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ABSTRACT

This paper addresses the problem of network selection, which
arises when wireless mobile users can choose among multiple
available wireless access networks to connect to. In particu-
lar, we are interested in studying the dynamics of the com-
petition among different selfish mobile users which operate
the network selection with the goal of minimizing their own
selection cost. To this extent, we formalize the problem as a
non-cooperative game, and we study the quality of the cor-
responding Nash equilibria under three expressions for the
users’ selection cost by deriving tight analytical bounds on
the price-of-anarchy and the price-of-stability for the games.
Finally, we introduce a mathematical programming formu-
lation for the games which allows one to compute the equi-
libria in realistic wireless access network topologies.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network communications

General Terms

Algorithms, Theory, Economics

Keywords

Congestion games, network selection, price-of-anarchy

1. INTRODUCTION
The world of wireless networking has experienced dra-

matic changes in the last decade due to the diffusion of mul-
tiple and more and more performing wireless technologies.
In this scenario, mobile users have nowadays the opportunity
of choosing among multiple wireless access networks. In-
deed, 2G cellular systems have recently been complemented
by 3G cellular systems, which, in many situations, are de-
ployed side by side with multi-domain Wireless Local Area
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Networks (WLANs) as well as Wireless Mesh Networking
(WMN) infrastructures.

This plethora of coexisting/cooperating wireless access
systems, which often in the literature goes under the name of
4G Networks, may be potentially exploited by mobile users
to achieve seamless, ubiquitous, and pervasive connectivity.
On the down side, in order to reach this ambitious goal, het-
erogeneous challenges still have to be addressed in different
fields.

From the network point of view, new solutions are re-
quired to effectively handle the user’s handover among mul-
tiple networks,1 and to manage the radio resource alloca-
tion process. On the mobile user’s side, the main challenge
deals with designing proper solutions to drive the network
selection, that is, the dynamic and automatic choice of the
“best” wireless access network to connect to. This calls
for enhanced solutions to monitor and classify the multi-
ple connectivity opportunities (e.g., based on the achievable
throughput, the wireless interference level, etc.), and to au-
tomatically take decisions to actually select the “best” net-
works on the basis of the aforementioned measures [11].

In this work, we resort to non-cooperative game theory to
model the problem of network selection, where mobile users
selfishly compete to minimize their own cost. Namely, we in-
troduce a non-cooperative game theoretic framework which
belongs to the class of congestion games. Since in these
settings the exact cost of the users depends on the actual
throughput and its definition is very involved and cannot
be employed in a game model, we use approximations based
on interference and nominal throughput. More precisely, we
study the quality of the corresponding Nash equilibria under
three expressions for the user’s cost; as a first step we de-
fine a purely interference-based cost function, which leads to
a non-cooperative game where users choose the least inter-
fered access network; then we address those cases where cost
also depends on the nominal achievable throughput. In this
last scenario, we study two multi-objective utility functions
endorsing both interference and nominal throughput.

In all the aforementioned network selection games, we de-
rive non-trivial upper bounds for the price-of-anarchy (PoA,
see [12]) and the price-of-stability (PoS, see [2]) which are
significantly tighter than those available in the literature.
Finally, we propose a mathematical programming model to
numerically characterize the quality of the Nash equilibria,
thus providing an operational tool to “solve” the game. The
work will be completed in future by simulating (e.g., by NS2

1
Eventually managed by different operators.
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simulator) the actual throughput achievable employing each
specific cost function.

The paper is organized as follows: in Section 2, we set the
background for our work by reviewing previously published
approaches in the field of network selection, highlighting the
novelty of the proposed contribution. Section 3 defines the
game theoretic problem. In Section 4, we report the main
game theoretic results considering three different cost func-
tions. In Section 5 we provide a mathematical programming
formulation to compute equilibria and then we experimen-
tally compare them. Concluding remarks and comments on
ongoing related activities are reported in Section 6. Appen-
dices A and B report some applications of the algorithms
proposed in the paper.

2. BACKGROUND AND CONTRIBUTIONS
In the field of network selection, the research efforts have

mainly focused on two major aspects: first, the definition
of novel metrics to measure the perceived quality of access-
ing users to steer the selection decisions, second, the de-
sign of communication protocols customized to the multi-
network scenario. References [8] and [15] fall in the for-
mer research track, and propose realistic measures of the
user’s QoS, which can be consequently used to drive the se-
lection phase. Recently, Song and Jamalipour [17] address
the problem of network selection resorting to mathematical
modelling and computing techniques. Namely, the authors
propose to use Grey Relational Analysis and Analytic Hier-
archy Processing to determine the utility related to different
selection choices.

Research of the latter track usually focuses on specific
network scenarios (technologies). Lee and Miller address
in [13] the problem of selecting among several 802.11-based
access points, by proposing an effective solution to distribute
roaming information to the end users, which can be used to
discriminate in the selection phase. The same scenario with
multiple 802.11 access points is considered in [6], where the
authors study the load balancing among the different access
points by steering the end user decisions while accounting
both for user preferences and network context. Bernaschi
et al. [5] propose a vertical handover protocol to handle the
user mobility between WLAN and cellular systems.

In our previous work [7], we focus on the joint problem
of resource allocation and network selection which is mod-
elled as a two-stage game. On the other side, in this paper
we are interested in gathering general results which cap-
ture the dynamics of competition which is imbedded in the
process of network selection. We resort to non-cooperative
game theoretic models, which constitute a powerful model-
ing/analysis framework to represent situations where deci-
sion makers (mobile users, in our case) take specific actions
that may have mutual and conflicting influence. To charac-
terize stable outcome of the game, we leverage the concept
of Nash equilibrium, which could be qualitatively defined as
a status of the game where each player has no incentive in
unilaterally deviating from the played strategy [10].

