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ABSTRACT

Tree algorithms form a well researched class of collision res-
olution algorithms for solving multiple access control prob-
lems. Signal interference cancellation, which allows one to
recover additional information from otherwise lost collision
signals, has recently been combined with tree algorithms,
providing substantially higher maximum stable throughputs
(MSTs), up to 0.693 (Yu and Giannakis, IEEE Transactions
on Information Theory, Vol. 53(12), 2007). We propose
two novel First-Come-First-Served tree algorithms, the op-
eration of which is similar to the well-known tree splitting
algorithms, that exploit interference cancellation and derive
their MST. Furthermore, these algorithms are also designed
such that, at all times, it suffices to store only one signal.

Categories and Subject Descriptors

C.4 [Performance Of Systems]: Performance attributes;
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network communications

General Terms

Algorithms, Performance

Keywords

Interference cancellation, random-access, maximum stable
throughput.

1. INTRODUCTION
Multiple access channels have been used as key compo-

nents in the design of various access network technologies.
For instance, random access schemes are used to share the
available bandwidth in 802.11 networks as well as in 10
and 100Mbit Ethernet systems (in combination with carrier-
sense and/or collision-detection mechanisms). In point-to-
multipoint access networks, such as DVB-RCS satellite net-
works and hybrid-fiber-coaxial (HFC) networks (i.e., DOC-
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SIS networks), random access channels are supported such
that end-users can specify their uplink bandwidth require-
ments to the network via fixed length control messages in a
multiple access manner. Although all these random access
channels rely on the well known binary exponential backoff
(BEB) algorithm (or a simple ALOHA scheme), tree algo-
rithms have been recognized as important (if not, superior)
contenders during the development of the 802.14 standard
[6, 5] for HFC networks (however, the 802.14 standardization
process was prematurely terminated by the introduction of
the DOCSIS standard).

Tree algorithms also strongly outperform the class of back-
off algorithms (including the BEB) in terms of their maxi-
mum stable throughput (MST) [1]. In the standard infor-
mation theoretical setting, the MST is defined as the highest
possible (Poisson) input rate for which a packet has a finite
delay with probability one. The first tree algorithms were
independently developed in the late 1970s by Capetanakis
[3] and Tsybakov, Mikhailov and Vvedenskaya [12]. These
algorithms were the first to have a provable MST above zero.
Afterward new tree algorithms were developed with MSTs
as high as 0.4878 using the standard information theoretical
multiple access model [1, 4, 11].

A random access protocol consists of two components: the
channel access protocol (CAP) and the collision resolution
algorithm (CRA). The CAP specifies the rules that users
need to follow when transmitting a packet for the first time.
The CRA corresponds to the algorithm all users must use
to resolve collisions (i.e., simultaneous transmissions). The
easiest and cheapest CAP is free access, meaning new pack-
ets may be transmitted without any further delay (on the
slot boundaries). Other important CAPs include blocked (or
gated) and windowed (or grouped) access.

When blocked (or gated) access is used, an initial collision
of n stations causes all subsequent new arrivals to postpone
their first transmission attempt until the n initial stations
have resolved their collision. The time elapsed from the ini-
tial collision until the point where the n stations have trans-
mitted successfully is called the collision resolution period
(CRP). Suppose that m new packets are generated during
the CRP. Then, a new CRP starts (with m participants)
when the previous CRP (with n stations involved) ends. In
short, when the blocked access mode is used new arrivals are
blocked until the CRP during which they arrived has ended.
They will participate in the next CRP.

