(
CG({j}c,{j}) ≤ (1− ε)npl

)
→ 0.

Then, by lemma 4 in the appendix, we obtain

P
(
FG(i,j) ≤ (1− ε)npl

)
→ 0. (19)

The case µ 6= 1 is obtained by observing that FG(i,j) =

µFG
′

(i,j), where G′ is the same graph as G, with every link of
capacity 1 instead of µ. Thus,

P

(
FG(i,j)
µ

= FG
′

(i,j) ≤ (1− ε)npl

)
→ 0. (20)

For fW a sum of Dirac delta functions.
We suppose that fW =

∑m
k=1 qkδµk is a sum of Dirac delta

functions. We can assume that µ1 < · · · < µm. Clearly,

µ =

m∑
k=1

qkµk. (21)

We split the graph into m subgraphs Gk where the edge
(u, v) exists and have weight µk if it is the case in the original
graph G. The subgraphs Gk are all random graphs with
pkl = plqk and with fkW = δµk , hence, the previous result,
for a simple Dirac delta function, can be applied. This split
implies

FG(i,j) ≥
m∑
k=1

FG
k

(i,j). (22)

Indeed, we can take the union of the edges given by the
right term, this is a flow for the original graph. Hence,

P
(
FG(i,j) < (1− ε)nplµ

)
≤ P

(∑m
k=1 F

Gk

(i,j) < (1− ε)nplµ
)

= P
(∑m

k=1 F
Gk

(i,j) <
∑m
k=1(1− ε)nplqkµk

)
≤ P

(
∃k FG

k

(i,j) < (1− ε)nplqkµk
)

≤
∑m
k=1 P

(
FG

k

(i,j) < (1− ε)nplqkµk
)

→
∑m
k=1 0 = 0.



For a general fW .
We approximate a general fW by a finite sum of Dirac

delta functions. We have a first lemma about the approxi-
mation of the infinite tail of the distribution.

Lemma 2. There exists M such that, for all x ≥M ,∫ ∞
x

(t− x)fW (t) dt < ε. (23)

Thus, we approximate the function fW by a sum of Dirac
delta functions ˜fW as follows

˜fW =
∑m=dM/εe−1
k=0

(∫ (n+1)ε

nε
fW (x) dx

)
δnε

+
(∫∞

(m+1)ε
fW (x) dx

)
δ(m+1)ε.

We have

µ− 2ε ≤ µ̃ =

∫ ∞
0

f̃w(x) dx ≤ µ. (24)

Using this approximation, we can conclude the proof in
the general case. Let 3

4
> ε > 0. We denote η = ε

4(1−ε)µ and

ε′ = 1− µ
µ−η (1− ε) = 1− 1−ε

1− ε
4(1−ε)

> 0 since 0 < ε < 3
4
. We

denote G̃ the η-approximation of G. We have F G̃(i,j) ≤ FG(i,j)
since G̃ is the same graph with less capacity. Hence,

P

(
FG(i,j)
nplµ̃

< 1− ε′
)
≤ P

(
F G̃(i,j)
nplµ̃

< 1− ε′
)
→ 0. (25)

Now,
µ̃
µ

(1− ε′) ≥ µ−η
µ

(1− ε′)
≥ 1− ε.

Therefore,

P

(
FG(i,j)
nplµ

< 1− ε

)
→ 0. (26)

Hence, the probability for the min-cut to be less that the
cut around the source or the sink goes to 0 as n goes to
infinity.

3.2.2 P
(
FG(i,j)
nplµ

≥ 1 + ε
)
→ 0

To finish establishing convergence in probability, we must
prove the other inequality. For that, we consider directly
any function fW . We have FG(i,j) ≤ CG({i},{i}c), thus

P

(
FG(i,j)
nplµ

≥ 1 + ε

)
≤ P

(
CG({i},{i}c)
nplµ

≥ 1 + ε

)
. (27)

However,
CG({i},{i}c)

pl
is the sum of n independent random

variables whose mean is µ. Then we obtain, by the law of
large numbers,

P

(
CG({i},{i}c)
nplµ

≥ 1 + ε

)
→ 0. (28)

That concludes the proof.