However, provided that a game always admits Nash equi-
libria, it is fundamental to find such equilibria and charac-
terize them. Indeed, a game may possess several equilibria
of different “quality”. To this extent, and to characterize
such quality of Nash equilibria, we use the well known con-
cepts of price-of-anarchy (PoA) and price-of-stability (PoS),
defined as the ratio between the “value” of the best/worst

equilibrium, respectively, and the optimal solution. Com-
monly, the value considered in literature is the social cost,
i.e. the sum of the costs of all the users.

Starting from the aforementioned background, the main
contributions of the present paper are the following.

Models. The formalization of the network selection prob-
lem with a non-cooperative game theoretic framework
under different user’s cost functions. Namely, we con-
sider three cost functions for the end users, and cast
the corresponding game as a congestion game.

Inefficiency bounds. The derivation of non-trivial upper
bounds for the PoA and the PoS of the proposed games
which are significantly tighter than the bounds known
in the literature. Furthermore, the bounds we provide
are applicable to a large class of congestion games.

Algorithms. The introduction of Nash equilibria charac-
terization techniques based on non-deviation inequal-
ities and mathematical programming to numerically
derive the equilibria for the proposed games.

3. PROBLEM STATEMENT
We study the scenario composed of a WiFi network with

m access points and n users, where each user can choose the
access point to connect to. We denote by A the set of access
points and by N the set of users. We model this scenario as
a non-cooperative game in which users are players and their
available actions are the selection of an access point among
the available ones. We denote by Ai ∈ A the i-th access
point. Each access point Ai is characterized by a frequency
fi on which it transmits and by a coverage area, i.e. the area
covered by the transmission range of the access point.

The topology of the network specifies the number m of
access points, their positions, their frequencies, and their
coverage areas. In this paper we assume both that the fre-
quencies fis are a given data of the problem (therefore they
will be considered as parameters of the game) and that there
is not any pair of access points with the same frequency such
that their coverage areas overlap. These assumptions allow
one to have a tractable expression for the users’ interfer-
ence, which, formally, can be defined as the number of users
connected to the chosen access point Ai.

The actions available to a user are defined by the topology
of the network and by the user’s position. Precisely, each
user can select one access point among all the ones whose
coverage areas cover the user’s position. In our game the-
oretical analysis we consider the coverage areas as a given
data, while in the experimental setting discussed in Section 5
we will adopt a specific propagation model. For the sake of
clarity, given the network topology, we differentiate users on
the basis of the access points they can connect to. We de-
note by Nl ∈ N where l ⊆ {1, . . . , m} the set of users that
can connect to any access point whose subscript occurs in
l, e.g. N1,2 is the set of users that can connect to A1 and
A2. We denote by nl the cardinality of Nl. We report an
example of network in Fig. 1, where m = 2, n1 = 4, n2 = 3,
and n1,2 = 3. Black circles denote users and lines between
users and access points denote connections.

Each user j has a cost function cj(i, x
i) that depends on

access point Ai it connects to and on congestion xi of access
point Ai. Customarily, we assume cj(i, x

i) to be strictly
monotonically increasing in xi. We assume each user to be
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Figure 1: A network with two access points.

rational and to behave selfishly trying to minimize her cost.
Finally, as common in game theoretic studies for communi-
cation network, we assume information to be complete.

We denote by xi
l the number of users belonging to Nl that

connect to access point Ai. A solution to the problem we
are dealing with is a Nash equilibrium, i.e. strategy profile
S∗ = (s1, . . . , sn) such that no user can reduce her cost by
deviating unilaterally from S∗ [10]. In this paper we consider
non-weighted congestion settings, i.e. each user congests
resources with the same weight, formally, xi =

P

l
xi

l.
The game we are considering is a congestion game [16]

that is: asymmetric (different users can have different avail-
able actions), single-choice (each user can select only one
access point), and with player-specific cost functions (each
user can have a different cost function). Rigorously speak-
ing, this game is not a crowding game [14], i.e. a symmetric
single-choice congestion game with player-specific cost func-
tions that are monotonically increasing in the level of con-
gestion, anyway it can be easily reduced to that. Indeed, we
can build an auxiliary game, equivalent to the original, that
is a crowding game. The auxiliary game is such that each
agent can connect to all the access points and the cost for
a user of connecting to the access points non-allowed in the
original game is set equal to infinity. The equivalence be-
tween the original game and auxiliary one is straightforward.
This equivalence leads to a prominent property: since all the
users have the same weight in congesting the resources, the
game is proved to always admit a Nash equilibrium in pure
strategies [14]. Therefore, independently of the specific def-
inition of cj , we can focus on solving algorithms that limit
their search to pure strategy equilibria.

In the next section, we consider three different definitions
of cost functions and we analyze the corresponding games in
terms of price-of-anarchy and price-of-stability. The objec-
tive function we use is the social cost. Subsequently, we will
propose a mathematical programming formulation to com-
pute Nash equilibria in real-world settings and we experi-
mentally compare the equilibria with different cost functions
in terms of interference and nominal throughput.