Finally, windowed (or grouped) access works as follows.
Suppose that the random access scheme is activated at time
k = 0. The unit of time is defined as the length of a slot, so
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that the i-th transmission slot is the time interval (i, i + 1].
A second time increment α0 is chosen and the i-th arrival
window is defined as the time interval (iα0, iα0 + α0] (α0

is not necessarily an integer value). The first transmission
rule used by this algorithm is as follows: transmit a new
packet that arrived during the i-th arrival window in the
first “utilizable” slot following the CRP that resolves the
packets belonging to the (i − 1)-th arrival window. The
modifier “utilizable” reflects the fact that the CRP of the
(i − 1)-th arrival window might end before the i-th arrival
window itself has ended. If so, a number of transmission
slots is skipped until the i-th arrival window ends. One
could improve the algorithm by shortening the i-th arrival
window. This complicates the analysis and has no influence
on the maximum stable throughput [1].

When a binary tree algorithm [3, 12] is used as the CRA
in combination with windowed access, a collision of n pack-
ets belonging to the same window of length α0 will cause
the set of colliding packets to split into two groups by par-
titioning the length α0 arrival window into two windows of
length pα0 and (1 − p)α0 (with 0 < p < 1), respectively.
The first group of colliding packets then consists of all the
packets that arrived during the first (length pα0) window,
while the remaining packets that arrived in the second (size
(1 − p)α0) window join the second group. Stations joining
the first group retransmit in the next slot and resolve a pos-
sible collision recursively, while the packets of the second
group must wait until the first group is completely resolved
before applying the same algorithm. Typically, p is chosen
to be 0.5, however, in some cases an unequal splitting may
provide a slightly higher MST. Notice, using this CRA al-
gorithm with windowed access guarantees that the packets
are received in a First-Come-First-Serve (FCFS) order. As
explained further on, when we combine this algorithm with
an interference cancellation mechanism the FCFS order is
not preserved.

Two important improvements have been made to the al-
gorithm above. First, if a first group is empty (and thus
resolved in one slot), we can immediately split the second
group as it is certain to hold a collision. Second, if the first
group, corresponding to some length 2−iα0 window, holds
a collision, we know nothing about the size of the second
group, as such the window of the second group is postponed
to the next CRP and all the subsequent initial size α0 win-
dows are shifted forward by 2−iα0. When combined with
an interference cancellation mechanism, this second obser-
vation no longer applies.

The 0.4878 MST realized under the standard informa-
tion theoretical model, has been exceeded in various man-
ners by introducing additional mechanisms not available un-
der the standard model, such as energy measurement tech-
niques to determine the collision multiplicity [8] and an ad-
ditional control field/bit with separate feedback [7]. Re-
cently, the SICTA algorithm which uses a successive in-
terference cancellation (SIC) mechanism, was designed and
shown to achieve an MST as high as 0.693 [15, 16]. SICTA
uses a blocked access CAP and requires a (theoretically)
unbounded amount of memory for storing signals (actu-
ally, SICTA with windowed access performs optimal when
α0 = ∞, which corresponds to blocked access). The inter-
ference cancellation mechanism works as follows. Consider
two signals a and b, where b contains the combination of
signals B1, . . . , Bn. We denote a− b as the interference can-

cellation operation, which only results in a valid signal if
a consists of B1, . . . , Bn, A1, . . . , Am, and has A1, . . . , Am

as a result. Thus, when combined with a tree algorithm,
interference cancellation offers the possibility to obtain the
signal of the second group by canceling the signal of the first
group from the joint signal, removing the need to assign a
slot to the second group, thereby significantly improving the
channel throughput.