3.3 Multicast Connections
We obtained results for the unicast problem in random

graphs. Thanks to network coding, we may extend them to
different types of multicast connections. We refer to [10] for
the definitions of different types of multicast that we recall
below.

3.3.1 Multicast
First, we look the usual multicast that is between one

source node i and r sink nodes J = {jk}k=1,...,r that want all
the information. We denote by FM(i,J) the max-flow between
the source and all these sink nodes. The result is

Theorem 5.

FM(i,J)

nplµ

p→ 1. (29)

This theorem tells us that the max-flow is only dependent,
for the multicast, on the capacities around the source and
the sinks.

Proof. For each sink node jk, we have

FG(i,jk)

nplµ

p→ 1. (30)

Then, by lemma 4 in the appendix,

FM(i,J)

nplµ
= min
k=1,...,r

FG(i,jk)

nplµ

p→ 1. (31)

3.3.2 Two-layer Multicast

Definition 8. In the two-layer multicast problem, a source
node has all the information and there are two types of sink
nodes. The first type wants just a part of the information,
whereas the second type wants all the information.

In the two-layer multicast case, there is always one source
node i and r sink nodes J = {jk} but one of them, say j1,
does not want all the information but instead just a fraction
ε of it. We denote by FM(i,J\{j1}) the maximal flow for the
sink nodes j2, . . . , jr. We have

Proposition 1.

FM(i,J\{j1})
nplµ

p→ 1 (32)

and ε can take any value between 0 and 1.

Proof. The proof is the same that in the simple multi-
cast case.

3.3.3 Disjoint Multicast

Definition 9. In the disjoint multicast problem, one source
node has all the information, but each sink node just wants a
portion of information, that is disjoint from the information
needed by each other sink.

In the disjoint multicast case, we have, always, one source
and r sink nodes J = {jk}, but each node jk just wants
a disjoint portion εk of the total information sent by the
source node. We denote FD(i,J) the maximal flow that the
source can send. We have

Proposition 2.

FD(i,J)

nplµ

p→ 1. (33)



Proof. For all I, subset of {1, . . . , r}, we want

max
i∈I

CG({i},{jk|k∈I}) ≥
∑
i∈I

εiF
D
(i,J). (34)

Dividing by nplµ and taking the limit in probability, we
obtain

1 ≥

(∑
i∈I

εi

)
lim
p

FD(i,J)

nplµ
. (35)

Then

FD(i,J)

nplµ

p→ 1. (36)

3.3.4 Multisource-Multicast

Definition 10. In the multisource-multicast problem, the
information is split among several source nodes and each
sink node wants all the information of each source node.

In the multisource-multicast problem, we have t inde-
pendent source nodes I = {ik}k=1,...,t and r sink nodes
J = {jk′}k′=1,...,r. Each sink node wants all the information
sent by the source nodes. We denote by FM(I,J) the maximal
flow transmitted by all the sources (i.e., received by each
node). We have

Proposition 3.

FM(I,J)

nplµ

p→ 1. (37)

Proof. The multisource problem with one sink node is
the same problem as the disjoint multicast problem if the
edges are inverted. Hence, we have, if we denote FD(I,jk′ ) the

maximal flow between all the source nodes I and the sink
node jk′

FD(I,jk′ )

nplµ

p→ 1. (38)

By FM(I,J) = mink′ F
D
(I,jk′ )

and lemma 4,

FM(I,J)

nplµ

p→ 1. (39)

This section concludes the results about wired networks
modeled by random graphs. We have seen that, for our
class of random graphs, the min-cut is around the source
or the sink. Therefore, in random graphs, the max-flow
is local and independent from the rest of the graph. By
using network coding, in the case of multicast, it is only
necessary to examine cuts around the source and the sink
(i.e., local conditions) to determine the maximum amount of
information that can be sent, for instance by using random
linear network coding developed in [7]. On the contrary, if
routing is used, we consider the whole random network (i.e.,
global conditions) to determine how many Steiner spanning
trees can be built.