4. GAMETHEORETIC ANALYSIS

4.1 Interferencebased Cost Function
We consider the case in which the cost functions depend

only on the number of interferers. Formally, we have cj(i, x
i) =

xi. With these cost functions the game is essentially a single-
choice asymmetric congestion game, all users’ cost functions

being the same. This game admits an exact potential func-
tion that is the one provided by Rosenthal in [16], formally:

Ψ(S) =
m
X

i=1

xi
X

k=1

k,

where S is the users’ strategy profile.2

4.1.1 NonDeviation Inequalities Based Analysis

In these simple settings, a Nash equilibrium can be found
in closed-form by studying non-deviation inequalities and by
solving them. This analysis is of paramount importance for
the determination of the exact bounds on price-of-anarchy
and price-of-stability and provides an effective tool for the
characterization of the equilibria. We basis our analysis on
Algorithm 1 and we apply it to a simple example.

Algorithm 1 Non-deviation inequalities based method.

1: for each subset Nl of users do

2: derive non-deviation inequalities for any action avail-
able to users in Nl

3: end for

4: solve the produced inequality system
5: if some variables xi

ls are non-positive then

6: set them equal to zero
7: return to step 1 removing the corresponding actions
8: end if

We apply Algorithm 1 to the topology depicted in Fig. 2.
The number of users and their positions are considered as
parameters. The variables are x1

1,2, x2
1,2, x2

2,3, and x3
2,3.

Figure 2: Reference scenario.

Initially, we write non-deviation inequalities under the as-
sumption that no action was removed and then that at the
equilibrium xi

l > 0 for all i and l. This assumption will be
verified once a solution to the produced inequality system
was found. The non-deviation inequalities are:

8

>

<

>

:

n1 + x1
1,2 ≤ n2 + x2

1,2 + x2
2,3 + 1

n2 + x2
1,2 + x2

2,3 ≤ n1 + x1
1,2 + 1

n2 + x2
1,2 + x2

2,3 ≤ n3 + x3
2,3 + 1

n3 + x3
2,3 ≤ n2 + x2

1,2 + x2
2,3 + 1

.

The solutions are the following (the calculations are pro-
vided in Appendix A).

• If n is divisible by 3, solutions can have two different
social costs. The solution with the minimum social
cost is: x1

1,2 = n
3
− n1, x2

1,2 + x2
2,3 = n

3
− n2, and

x3
2,3 = n

3
− n3. Solutions with a larger social cost are

of the form: x1
1,2 = n−3

3
− n1, x2

1,2 + x2
2,3 = n

3
− n2,

and x3
2,3 = n+3

3
− n3.

2
We recall that in a potential game every strategy profile that mini-

mizes the potential function is a Nash equilibrium.
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• If n + 1 is divisible by 3, only solutions with the same
social costs are possible. They are of the form: x1

1,2 =
n+1

3
−n1, x2

1,2 +x2
2,3 = n+1

3
−n2, and x3

2,3 = n−2
3

−n3.

• If n − 1 is divisible by 3, only solutions with the same
social costs are possible. They are of the form: x1

1,2 =
n−1

3
−n1, x2

1,2 +x2
2,3 = n−1

3
−n2, and x3

2,3 = n+2
3

−n3.

In order to verify the assumption xi
l > 0 for all i and l, we

need to compute x2
1,2 = n1,2 − x1

1,2 and x3
2,3 = n2,3 − x2

2,3.
If the assumption is verified, then we have found one or
more equilibria. Otherwise, we set the variables that violate
the above assumption to be equal to zero and we produce
an inequality system removing the actions corresponding to
the variables set equal to zero. For instance, if x3

2,3 < 0,
we set it equal to zero and we remove the possibility of
choosing A3 for all users in N2,3. That is, all the users in
N2,3 will choose A2, formally, x2

2,3 = n2,3. In this case the
new problem to solve is simpler since both the number of
variables and the number of inequalities decrease by two. We
call n′ = n1 +n1,2 +n2 +n2,3. The non-deviation inequality
system is:



n1 + x1
1,2 ≤ n2 + x2

1,2 + n2,3 + 1

n2 + x2
1,2 + n2,3 ≤ n1 + x1

1,2 + 1
.

The solutions are the following (the calculations are pro-
vided in Appendix A).

• If n′ is divisible by 2, only one solution is possible. It

is: x1
1,2 = n′

2
− n1 and x2

1,2 = n′

2
− n2 − n2,3.

• If n′ +1 is divisible by 2, only solutions with the same
social cost are possible. They are of the form: x1

1,2 =
n′+1

2
− n1 and x2

1,2 = n′−1
2

− n2 − n2,3.

If x1
1,2 and x2

1,2 are strictly greater than zero, we have found
one or more equilibria. Otherwise, we must set the variable
that is negative equal to zero and we must produce a new in-
equality system. The application of the algorithm continues
as done above.

4.1.2 Bounds on PoA and PoS

We analyze now price-of-anarchy (PoA) and price-of-stability
(PoS) with objective function F defined as the social cost,
formally, F =

Pm

i=1(x
i)2. We analyze both the settings

when n is finite (atomic congestion game model) and when
n is infinite (non-atomic congestion game model [18]) and
therefore the contribution of each user to the congestion is
negligible. We analyze this second setting to provide the
asymptotic properties of the considered model as the num-
ber of users goes to infinity. We state the following propo-
sition.

Proposition 4.1. The exact upper bounds for PoA and
PoS are: PoA(n < ∞) ≤ 1.6, PoA(n = ∞) = 1, PoS(n <
∞) = 1, and PoS(n = ∞) = 1.

Proof. We start by proving the bounds on PoS. The proof
is based on the potential function. When n < ∞, we have
that the strategy profile that minimizes Ψ minimizes also
F . Formally, arg minΨ = arg min F , indeed arg min Ψ =

arg min
Pm

i=1

Pxi

k=1 k = arg min
Pm

i=1
xi·(xi+1)

2
= arg min

Pm

i=1(x
i)2. Therefore, when n < ∞ we have PoS = 1.