In [10] we introduced a novel tree algorithm using SIC for
the free access CAP that requires the storage of at most one
signal at a time, achieving minimal memory requirements.
The MST of this algorithm was proven to be 0.5698, using
tree-like processes [2]. Remark, random access algorithm
with free access typically achieve the lowest MST. A disad-
vantage of this algorithm is that packets are not necessarily
received in an FCFS order, while this order is well known
to reduce the variance of the delay. Using the same mem-
ory limitations (algorithms for more memory locations can
be constructed similarly), we proposed two novel tree algo-
rithms in [13], which are able to maintain the FCFS order,
by using the windowed access CAP. Both algorithms exploit
the interference cancellation mechanism combined with the
0.4871 FCFS algorithm [1] (the 0.4878 algorithm was ob-
tained from this algorithm by optimizing the window length
of the first and second group for each level in the tree us-
ing dynamic programming techniques). The original 0.4871
algorithm works similar to the basic tree algorithm, except
that it implements the two important improvements men-
tioned above. As indicated above, using SIC, the combined
signal of any second group can be deduced from the first
group and the joint signal. This allowed us to improve the
0.4871 MST using the following two observations: (i) when
a collision splits into two successes, we can recover the sec-
ond success from the cancellation operation and therefore we
gain a single slot, (ii) we still have some knowledge about
the groups that are postponed to the next CRP (due to a
collision in their corresponding first group), allowing us to
skip the last postponed windows in case they are empty.
Other information, additionally provided by SIC, is hard,
if not impossible, to exploit as this would often violate the
FCFS order. These algorithms were shown to have an MST
of 0.6048 and 0.6173, respectively.

In this paper, we propose two additional tree algorithms,
which operate under the same constraints: single signal mem-
ory and FCFS order preservation. Both algorithms achieve
a higher MST, by utilizing the windowed access variant of
[10], adapted such that packets arrive in FCFS order. The
paper is structured as follows. In Section 2, we start by
briefly discussing the SICTA algorithm, which makes use of
SIC and a (theoretically) unbounded amount of signal mem-
ory, to achieve an MST of 0.693, without maintaining the
FCFS order. In Section 3 we continue by describing and
analyzing the windowed access variant of [10], with mini-
mal signal memory requirements, however, still without the
guarantee that the packets are received in an FCFS order.
In Section 4, we will discuss how this algorithm can be mod-
ified to maintain the FCFS order, with a significant penalty
in terms of the MST. In Sections 5 and 6, we propose two
methods to reduce this performance penalty. The resulting
algorithms will be shown to have an MST of 0.6327 and
0.6334 respectively.

2. THE 0.693 SICTA ALGORITHM
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Figure 1: Illustration of the collision resolution in a sin-

gle CRP for the basic tree, the SICTA and a single sig-

nal memory SIC algorithm. The slots are transmitted in a

depth-first-search traversal of the collision tree, except for

the slots which can be skipped using interference cancella-

tion. The MST of each algorithm is indicated, given the

optimal windowed or blocked CAP.

The 0.693 SICTA algorithm [15, 16] is conceptually iden-
tical to the basic tree algorithm, applied to windowed or
blocked access. As illustrated by Figure 1, each CRP is re-
solved, by recursively splitting the collision tree. At each
splitting stage, the colliding terminals decide to choose ei-
ther the left of right branch, based on a (pseudo) random
decision, for instance by generating a random number, or
using the subsequent bits of the arrival timestamp. In this
way, eventually every packet is transmitted in a separate
slot, solving the initial collision.

SICTA achieves its high MST, by combining SIC with an
(theoretically) unlimited amount of memory to store the sig-
nals of previous collisions. A motivating example consists of
a collision of two packets, which requires only the transmis-
sion of the initial collision, and one single packet; the other
packet can be recovered by SIC. The same reasoning can be
applied to the entire collision tree; indeed, the signal of ev-
ery right branch can be obtained by subtracting the signal of
the corresponding left branch from the common parent node
(the signal of which may also be the result of an interference
cancellation operation, hence the name successive interfer-
ence cancellation). A (theoretically) unlimited amount of
signal memory is required, since a collision may require an
unbounded number of splitting decisions; during this pro-
cess, each decoded right branch, which cannot be resolved
immediately, has to be stored for later conflict resolution.