Now, we shall study the flow in random hypergraphs. To
our knowledge, this work is the first proposal to extend the
results from random graphs to hypergraphs. In the first
section, we present the model of random hypergraphs and,
in the second section, we establish asymptotic flows in some
random hypergraphs.

4. MODEL OF RANDOM WIRELESS NET-
WORK : RANDOM WEIGHTED DIRECTED
HYPERGRAPH

Wired networks can be studied using random weighted
directed graphs, since a user in a wired network can send
different information on his links. However, in a wireless
network, a node broadcasts information to its neighbors.
To model this, hypergraphs can be used to model wireless
networks.

4.1 Definitions and Notation

4.1.1 Weighted Directed Hypergraph
In this section, we present a general definition of directed

hypergraphs and weighted directed hypergraphs. However,
the hypergraphs we shall study are more specific and their
properties are given later in this section.

Definition 11. A directed hypergraph H = (N,E) is a pair
where the first element N is a set of nodes and the second
element E is a set of edges. An edge is a pair (U, V ), where
U and V are subsets of N .

Definition 12. A weighted directed hypergraph (denoted
by H = (N,E),W ) is a pair where the first element is a
directed hypergraph H and the second element is a non-
negative function from P (N)× P (N)× P (N) (where P (N)
is the set of all the subsets of N) with the constraint that
W(U,V,V ′) = 0 if (U, V ) /∈ E or V ′ is not a subset of V .

In this work, we focus on the following sub-class of weighted
directed hypergraphs to model wireless network.

Definition 13. Weighted directed hypergraphs have the
following properties

1. the edge has only one node u as sender, i.e., for all
edge (U, V ),

|U | = 1 (i.e., U = {u}); (40)

2. a sender u can send to only one set of receiver nodes
U , i.e., for all node u,

({u}, U) ∈ E
({u}, U ′) ∈ E

}
⇒ U = U ′; (41)

3. a weight w(u,v) ≤ 1 is associated to each pair (u, v) of
nodes (this weight represents the probability for the
node u to transmit well to the node v). Then we ob-
tain the weight of the sub-edge ({u}, V, V ′) through
the expression

W({u},V,V ′) =
∏
v′∈V ′

∏
v∈V \V ′

w(u,v′)

(
1− w(u,v)

)
. (42)

The weight W({u},V,V ′) is the probability that the node
u transmits in a lossless fashion only to the nodes in
the subset V ′ of V .

This model of hypergraphs corresponds to a network of
wireless broadcast channels without interference and with
independent packet erasures for the receiver nodes. The
two notions of flow and cut are applicable to hypergraphs as
shown below.



4.1.2 Flow

Definition 14. The flow from i to j in an hypergraph is a
function f on edges such that

1. it cannot send more than one bit per edge:

f ≤ 1; (43)

2. j does not send information:

f (({j}, J)) = 0; (44)

3. for all node v except i, we have that the outgoing flow
is less than the incoming flow:

f (({v}, V )) ≤
∑

u∈N\{v}

w(u,v)f ((u, U)) . (45)

The value F of the flow is the value of the incoming flow
in j:

F =
∑

u∈N\{j}

w(u,j)f (({u}, U)) . (46)

Definition 15. The max-flow is a flow with a maximal
value in the hypergraph. We denote this value FH(i,j).

The max-flow as before corresponds to the maximum in-
formation that can be sent from the source to the sink.

4.1.3 Cut

Definition 16. A cut from the set of nodes N0 to the set
of nodes N1 is a set of sub-edges S such that if we delete
these sub-edges, there is no directed path from a node in N0

to a node in N1. The value of the min-cut is the sum of the
weights of the sub-edges in S.

Definition 17. The min-cut from N0 to N1 is a cut from
N0 to N1 with the minimal value. We denote this value
CH(N0,N1).