When n = ∞, the game admits potential function

Ψ(S) =
m
X

i=1

Z xi

0

k dk =
m
X

i=1

1

2
(xi)2

that is equal (apart a multiplicative factor 1
2
) to F and then

they are minimized by the same argument. It follows that
also when n = ∞ we have PoS = 1.

We now prove the bounds on PoA. We recall that when
n = ∞ any congestion game admits equilibria that are all
equivalent for what concerns the social cost [4]. Therefore,
the worst equilibrium when n = ∞ gives a social cost that
is exactly the one given by the best equilibrium. It easily
follows that, since PoS = 1, also PoA = 1. When n < ∞,
the proof is not straightforward. We recall that the most
severe bound on PoA presented in literature for a generic
congestion game with linear cost functions is 2.5 [3]. We
show that this bound can be significantly reduced to 1.6
and that this last bound is exact. Indeed, we provide a case
in which PoA is exactly 1.6.

The proof is organized in two parts. In the first part
of the proof, we show that the worst topology class is the
“corridor”, i.e. the topology in which the coverage area of
each access point overlaps the coverage areas of at most
two access points. An example is reported in Fig. 3. In
the second part of the proof, we show that among all the
possible “corridor” topologies, the worst one for the PoA is
when m = 3 and n = 3.

Figure 3: The “corridor”: the worst topology class

for PoA.

We consider the first part of the proof. By definition, PoA
is equal to

PoA =

max
P

i
(xi)2

s.t. fj(x
1
l , . . . , xm

l ) = 0
ej(x

1
l , . . . , xm

l ) = 0

min
P

i
(xi)2

s.t. fj(x
1
l , . . . , xm

l ) = 0

,

where fj(x
1
l , . . . , x

m
l ) = 0 are the feasibility constraints of

the form
P

l
xi

l = nl (i.e., all the users have been assigned
to exactly one access point) and ej(x

1
l , . . . , x

m
l ) = 0 are the

equilibrium constraints of the form xi
l ≤ xj

l + 1 with i 6= j.
We notice that numerator and denominator in PoA differ,
apart for max and min, for the presence in the numerator
of the constraints ejs. Obviously, fixed m and n, the lower
the number of constraints ejs the greater the value of the
numerator. As a result, fixed m and n, the PoA is maximum
when the number of constraints ejs is minimum. The num-
ber of constraints ejs depends on the number of overlaps
between access points’ coverage areas. Precisely, a couple of
constraints ejs is introduced for each pair of overlapping cov-
erage areas. It can be easily shown that the topology class
that minimizes the number of constraints is the “corridor”.

We consider the second part of the proof. We exclude the
cases in which m = 1 and m = 2, since it can be shown,
by employing Algorithm 1, that in these cases PoA is equal
to 1. The worst situation for PoA is when n is multiple
of m (formally, n = α · m with α ∈ N) and the assignment
xi = n/m for all i is feasible. Essentially, if n is a multiple of
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m and the assignment xi = n/m is not feasible, PoA can be
increased by rearranging the positions of the users to make
feasible the assignment xi = n/m for all i. If instead n is not
a multiple of m, PoA can be increased by adding or removing
n′ users to make n + n′ or n − n′ to be a multiple of m.
When n is a multiple of m and the assignment xi = n/m is
feasible, this assignment is the one that minimizes the social
cost. Obviously, it is also the optimal Nash equilibrium.
Equilibria different from the optimal solution are such that
xi ∈ {n/m−1, n/m, n/m+1} for all i. A large part of these
equilibria gives the same social costs. We are interested
only in the equilibria that give different social costs. It can
be shown that equilibria with different social costs have a
different number of pairs (xi = n/m−1, xj = n/m+1). The
minimum number of these pairs is obviously 1, whereas the
maximum number is bm+1

4
c. We can now calculate PoA. It

is:

PoA = max
i∈{3,...,m}

b i+1

4
c

“

`

n
m

− 1
´

2 +
`

n
m

+ 1
´

2
”

+ (m − 2b i+1

4
c) ·

`

n
m

´

2

m ·
`

n
m

´

2
=

= max
i∈{3,...,m}

2

—

i + 1

4

�

m

n2
+ 1.

Obviously, PoA is maximum when i is maximum, i.e.
PoA = 2bm+1

4
c m

n2 + 1. Moreover, PoA is maximum for the
values of m such that m + 1 is a multiple of 4. We obtain
PoA = 2m+1

4
m

n2 + 1. Since n = α · m with α ∈ N, we have

PoA = 2m+1
4

m

α2·m2 + 1 = m+1
2m·α2 + 1. Since m ≥ 3, we have

that the maximum value of PoA is when m = 3 and α = 1,
and therefore n = 3. The worst PoA is 5

3
= 1.6. Fig. 4

depicts a setting in which PoA is exactly 1.6. 2

Figure 4: Worst case for PoA with interference

based cost functions.

4.2 Additive InterferenceRate Cost Function
We consider the case in which the cost functions are lin-

ear combination of the number of interferers and the reverse
of the rate perceived by users. We denote by T i

j the re-
verse of the rate perceived by user j to connect to access
point Ai. Users’ cost functions are: cj(i, x

i) = λ1x
i + λ2T

i
j

where λ1, λ2 ∈ R+ are user independent parameters. In
other words, we are assuming that all the users use the same
values of λ1 and λ2. Notice that, when λ2 = 0, the game is
exactly the one discussed in the previous section, whereas,
when λ1 = 0, there is not any competition among users.
Indeed, in this second case, each user’s cost function does
not depend on the actions undertaken by the other users.
In this situation, each user j’s behavior is greedy trying to
minimize T i

j .