If we ignore the root node, only half the number of slots
are required to resolve a conflict, compared to the basic tree
algorithm with blocked access. As a result, for blocked ac-
cess an MST as high as 0.693 can be obtained (which is twice
the MST of 0.3465 achieved by the basic tree algorithm with
blocked access, the 0.429 mentioned in Figure 1 is the MST
of the windowed access CAP with an optimal α0). When
combined with windowed access, the larger the initial win-
dow is chosen, the higher the achievable MST becomes, as
illustrated by Figure 2. Effectively, SICTA performs optimal
when the initial window is infinitely large, which corresponds
to blocked access.
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Figure 2: Throughput for all algorithms, for the windowed

access CAP. For the algorithms with additional parameters

β0 and p, the optimal value was chosen.

3. A 0.6620 NON-FCFS SPLITTING ALGO-

RITHM
In an earlier paper [10], we designed a variant of the

SICTA algorithm, which only requires a single signal mem-
ory location. Similar to SICTA, the combination of the ba-
sic tree algorithm with successive interference cancellation
allowed us to skip some slots part of the conflict resolution
tree. Our approach consisted in storing the signal of the par-
ent node in the single memory location. By subtracting the
signal of the left branch, SIC revealed the signal information
of the right branch. The single signal memory requirements
allowed to skip this right set, whenever there was a success
(or an empty slot) detected in either (or both) the left or
right branch. Otherwise, this right branch was retransmit-
ted after resolving the left branch in order to recover the
joint signal of the right branch.

We also established an expression for the mean time LN

required to resolve a conflict of size N , in case of blocked ac-
cess. L0 = L1 = 1, while LN obeys the following recursion:

LN = 1 +
N
X

i=0

 

N

i

!

pi(1 − p)N−i (Li + LN−i)

−pN − (1 − p)N − Np(1 − p)N−1

−NpN−1(1 − p) + δN,2p(1 − p), (1)

where δN,2 = 1 if N = 2 and zero otherwise Indeed, we
need one slot for the initial transmission, while the opera-
tion of the basic CTMV algorithm can be recognized in the
recursive expression for the mean time required to solve the
left and right branch, for all possible splitting combinations.
The last five terms represent the slots that SIC allows us to
skip, that is, whenever either the left or right branch con-
sists of zero or one packet, we gain a single slot. The very
last term is required to correct the case where a collision of
two splits into one-one, for which we still need a single slot.

Using a similar methodology as the one provided by Mathys
and Flajolet [9] for analysis of the basic and modified CTMV
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algorithm, we also determined a closed-form formula for LN :

LN = 1 +
N
X

k=2

 

N

k

!

(−1)k(k − 1)
pk + (1 − p)k + kp(1 − p)

(1 − pk − (1 − p)k)
.

In this case, p = 0.5 is optimal.
For a windowed access system, given Poisson arrivals with

rate λ and an initial window of size α0, the average length
E{k} of a CRP can be calculated as follows:

E{k} =
∞
X

N=0

LN

(λα0)
Ne−λα0

N !
.

In order to have a stable system, the average length E{k}
of a CRP must be less than the average distance that the
starting point of the allocation window advances between
two (initial) windows, which equals α0. By multiplying both
sides with λ, we can rewrite this as

λ <
λα0

E{k}
,

where the right hand side of this equation is a function f
of λα0. By numerically maximizing this function, denot-
ing xmax as the point in which the maximum is reached
and f(xmax) as its maximum value, we obtain the high-
est possible maximum stable throughput λmax by setting
α0 = xmax/f(xmax). For the function above, as shown by
Figure 2, the maximum is reached in λα0 = 2.0596, for
p = 0.5, resulting in α0 = 3.1109 and λmax = 0.6620.
These values have also been confirmed using simulation ex-
periments.

4. A BASIC 0.6272 FCFS SPLITTING AL-

GORITHM
The previous algorithm did not maintain the FCFS order

in case the interference cancellation detects a success in a
right branch, while the left branch still contains a conflict
that has to be resolved. As such, a straightforward way to
obtain an FCFS order, is by refraining from skipping the
right branch in such cases.