As before, the min-cut max-flow theorem connects the
notion of cut and flow in an hypergraph, since the max-flow
from i to j is equal to the min-cut from {i} to {j} (i.e.,
FH(i,j) = CH({i},{j})). As before, we have two theorems about
the min-cut in hypergraphs that mirror theorems 1 and 3,
which hold for graphs.

Theorem 6. For any hypergraph H and any subset N0

of N , we have

CH(N0,N
c
0 ) =

∑
u∈N0

1−
∏
v∈Nc0

(
1− w(u,v)

) . (47)

Theorem 7. For any weighted directed hypergraph H, we
have

FH(i,j) = min
N0⊂N\{j},i∈N0

CH(N0,N
c
0 ). (48)

Proof of theorem 6. The proof holds as in the graph
case, but we consider the subedges

(({u}, {v ∈ Nc
0 |v ∈ U})u∈N0

where ({u}, U) ∈ E that correspond to the edges

((u, v))u∈N0,v∈Nc0

i

j 1

j 2

j 3

wij 1

wij 2

wij 3

i

j 1

j 2

j 3

wij 1

wij 2

wij 3

Figure 3: On the left, there is a node with its outgo-
ing links for the graph whose weights are less than 1.
On the right, the corresponding hyperedge for the
hypergraph where weights are the probability to the
receiver node to get the information without error.

in the graph case. These sub-edges are a cut from N0 to Nc
0

for the hypergraph, so

CH(N0,N
c
0 ) ≤

∑
u∈N0

1−
∏
v∈Nc0

(
1− w(u,v)

) . (49)

For our lower bound, we need to remove the directed edges
(u, v) for all u ∈ N0 and v ∈ Nc

0 and the minimum weight
to remove all of that is to consider the sub-edges

((u, {v ∈ Nc
0 |v ∈ U}))u∈N0

,

and, so

CH(N0,N
c
0 ) ≥

∑
u∈N0

1−
∏
v∈Nc0

(
1− w(u,v)

) . (50)

4.2 Random Weighted Directed Hypergraph

Definition 18. We can associate a graph to the hyper-
graph in the following way. For every node u, we create
the edges ((u, v))v∈U,({u},U)∈E and the weight for the edge

(u, v) is the weight w(u,v) as in figure 3.

Then we have a bijection between the set of graphs with
weights less than 1 and the set of the hypergraphs studied.

Definition 19. The random hypergraphs, studied here, are
the hypergraphs associated to the random graphs defined in
definition 7. Therefore, the random hypergraphs studied
have these properties:

1. for each node u the directed hyperedge ({u}, U) is dis-
tributed such that: for all node v,

P (v ∈ U) = pl; (51)

2. the weights of the edges are distributed such that: for
all nodes u,v,

P
(
w(u,v) ≥ w

)
=

{
1 if w = 0,

pl
∫∞
w
fW (x) dx else;

(52)

3. for all N0 subset of N ,(
w(u,v)

)
u∈N0,v∈Nc0

are independent. (53)



5. UNICAST AND MULTICAST TYPES ON
RANDOM HYPERGRAPHS

5.1 Unicast
In this section, we shall consider flows on random weighted

directed hypergraphs. To the best of our knowledge, there
is no mention of such hypergraphs in the prior literature.

Theorem 8. We take a random weighted directed hyper-
graph with n+ 1 nodes. We take i and j two nodes, i is the
source node and j the sink node. If

npl
lnn

→∞ (54)

and, for all N0 subset of N such that i ∈ N0 and j /∈ N0,(
w(u,v)

)
u∈N0,v∈Nc0

are independent (55)

then

FH(i,j)
p→ 1. (56)

This shows a similar result as for random graphs, i.e., the
capacity is limited by the capacity of the source (and only
the source here) and not by the rest of the hypergraph.

5.2 Proof
We shall prove an upper and lower bound to show the

probability convergence. First, we prove P
(
FH(i,j) ≤ 1− ε

)
→

0 in two parts, since we need a technical trick to obtain the
required result. In the second part, we prove the second con-
vergence through the law of large numbers. The most im-
portant idea in this proof is that we compare graphs and hy-
pergraphs and we show that, for two corresponding cuts, the
difference between the value of this cut and the cut around
the source is bigger for hypergraphs than for graphs.