The game is properly a crowding game, since cost func-
tions are player-specific. Furthermore, the game admits po-
tential function:

Ψ(S) = λ1

m
X

i=1

xi
X

k=1

k + λ2

X

j

T i
j .

We analyze PoA and PoS in this specific setting, with
objective function F defined as social cost. We state the
following proposition.

Proposition 4.2. The exact upper bounds for PoA and
PoS are: PoA(n < ∞) ≤ 1.6, PoA(n = ∞) = 1, PoS(n <
∞) < 1.3, and PoS(n = ∞) = 1.

Proof. We start by proving PoS. When n < ∞, PoS being
defined as

PoS =

min
P

i
(xi)2

s.t. fj(x
1
l , . . . , xm

l ) = 0
ej(x

1
l , . . . , xm

l ) = 0

min
P

i
(xi)2

s.t. fj(x
1
l , . . . , xm

l ) = 0

(the constraints fjs and ejs are defined in the previous sec-
tion), the maximum value for PoS is when the constraints’
number is maximum. (The reasoning is the reverse of the
one we produced for PoA in the previous section.) It easily
follows that the worst topology class is the one in which the
overlap of all the coverage areas is not empty. We consider
the setting depicted in Fig. 5 where m and n are parame-
ters. There is one user in N1 and n − 1 users in N1,...,m.

Figure 5: Worst case for PoA with additive

interference-rate cost functions.

We assume that all the n − 1 users in N1,...,m are the same
in terms of rate. We denote by a the user in N1 and by
b the users in N1,...,m: T 1

a is the reverse of rate perceived
by a from the connection with A1, T i

b with i ∈ {1, . . . , m}
is the reverse of rate perceived by b from the connection
with Ai. We assume that λ1n + λ2T

1
b < λ1 + λ2T

i
b for all

i ∈ {2, . . . , m}. That is, there is a unique equilibrium where
x1 = n and xi = 0 for all i ∈ {2, . . . , m}. It can be easily
shown that this is the worst topology for PoS. In order to
maximize PoS, we can assume all T i

b with i ∈ {2, . . . , m}
to be the same and we denote them by T−1

b . The optimal
assignment that maximizes PoS is when xi = 1 for all i (we
omit the mathematics, it can be derived by calculating the
derivative of PoS with respect to the number of users for
each access point). We can write PoS as

PoS =
λ1n

2 + λ2(T
1
a + (n − 1)T 1

b )

λ1n + λ2(T 1
a + (n − 1)T−1

b )
.
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Since we have that λ1

λ2
<

T
−1

b
−T1

b

n−1
, if λ2 > 0, we can write:

PoS <

T
−1

b
−T1

b

n−1
n2 + T 1

a + (n − 1)T 1
b

T
−1

b
−T1

b

n−1
n + T 1

a + (n − 1)T−1
b

.

From the derivative of the bound with respect to n, i.e.

dPoS

dn
=

(T−1
b − T 1

b ) · (−n2T−1
b + 2nT−1

b − T 1
b )

(−nT−1
b − T 1

b n + T 1
a n − T 1

a + n2T−1
b + T−1

b )2
,

we can found that the value of n that maximizes PoS is
n = 2; in this case

PoS =
4T−1

b − 3T 1
b + T 1

a

3T−1
b − 2T 1

b + T 1
a

.

Independently of the values of T 1
a , T 1

b , and T−1
b the upper

bound for PoS is 4
3

= 1.3. We consider the settings where
n = ∞. Since Ψ and F are very similar, we can write

Ψ < a · F where a = mini{
xi+1

xi }. This expression can be
used to provide an upper bound on PoA. Precisely, PoS <

mini{
xi+1

xi }. Easily, as xi goes to ∞, PoS goes to 1.
We study the bounds on PoA. When n < ∞, the proof

is similar to the one discussed in the previous section. We
report just the sketch of the proof. The worst topology class
is the “corridor” and the worst “corridor” topology holds to
be the one with m = 3 and n = 3. It can be observed that
PoA is maximum when either λ2 = 0 or all the rates are
infinity (and their reverse is zero). Obviously, the maximum
PoA holds to be 1.6. When n = ∞, the values of PoA and
PoS are the same and then PoA is 1. 2

4.3 Multiplicative InterferenceRate Cost Func
tion

We consider the case in which the cost functions are given
by the multiplication between the number of interferers and
the reverse of the rate perceived by users. Formally, users’
cost functions are: cj(i, x

i) = T i
j · xi. The game does not

admit exact potential function.
We analyze PoA and PoS in this specific setting, with

objective function F defined as social cost. We state the
following proposition.

Proposition 4.3. The upper bounds for PoA and PoS

are: PoA(n < ∞) ≤
maxi,j T i

j +mini,j T i
j

mini,j T i
j

, PoA(n = ∞) ≤

maxi,j T i
j +mini,j T i

j

mini,j T i
j

, PoS(n < ∞) <
maxi,j T i

j +mini,j T i
j

mini,j T i
j

, and

PoS(n = ∞) ≤
maxi,j T i

j +mini,j T i
j

mini,j T i
j

.

Proof. We start by proving the bound on PoS when n < ∞.
We consider the same setting we considered in the previous
section to prove the bound on PoS. Here we assume that
nT 1

b < T−1
b . The unique equilibrium prescribes x1 = n and

xi = 0 for all i ∈ {2, . . . , m}. The optimal allocation that
maximizes PoS prescribes xi = 1 for all i. We can write PoS
as:

PoS =
nT 1

a + n · (n − 1)T 1
b

T 1
a + (n − 1)T−1

b

.