In order to analyze this modified algorithm, we need to
determine the mean time L̄N required to resolve a conflict
of size N . Clearly, L̄0 = L̄1 = 1 and L̄N obeys the following
recursion:

L̄N = 1 +
N
X

i=0

 

N

i

!

pi(1 − p)N−i
`

L̄i + L̄N−i

´

−pN − (1 − p)N − Np(1 − p)N−1.

This recursion is similar to Equation (1), except for the last
two terms. These terms correspond to the slots which were
revealed by SIC, but not in an FCFS order; now SIC only
allows us to skip a slot if all the colliding packets are either
in the left or right branch, or when the left branch contains
exactly one packet. In order to generate numerical results, it
suffices to have this recursive expression. However, a closed
form expression can be obtained analogue to the analysis
of the basic and modified CTMV algorithm by Mathys and
Flajolet [9]. Define L(z) =

P∞
N=0 L̄NzN/N !, then we find

the following functional equation for L(z):

L(z) = eze−pzL(pz) + eze−(1−p)zL((1 − p)z)

+ez − 2(1 + z) − (epz − 1 − pz)

−(e(1−p)z − 1 − (1 − p)z) − pz(e(1−p)z − 1).

Setting L∗(z) =
P∞

N=0 L∗
NzN = e−zL(z), the above equa-

tion yields

L∗(z) − L∗(pz) − L∗((1 − p)z) = −ze−z(1 − p)

+1 − e−pz − e−(1−p)z − pze−pz.

Equating the coefficients of zk on both sides implies

L∗
k(1 − pk − (1 − p)k) =

(−1)k/k!
“

k(1 − p) − pk − (1 − p)k + kpk
”

,

for k ≥ 2. This finally results in

L̄N = 1 +
N
X

k=2

 

N

k

!

(−1)k (k(1 − p) − (1 − p)k − pk + kpk)

(1 − pk − (1 − p)k)
.

(2)
Similar to previous section, by numerically maximizing

the function f(λα0) = λα0

E{k}
, we obtain the highest possible

maximum stable throughput for p = 0.5 in λα0 = 1.7674,
resulting in α0 = 2.8230 and λmax = 0.6260. Setting p = 0.5
is however no longer optimal. More specifically, the optimal
MST is found by choosing p = 0.471, obtaining a maxi-
mum in λα0 = 1.7850, which results in α0 = 2.8458 and
λmax = 0.6272 (see also Figure 2). These values have also
been confirmed using simulation experiments.

An intuitive explanation for having an optimal p < 0.5 can
be given as follows: consider a collision that splits in 1−coll
or coll−1. The first option requires one slot, as the collision
signal coll can be recovered using SIC. The second option
however, requires two slots, due to FCFS constraints. As
such, a slightly higher probability of having the first option,
i.e., choosing p < 0.5, improves the MST.

5. A 0.6327 FCFS SPLITTING ALGORITHM

WITH POSTPONED SUCCESSES
The previous algorithm revealed a performance loss, caused

by the fact that we ignore the knowledge about successes in
the right branch, when the left branch contains a collision.
Indeed, to preserve the FCFS order, these packets cannot be
considered as received at this point. However, we can still
exploit this knowledge to improve the MST. We will first do
so if the ignored success is contained in the very last slot
of the collision resolution tree. The motivation behind this
approach is to combine this last slot with a (small) part of
length β0 ≤ α0 of the next CRP, in the hope that this part
of the next CRP contains no arrivals. If this is the case,
we have successfully solved a (slightly) larger interval at no
additional cost (see Figure 3). Moreover, in case this ad-
ditional interval is non empty (and has size β0 = α0), no
additional slots are required if during the first split oper-
ation, we choose the splitting such that the left branch is
precisely the success of the previous CRP, as demonstrated
in Figure 4. When β0 < α0, there is in general no guaran-
teed gain as the arrival windows get shifted by β0. Since a
higher probability of having this next CRP empty will in-
crease the effects of this modification, there is a trade-off to

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4257 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4257 



EFG

G

G

EFG
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Success postponed:

Figure 3: This figure illustrates that postponing the last

success to the next CRP will gain an additional slot, when

no new arrivals occur. Here, G is postponed and combined

with the empty slot of the following short CRP. Without

postponing, this would require two slots: one for the success

and one for detecting the empty CRP (slots drawn using

hairlines are not transmitted).

be made when selecting β0: a shorter arrival window will re-
sult in a higher probability of having an empty CRP, while
the interval that is resolved becomes smaller.