5.2.1 P
(
FH(i,j) ≤ 1− ε

)
→ 0

To prove this statement, we need to consider, first, a re-
stricted fW that satisfies that there exists wm such that, for
all w < wm,

fW (w) = 0. (57)

Then, we shall generalize to an arbitrary fW .

For the restricted fW .
The proof begins by a lemma that establishes that, if a cut

around a node is less than 1− ε in the random hypergraph,
then it is also the case in the associated random graph.

Lemma 3. For all ε, there exists nmax such that for all
n ≥ nmax, for all k ≤ n−1 and for all sequences (wq)q=1,...,k,
we have

1−
k∏
q=1

(1− wq) ≤ 1− ε⇒
∑k
q=1 wq

nplµ
≤ 1− ε. (58)

Proof. We prove, first, an easier result where k is fixed.
For all ε, for all k and for all sequences (wq)q=1,...,k, there
exists nmax,k such that for all n ≥ nmax,k,

1−
k∏
q=1

(1− wq) ≤ 1− ε⇒
∑k
q=1 wq

nplµ
≤ 1− ε. (59)

That is clear since

• on the one hand, we have 1 −
∏k
q=1(1 − wq) that is

constant;

• on the other hand,
∑k
q=1 wq

nplµ
converges to 0 as n→∞.

Now, we derive an upper-bound for k. To upper bound k,
we need the special form of the distribution,

(1− wm)k ≥
k∏
q=1

(1− wq) ≥ ε. (60)

Thus,

k ≤ ln ε

ln(1− wm)
. (61)

Therefore, now, we can switch ∀k and ∃nmax, by taking
nmax = maxk≤ ln ε

ln(1−pm)
nmax,k.

Now, we shall prove that the probability for a node u
to have a cut around it less than 1 − ε is less probable in
the hypergraph than in the graph divided by nplµ. For all
v ∈ N\{u}, we denote l(u,v) the random variable that is 1 if
the edge (u, v) exists and 0 else. Then, for all n ≥ nmax, for
all subset N0 of N , i ∈ N0 with |N0| = k + 1,

P
(
CH({u},Nc0 ) ≤ 1− ε

)
=

∫
{0,1}n−k
[pm,1]n−k

1CH
({u},Nc0)

≤1−ε(
dpl(u,v)

)
v∈Nc0

( dfW )v∈Nc0
=

∫
{0,1}n−k
[pm,1]n−k

11−
∏
v∈compN0

(1−l(u,v)w(u,v))≤1−ε(
dpl(u,v)

)
v∈Nc0

( dfW )v∈Nc0
≤

∫
{0,1}n−k
[pm,1]n−k

1∑
v∈Nc0

l(u,v)w(u,v)

nplµ
≤1−ε(

dpl(u,v)

)
v∈Nc0

( dfW )v∈Nc0
=

∫
{0,1}n−k
[pm,1]n−k

1CG
({u},Nc0)

≤1−ε(
dpl(u,v)

)
v∈Nc0

( dfW )v∈Nc0

= P
(
CG({u},Nc0 ) ≤ 1− ε

)
.

For a general fW .
We now provide an approximation for the general case.

For that, we shall delete all the edges whose weight is less
than a certain wm (we can choose any wm < µ). The new
hypergraph will be denoted by Ȟ and each previous quantity
x in the first hypergraph or graph associated will be denoted
by x̌ when we delete the edges whose weight is less than wm.
We have that the new probability for two nodes to be linked
is given by

p̌l =

(
1−

∫ wm

x=0

fW (x) dx

)
pl. (62)

However, we still have that np̌l
lnn
→ ∞. In this limiting

regime, we have that

P
(
CH({u},Nc0 ) < 1− ε

)
≤ P

(
CȞ({u},Nc0 ) < 1− ε

)
(63)

since any edge weight in Ȟ is less than or equal to that of
the corresponding edge in H.