Since nT 1
b < T−1

b , we can write

PoS <
nT 1

a + (n − 1)T−1
b

T 1
a + (n − 1)T−1

b

.

By studying the derivative of the bound with respect to n,
i.e.

dPoS

dn
=

T 1
a · T 1

a

(T 1
a + (n − 1)T−1

b )2
,

it can be observed that the bound is strictly monotonically
increasing in n. The upper bound is when n → ∞ and it

is
T1

a+T
−1

b

T
−1

b

. In a general setting, an upper bound for PoS

can be computed by replacing T 1
a with maxi,j T i

j and T−1
b

with mini,j T i
j . Notice that the bound on PoS is equal to or

greater than 2.
We study PoA. When n < ∞, by the analysis of “corridor”

topologies with m > 2, it can be observed that no topology
admits a bound on PoA greater than the bound with m = 2.
The upper bound on PoA is exactly the upper bound on PoS,
i.e.

PoA ≤
maxi,j T i

j + mini,j T i
j

mini,j T i
j

.

Notice that, while PoS is strictly lower than the above upper
bound, PoA can reach such a bound. When n = ∞, the
values of PoA and PoS are the same. 2

5. NUMERICAL RESULTS
In this section, we complement the theoretical analysis

previously discussed by providing a mathematical program-
ming formulation to compute Nash equilibria in realistic set-
tings. We use the proposed model to compare the quality of
the equilibria induced by the three different cost functions
we introduced in Section 4.

5.1 Mathematical Programming Formulation
We derive hereafter a mathematical programming formu-

lation to find Nash equilibria. We introduce the following
parameter:

aji =
n

1 if user j can choose Ai

0 otherwise .

Given a generic topology, aji is equal to 1 if user j is within
the coverage area of Ai. Coverage is defined in the follow-
ing way: let P i

tx be the power transmitted by Ai; user j is
covered by Ai if the following inequality holds:

P i
j = αP i

txdη
ij10

ε
10 ≥ Pth,

where dij is the distance between Ai and user j, η is the
attenuation factor, and 10

ε
10 accounts for the loss due to

slow shadowing, being ε a normal variate with zero mean
and σ2 variance. Pth is a threshold value for the required
received power.3

We define the assignment of a user to an access point by
introducing a binary decision variable:

yji =
n

1 if user j chooses Ai

0 otherwise .

Finally, the constraints of the problem are:
X

i∈A

yji = 1 ∀ j ∈ N , (1)

yji ≤ aji ∀ j ∈ N , i ∈ A, (2)

3
It is worth noting here that the mathematical programming formu-

lation is general and absolutely independent on the specific propaga-
tion/coverage model
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ajkyjicj(i,
X

l∈N

yli) ≤ cj(k,
X

l∈N

ylk), ∀ j ∈ N , i, k ∈ A (3)

Constraints (1) ensure that each user chooses only one
access network. Constraints (2) guarantee the feasibility of
the assignment. Constraints (3) force each user to choose
the strategy (access network) which leads to the minimum
cost function, that is, they ensure that, if the single user uni-
laterally changes her strategy, the change does not improve
her own payoff (i.e. definition of Nash equilibrium).

Notice that the expression of the cost function in (3) is
the same defined previously:

xi =
X

l∈N

yli.

This formulation allows one to find equilibria that max-
imize/minimize a given objective function. In our analysis
we are interested in finding both equilibria that minimize
and equilibria that maximize the social cost. They can be
found by introducing the following objective function in the
formulation:

min / max
X

j∈N

X

i∈A

yjicj(i,
X

l∈N

yli). (4)

Moreover, to evaluate price-of-stability and price-of-anarchy,
it is necessary to provide a model that allows one to find the
optimal solution, i.e. the solution that minimizes the so-
cial cost but that could not be an equilibrium. To do this,
we inhibit equilibrium constraints (3) and solve the model
minimizing the objective function (4).

Constraints (3) and objective function (4) must be instan-
tiated according to the specific adopted cost function. For
the sake of brevity, we report in Appendix B the formulas
for the additive interference-rate cost function.4

5.2 Experimental Evaluation
In this subsection we report some numerical results in or-

der to compare the strategies of users when they use the
three different cost functions. We have implemented an in-
stance generator able to create synthetic instances repre-
senting multi-access network scenarios. The software takes
as input the following parameters: the edge of the square
area to be simulated (L), the number of end users (n), the
weight (λ) used in the second cost function (supposing that
λ = λ2 and 1 − λ = λ1), the number of access points (m),
and the coverage range of each access point, expressed in
meters (r). In a basic set of instances, each network is as-
sumed to have a circular coverage area with radius r = 100
meters.

The generating tool randomly draws the position of the
m access points and of the n users, so that each user is cov-
ered by at least one access point. According to the distance
between the user and the access point, when this is shorter
than the radius, the software assigns the larger achievable
rate that the user can obtain from that access point. In our
scenarios we suppose to have a 802.11g network. Table 1
reports, for each distance, the achievable rate and the corre-
sponding value of T used in our simulations. The parameter
T used in the model is a normalization of the inverse of rate
R, so that the number of interferers and the inverse of rate

4
The instantiation of the proposed model with the cost functions

presented in Sections 4.1 and 4.2 is a integer linear problem (ILP),
while with the cost function presented in Section 4.3 the model is a
mixed integer linear problem (MILP).