There is some resemblance between this idea and the ap-
proach taken by Vvedenskaya [14]; there, the idea was that a
collision in a very small interval consists most likely of only
two packets. Therefore, whenever the splitting process re-
vealed the first packet, the transmission of the other packet
was immediately combined with a new CRP. However, the
positive impact on the MST was minimal, for two reasons:
first, the occurrence of a collision in a very small interval is
rare. Second, whenever this recombination caused an addi-
tional conflict, for example because there were three arrivals
in the original collision slot, this did result in a performance
penalty.

To analyze the performance of this algorithm, we need
to distinguish between two types of CRPs: standard CRPs
(Type 0) which have an initial arrival window of size α0, and
short CRPs (Type 1), which combine a success postponed
from the previous CRP with a new arrival window of size
β0. The probability p0,1 of having a standard CRP followed
by a short CRP is given by:

p0,1 =
∞
X

i=1

(1 − (1 + pRi)e
−pRi)(1 − p)Rie

−(1−p)Ri ,

where Ri = λα0(1 − p)i−1. Indeed, if the initial arrival
window ends with a collision (an α0p(1 − p)i−1 interval),
followed by a success (corresponding to an α0(1−p)i interval
for some i > 0), the transmission of this success packet is
postponed and combined with the following, short CRP.

Similarly, the probability p1,1 of having a short CRP fol-
lowed by another short CRP is given by:

p1,1 =
∞
X

i=1

(1 − (1 + pR′
i)e

−pR′

i)(1 − p)R′
ie

−(1−p)R′

i ,

where R′
i = λβ0(1 − p)i−1. Notice, a short CRP always has

an initial window larger than β0, however, the first right
branch is always of size β0.

To determine the probability that an arbitrary CRP is
standard or short, we set up a two-state discrete time Markov

EFG

G

GHI

G HI

EFG

G

HI

Success not postponed:

Success postponed:

Figure 4: This figure illustrates that postponing the last

success to the next CRP will not cost us an additional slot,

when new arrivals occur. In this example, packet G is post-

poned, and combined with H and I. Only the slots GHI and G

have to be transmitted, to have the information about slots G

and HI; the signals in the remaining slots, which are drawn

using hairlines, can be recovered from this using SIC mech-

anism. If G was not postponed, two slots were also required

to retrieve the same information.

chain with transition matrix

P =

»

p0,1 1 − p0,1

1 − p1,1 p1,1

–

.

The invariant vector π = (π(0), π(1)) of this transition ma-
trix P gives us the probabilities π(0), π(1) that a given CRP
is standard or short respectively, by:

π(0) =
1 − p1,1

1 − p1,1 + p0,1
, π(1) =

p0,1

1 − p1,1 + p0,1
.

Next, we need to determine the mean time L̇N and L̈N , in
time slots, required to resolve a conflict of size N , for both
a standard CRP and a short CRP. Before we proceed, we
must define to which CRP a slot belongs, since a short CRP
is started before the previous CRP has finished completely.
That is, when a short CRP is started, it takes one or two
slots before the postponed arrival of the previous CRP is
transmitted successfully. Only the last of these possible two
slots will be associated with the previous CRP. More pre-
cisely, in case there is no new arrival in a short CRP, a single
slot is transmitted (containing the postponed success of the
previous CRP): this slot is considered part of the previous
CRP. Otherwise, the second slot of this short CRP will con-
tain the postponed success and thus is associated with the
previous CRP, while the first slot, containing also the new
arrivals, is part of the current, short CRP.