We may now readily establish our result. Indeed, since

CH(N0,N
c
0 ) =

∑
u∈N0

CH({u},Nc0 ),

CG(N0,N
c
0 ) =

∑
u∈N0

CG({u},Nc0 ),

we obtain that

P
(
CH(N0,N

c
0 ) < 1− ε

)
≤ P

(
CǦ(N0,N

c
0 )

nplµ
< 1− ε

)
. (64)

By minimizing over all N0 subset of N where i ∈ N0 and
j /∈ N0,

P
(
FH(i,j) < 1− ε

)
≤ P

(
F Ǧ(i,j)
nplµ

< 1− ε

)
→ 0 (65)

5.2.2 P
(
FH(i,j) ≥ 1 + ε

)
→ 0

Since the cut around the source i is a cut, we have

FH(i,j) ≤ CH({i},{i}c) ≤ 1. (66)

Hence,

P
(
FH(n) > 1 + ε

)
= 0. (67)

This concludes the proof.

5.3 Multicast Types in Random Hypergraph
The proofs are the same as in the multicast types of ran-

dom graphs. We state the results here without proof for
brevity.

5.3.1 Multicast

Theorem 9. We denote FM(i,J), the maximal flow through
the network from one source node i to r sink nodes J =
{jk}k=1,...,r that want all information. We have

FM(i,J)
p→ 1. (68)

5.3.2 Two-layer Multicast

Proposition 4. We denote FM(i,J\{j1}) the maximal flow
achievable for the multicast from the source node i to the
r− 1 sink nodes J\{j1} = {jk}k=2,...,r when j1 just wants a
fraction ε of the total information. We have

FM(i,J\{j1})
p→ 1 (69)

and ε can take any value between 0 and 1.

5.3.3 Disjoint Multicast

Proposition 5. We denote FD(i,J) the maximal flow that
the source can send where the source node i sends informa-
tion to r sink nodes J = {jk}k=1,...,r that want, each, a
fraction εk of information and all disjoint from each other.
We have

FD(i,J)
p→ 1. (70)

Note that we cannot generalize the multisource-multicast
results by the same method used in the graph case, since we
cannot reverse the hyperedges as we have done in the graph
case.

These results show that, if we use network coding in the
random hypergraph case since, if only the capacity around
the source is known, the maximal amount of information
that can be sent through the random hypergraph for a mul-
ticast can be determined. Furthermore, it can be determined
locally without prior knowledge of the whole hypergraph.

6. CONCLUSION
We have shown that, for a large class of random graphs

and hypergraphs, the capacity of the network can be easily
known by looking at the cut around the source, a local pro-
cedure. This result generalizes a large number of results pre-
viously obtained about random graphs in [5], [15] and [14].
Moreover, to the best of our knowledge, we provide the first
result about max-flows in random hypergraphs.

We use simple geometryless models for random graphs
and hypergraphs. In addition, our results are asymptotic.
Therefore, our work opens up interesting questions and ar-
eas of research. Primary amongst them is the extension of
our results to random geometric graphs. Another impor-
tant question for future work involves the determination of
the minimal graph size that guarantees the validity of our
results.
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APPENDIX
Lemma 4. Let Y (n) = (Y1(n), . . . , Yl(n)) be a sequence of

random vectors and (y1, . . . , yl) a vector of real numbers such

that, for all i, Yi(n) converge in probability to yi (Yi(n)
p→

yi). Then,

min
i
Yi(n)

p→ min
i
yi. (71)

Proof. Assume that y1 is the minimum of the yis. Let
ε > 0. We have,

P (mini Yi(n)− y1 > ε) ≤ P (Y1(n)− y1 > ε)
→ 0.

Therefore,

P (mini Yi(n)− y1 < −ε)
≤

∑l
i=1 P (Yi(n)− y1 < −ε)

≤
∑l
i=1 P (Yi(n)− yi < −ε)

→ 0