Table 1: Achievable rates in a 802.11g scenario.
Distance Rate T
[meters] [Mbit/s]
≤ 10 54 1.8
≤ 20 48 2
≤ 30 36 2.7
≤ 45 24 4
≤ 60 18 5.5
≤ 75 12 8.3
≤ 90 9 11.1
≤ 100 6 16.6

are comparable. In this case we assume that T = 108/R.
This normalization could not be effective if the number of
users or access points increases. In general, we have found
that an effective normalization should depend on n and m
so that the worst case of rate (that corresponds to the max-
imum value of T ) is comparable with the average number
of users per access point. For this reason we propose the
following normalization:

Tmax =
n

m
β

where Tmax is the maximum value of T and β should be
chosen in the interval 1 ÷ 4 (in our simulations β = 3.32).

All the results reported in the remainder have been pro-
duced formalizing the mathematical problem presented in
Section 5.1 in AMPL [9] and solving it with CPLEX com-
mercial solver [1]. Unless differently specified, the reported
results are averaged on 100 randomly generated instances.

Table 2 reports the results obtained in a uniform topology
with m = 10 randomly deployed access points and n = 50
end users, in case L = 500 meters and r = 100 meters. For
each scenario we have considered the three different cost
functions. With 1st we indicate the cost function presented
in Section 4.1, while 2nd is the cost function presented in
Section 4.2 and 3rd the one presented in Section 4.3.

The average number of interferers and the average rate
(in Mbit/s) per user are reported for the best equilibrium,
the worst equilibrium, and the optimal solution. The last
two columns report the value of price-of-stability and price-
of-anarchy.

The result coming from this analysis is the different be-
havior of users, minimizing different cost functions. When
users aim at minimizing the number of interferers (1st func-
tion) they obtain the optimal solution from the point of view
of interference, ignoring the achievable rates. This solution
is the same that can be obtained setting λ = 0 in the 2nd

cost function. By increasing λ, users give more importance
to rate with respect to interference. When λ = 1.0 the prob-
lem is not a game anymore, because each user simply chooses
the access point that guarantees the highest rate (for this
reason PoS = PoA = 1). Using the 3rd cost function, users
obtain a trade off between interference and rate.

We have also evaluated the price-of-anarchy in a simple
scenario, showing that it decreases quickly as the number of
users increases. For the reasons mentioned in Section 4.1.2,
we consider a “corridor” topology composed by m = 3 access
points with r = 100 meters, varying the number of users
from 3 to 50. For each cost function, we report average and
maximum value of price-of-anarchy.

Fig. 6 reports the price-of-anarchy using the 1st cost func-
tion. Results confirm what we have formally proved in Sec-
tion 4.1. Namely, the maximum value of PoA is 1.6 and

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2008.4341 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4341 



Table 2: PoA and PoS with different cost functions in a uniform network scenario with n = 50 users, m = 10
access points, L = 500m, and r = 100m.

Best equilibrium Worst equilibrium Optimal solution PoS PoA
Interf. Rate Interf. Rate Interf. Rate

1st 5.652 16.542 5.708 16.614 5.652 16.158 1.00000 1.01049

2nd λ = 0.1 5.664 18.306 5.700 17.016 5.656 18.234 1.00039 1.01628
λ = 0.2 5.696 18.558 5.756 18.402 5.672 18.432 1.00094 1.01067
λ = 0.3 5.768 18.948 5.812 18.774 5.692 18.552 1.00198 1.00760
λ = 0.4 5.844 19.188 5.892 19.062 5.756 18.960 1.00222 1.00630
λ = 0.5 5.960 19.470 5.988 19.434 5.804 19.074 1.00288 1.00501
λ = 0.6 6.064 19.584 6.076 19.596 5.936 19.356 1.00228 1.00267
λ = 0.7 6.100 19.632 6.100 19.632 6.000 19.506 1.00089 1.00089
λ = 0.8 6.116 19.644 6.116 19.644 6.076 19.596 1.00016 1.00016
λ = 0.9 6.144 19.656 6.144 19.656 6.116 19.644 1.00001 1.00001
λ = 1.0 6.348 19.656 6.348 19.656 6.348 19.656 1.00000 1.00000

3rd 5.856 19.344 5.888 19.320 5.764 18.888 1.01214 1.02180

it can be reached only with 3 users, moreover PoA is dif-
ferent from 1 only when the number of users is a multiple
of the number of access points. We have also reported the
analytical bound:

PoA =
n2 + 6

n2

derived in Appendix A.

Figure 6: PoA using the 1st cost function.

Fig. 7 and 8 report PoA using the 2nd and 3rd cost func-
tion. Also in these cases, we can observe that it rapidly
decreases and becomes very close to one. The same experi-
mental results can be produced considering PoS.

Figure 7: PoA using the 2nd cost function.

Figure 8: PoA using the 3rd cost function.

Summarily, although the theoretical bounds on PoA and
PoS derived in Section 4 are generally far from 1, in real-
istic scenarios where access points and users are uniformly
distributed, the values of PoA and PoS are very close to 1
independently of the adopted cost function. Further anal-
ysis must be directed to consider non-uniformly topologies
and to compare the equilibria induced by the cost functions
in terms of actual throughput through system level simula-
tion.

6. CONCLUDING REMARKS AND FUTURE

WORK
The problem of network selection naturally arises in those

wireless access network scenarios where mobile users are of-
fered multiple connectivity opportunities provided by differ-
ent access networks/technologies. In this scenario, we have
analyzed the dynamics of a competitive network selection
scenario, where mobile users select the accessing network
selfishly minimizing their own selection cost. We have casted
the problem as a non-cooperative game belonging to the
class of congestion games, and we have analyzed the quality
of the corresponding Nash equilibria under three different
expressions for the selection cost depending on the interfer-
ence level and the nominal throughput.