Using these definitions, we now argue that L̇N = L̈N =
L̄N for N > 0, with L̄N expressed by Equation (2), while

L̇0 = L̄0 = 1 and L̈0 = 0. Clearly, for a standard CRP with
no postponed success, this follows readily. When a success
in a standard CRP is postponed to the following short CRP,
we count one of the slots in the subsequent short CRP as
part of the standard CRP, while saving the postponed slot in
the standard CRP, resulting in L̇N = L̄n. For a short CRP
with no new arrivals, the only slot that is transmitted after
the start of the CRP, is part of the previous CRP, as defined
previously, so L̈0 = 0. For a short CRP with new arrivals
and no postponed success, we see that the root of the colli-
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sion tree for this CRP (including the previously postponed
success) minus its left branch (containing only the postponed
success), results in the right branch slot, containing only the
new arrivals, as illustrated by Figure 4. From these three
slots, the root is effectively transmitted; the left branch slot
is also transmitted, however it is counted as belonging to
the previous CRP. In this manner, the right branch, which
is obtained using SIC, induces a collision resolution tree,
identical to a standard CRP, with the same number of slots.
For a short CRP with a postponed success, we can use a
similar argument as for the standard CRP. Thus, we obtain
L̈N = L̄N for N > 0.

Given Poisson arrivals with rate λ, an initial window of
size α0 and β0 for standard and short CRPs respectively, the
average length E{k} of a CRP can be calculated as follows:

E{k} =

∞
X

N=0

L̇Nπ(0)(λα0)
Ne−λα0 + L̈Nπ(1)(λβ0)

Ne−λβ0

N !
.

The average distance E{s} that the starting point of the
allocation window advances between two (initial) R windows
equals:

E{s} = π(0)α0 + π(1)β0.

Similar to the previous algorithms, we have a stable sys-
tem if

λ <
λE{s}

E{k}
,

where the right hand side of this equation is a function f
of λα0 and λβ0. By numerically maximizing this function,
denoting (xmax, ymax) as the point in which the maximum is
reached and f(xmax, ymax) as the maximum value, we obtain
the highest possible maximum stable throughput λmax for
p = 0.5 by setting α0 = xmax/f(xmax, ymax) and β0 =
ymax/f(xmax, ymax). For the function above, the maximum
is reached in (λα0, λβ0) = (1.8016, 1.0156), resulting in α0 =
2.8517,β0 = 1.6078 and λmax = 0.6317.

As with the previous algorithm, the optimal p is however
not located in p = 1/2. The optimal MST corresponds to
setting p = 0.474, obtaining a maximum in (λα0, λβ0) =
(1.8170, 1.1017) as illustrated by Figure 5, which results in
α0 = 2.8717, β0 = 1.6067 and λmax = 0.6327. These val-
ues have also been confirmed using simulation experiments.
Intuitively, a similar argument as in Section 4 applies, to
explain that the optimal p < 0.5. However, as the penalty
for splitting coll − 1 is now slightly reduced, a slightly less
asymmetric splitting is required, implying that the optimal
p exceeds 0.471.

6. AN IMPROVED 0.6334 FCFS SPLITTING

ALGORITHM WITH POSTPONED SUC-

CESSES
The modification introduced in the previous algorithm can

also be applied in some more cases. Consider the last success
of the CRP and suppose it has a conflict in its corresponding
left branch. Previously, the modification was only applied
when such an event occurred at the very end of the initial
arrival window. However, if there is no other arrival between
the last success and the end of the initial arrival window, the
modification can also be applied. In such cases, one or more
empty slots may follow (in depth-first-search order) the last
success in the collision tree.
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Figure 5: Illustration of the optimal point (λα0, λβ0) =

(1.8170, 1.1017), for the 0.6327 algorithm, for p = 0.474. The

throughput for the various combinations are indicated.