The analysis has been carried out in two ways: first,
we have derived analytical upper bounds for the price-of-
anarchy and price-of-stability, which are considerably tighter
than well known bounds for generic congestion games; sec-
ond, we have developed a mathematical programming model
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to numerically calculate the Nash equilibria, providing an
operational tool to validate the analytical results and “solve”
the game for realistic wireless access network topologies.

We are currently working in two directions: evaluating dif-
ferent expressions for the selection cost and characterizing
the game equilibria through system level simulation, which
allows one to gather networking-oriented performance mea-
sures (e.g., actual throughput and delivery delay).
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APPENDIX

A. EXAMPLE OF APPLICATION OF AL

GORITHM 1
We solve the inequality system:

8

>

<

>

:

n1 + x1
1,2 ≤ n2 + x2

1,2 + x2
2,3 + 1

n2 + x2
1,2 + x2

2,3 ≤ n1 + x1
1,2 + 1

n2 + x2
1,2 + x2

2,3 ≤ n3 + x3
2,3 + 1

n3 + x3
2,3 ≤ n2 + x2

1,2 + x2
2,3 + 1

.

Letting A = n1 + x1
12

, B = n2 + x1
1,2 + x2

2,3, C = n3 + x2
2,3,

we obtain:


B − 1 ≤ A ≤ B + 1

C − 1 ≤ B ≤ C + 1
.

Four cases are possible.

1. (A = B = C) Since n = A + B + C, we have A = B =
C = n/3. The solution is:

(

x1
1,2 = n

3
− n1

x2
1,2 + x2

2,3 = n
3
− n2

x3
2,3 = n

3
− n3

.

2. (A = B = C + 1 or B = C = A + 1 or A = C = B + 1)
In this case n = 3A − 1 = 3B − 1 = 3C + 2. The
solution is of the form:

(

x1
1,2 = n+1

3
− n1

x2
1,2 + x2

2,3 = n+1

3
− n2

x3
2,3 = n−2

3
− n3

.

3. (A = B = C − 1 or A = C = B − 1 or B = C = A− 1)
In this case n = 3A − 1 = 3B − 1 = 3C + 2. The
solution is of the form:

(

x1
1,2 = n−1

3
− n1

x2
1,2 + x2

2,3 = n−1

3
− n2

x3
2,3 = n+2

3
− n3

.

4. (A = B − 1 = C − 2 or A = B + 1 = C + 2) In this
case n = 3A + 3 = 3B = 3C − 3. The solution is of the
form:

(

x1
1,2 = n−3

3
− n1

x2
1,2 + x2

2,3 = n
3
− n2

x3
2,3 = n+3

3
− n3

.

If all variables are positive, a solution has been found. In
the case n is divisible by m, there are two equilibria with
different social costs. In this case, the price-of-anarchy is:

PoA =
(n−3

3
)2 + (n

3
)2 + (n+3

3
)2

3(n
3
)2

=
n2 + 6

n2
.

Instead, if at least one variable is negative, we set it equal to
zero and we solve the previous system after having removed
the pertinent inequalities.
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For instance, if x3
2,3 ≤ 0, we set it equal to zero and we

remove the possibility of choosing A3 for all the users in
N2,3. That is, all the users in N2,3 will choose A2, formally,
x2

2,3 = n2,3. In this case the new problem to solve is simpler
than the previous one, since both the number of variables
and the number of inequality decrease by two. We call n′ =
n1 + n1,2 + n2 + n2,3. The non-deviation inequality system
is:



n1 + x1
1,2 ≤ n2 + x2

1,2 + n2,3 + 1

n2 + x2
1,2 + n2,3 ≤ n1 + x1

1,2 + 1
.

Letting A = n1 + x1
1,2 and B = n2 + x2

1,2 + n2,3, we obtain:

B − 1 ≤ A ≤ B + 1

Two cases are possible.

1. (A = B) In this case A = B = n′/2. The solution is:


x1
1,2 = n′

2
− n1

x2
1,2 = n′

2
− n2 − n2,3

2. (A = B + 1 or B = A + 1) In this case n′ = 2A − 1 =
2B + 1. The solution is of the form:



x1
1,2 = n′+1

2
− n1

x2
1,2 = n′−1

2
− n2 − n2,3

If either x1
1,2 or x2

1,2 is non-positive, we set this variable equal
to zero and we produce the pertinent inequality system.

B. MATHEMATICAL FORMULATION
We present here the mathematical formulation used for

the second cost function. We omit variables and constraints
that are the same presented in Section 5.1.

We report the equilibrium constraint (3) and the objective
function (4), previously presented in a general form.

M(yjiajk − 1) +

0

@λ1

X

l∈N ,l6=j

yli + λ2T
i
j

1

A ≤

0

@λ1

X

l∈N ,l6=j

ylk + λ2T
k
j

1

A ∀ j ∈ N , i, k ∈ A

This “big-M” constraint is the linearized form of (3) and is
activated only when yji = 1 and ajk = 1. In other words,
player j chooses Ai, yji = 1, if all the other possible strate-
gies, access points Ak for which ajk = 1, give an higher cost
to j.

The objective function (4) can be written as:

min / max
X

j∈N

 

λ1

X

i∈A

yji

X

l∈N

yli + λ2

X

i∈A

T i
j yji

!

To linearize the objective function we have to introduce a
new variable (vj ∈ N, ∀ j ∈ N ). In the case of minimization
we have:

min
X

j∈N

 

λ1vj + λ2

X

i∈A

T i
j yji

!

vj ≥
X

l∈N

yli + M(yji − 1) ∀ j ∈ N , i ∈ A

The linearization of the objective function in the case of
maximization is analogous.
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