The analysis of this new algorithm is more involved than
the previous one, as the probabilities pi,j that a Type i CRP
is followed by a Type j CRP (i, j ∈ {0, 1}) are much harder
to determine. First, we find all possible tuples of the form
(C, S, R), with C, S and R representing fractions of the ini-
tial window. C and S correspond to intervals of a left and
right child of the same parent node, while R is the fraction
of the initial arrival window located right of the S window.
Notice, each tuple can be associated with a possible short
CRP following the current CRP; for example, starting in a
standard CRP, if we have a collision in an interval of length
Cα0, a success in an interval of length Sα0 and no arrival
in the remaining interval Rα0. The set of all tuples can be
constructed on a per level base: define Si as the set of tuples
(C, S, R), with the corresponding parent node of C and S at
depth i in the collision tree. Then, for i = 0, we have

S0 = {(p, 1 − p, 0)}.

For i > 0, we can have the success S in either the main left
or the main right branch; for the main left branch (fraction
p), the entire right branch (fraction 1 − p) has to be empty,
while when the success occurs in the right branch, there is
no additional requirement for the left branch. This yields
that Si can be constructed recursively as follows:

Si = {(pC, pS, pR + (1 − p))|(C, S, R) ∈ Si−1}

∪{((1 − p)C, (1 − p)S, (1 − p)R)|(C, S, R) ∈ Si−1}.

For p = 0.5, we can provide simple closed expressions for
the tuples belonging to Si:

Si = {(2−i−1, 2−i−1, 2−ik)|k = 0, . . . , 2i − 1}.

The probability p0,1 of having a standard CRP followed
by a short CRP now becomes:

p0,1 =
X

(C,S,R)∈{S0,S1...}

(1 − (1 + λα0C)e−λα0C)λα0Se−λα0Se−λα0R.

Similarly, the probability p1,1 of having a short CRP fol-
lowed by a short CRP is given by:

p1,1 =
X

(C,S,R)∈{S0,S1...}

(1 − (1 + λβ0C)e−λβ0C)λβ0Se−λβ0Se−λβ0R.
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Figure 6: Illustration of the optimal point (λα0, λβ0) =

(1.8207, 1.1082), for the 0.6334 algorithm, for p = 0.476. The

throughput for the various combinations are indicated.

For p = 0.5, this can be simplified to:

p0,1 =
∞
X

i=1

(1 − (1 + Pi)e
−Pi)Pie

−Pi

0

@

2i−1−1
X

k=0

e−2kPi

1

A ,

p1,1 =
∞
X

i=1

(1 − (1 + P ′
i )e

−P ′

i )Pie
−P ′

i

0

@

2i−1−1
X

k=0

e−2kP ′

i

1

A ,

with Pi = λα02
−i and P ′

i = λβ02
−i. Notice, if we only

consider tuples of the form (C, S, R) ∈ Si with R = 0, we
obtain the same expressions as for the previous algorithm.

By numerically maximizing the resulting function, we ob-
tain the highest possible maximum stable throughput λmax

of 0.6325 for p = 0.5 in α0 = 2.8548 and β0 = 1.6093.
Choosing p = 0.476, we obtain a maximum in α0 = 2.8743
and β0 = 1.6074, as demonstrated by Figure 6, resulting in
an MST of λmax = 0.6334. These values have also been
confirmed using simulation experiments. Similar to Section
5, the penalty for splitting coll − 1 is now even further re-
duced, providing an intuitive explanation for an even more
symmetric splitting.

7. CONCLUSION
In this paper, we introduced a number of novel tree al-

gorithms, which use interference cancellation and preserve
an FCFS order. These algorithms were designed such that,
at all times, at most one signal must be stored. Starting,
from a non-FCFS algorithm, we showed how to limit the
penalty for making it FCFS, by postponing successes from
one CRP to the next CRP. For each algorithm, we showed
how to assess its performance in terms of the MST. The
highest MST achieved in this manner was 0.6334 using an
FCFS algorithm using a single signal memory location.
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