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ABSTRACT

Customer classification and prioritization are commonly uti-
lized in applications to provide queue preferential service.
Their fairness aspects, which are inherent to any preferential
system and highly important to customers, have not been
fully studied and quantified to date. We use the recently
proposed Resource Allocation Queueing Fairness Measure
(RAQFM), and a newly introduced metric called class dis-
crimination, which is based on RAQFM, to analyze such sys-
tems and derive their relative fairness values as well as the
discrimination experienced by the various classes. Specifi-
cally, we study two practices, commonly used in public fa-
cilities as well as in computer systems: class prioritization
and dedication of resources to classes.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Performance Attributes—
Fairness; F.2.2 [Nonnumerical Algorithms and Prob-

lems]: Sequencing and Scheduling; G.3 [Probability and

Statistics]: Queuing Theory

General Terms

Performance, Measurement

Keywords

Fairness, Discrimination, Prioritization, Multiple Classes,
Job Scheduling, Resource Allocation, Unfairness
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1.1 Forward and Motivation
Customer classification and prioritization mechanisms are

commonly used in a large variety of daily queueing situ-
ations. One of the major reasons for using priorities and
preferential service is that of fairness, that is, the wish to
make the system operation “fair”. As shown in recent Ex-
perimental Psychology studies [17, 18] fairness in the queue
is very important to people, perhaps not less than the wait
itself.

Despite this fact, the general fairness aspects of prioritiza-
tion and classification in queueing systems and their quan-
titative evaluation have been studied only little, especially
compared to the volume of literature on the utility of these
systems. The effect of these mechanisms on fairness cannot
be quantitatively accounted for in the queueing analysis of
many daily life applications.

The objective of this work is to use a quantitative model
for measuring the relative fairness of priority and classifi-
cation systems. Such measurements can be used to quan-
titatively account for fairness when considering alternative
designs. This can enhance the existing design approaches
in which efficiency, e.g. utilization and delays, is accounted
for quantitatively, while fairness is accounted for only in a
qualitative way. To carry out the analysis we use the Re-
source Allocation Queueing Fairness Measure (RAQFM) in-
troduced in [22]. The measure is based on the application of
the basic Rawlsian social and economical justice conception
([19]), that equally needy members of a group should share
equally the resources available to the group. Accordingly,
all customers present in the system at epoch t deserve equal
service rate at that epoch, and deviations from that princi-
ple result in discrimination, either positive or negative. An
advantage of RAQFM is that it is analyzable, as well as re-
active to both seniority and size differences among jobs. A
more extensive review of RAQFM and its adaptation to our
models is given in Section 2.2.

Two common mechanisms used in queueing systems to
grant preferences to different classes are: a) Prioritization, in
which the classes are ordered and priority, either preemptive
or non-preemptive, is given to higher priority classes over
lower priority classes, and b) Resource dedication, in which
each class has a server, or a set of servers, and a queue
dedicated to it. Our focus will be on studying these two
mechanisms.

The importance of this work is that it is perhaps the first
attempt to evaluate the fairness aspects of these two mech-
anisms and conduct it in quantitative manner. The results
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derived and the techniques developed can be used for con-
ducting fairness evaluation of such practical systems in a
variety of applications.

1.2 Overview and Main Contributions
In analyzing the fairness aspects of prioritization and clas-

sification mechanisms we will first be interested in the overall
fairness of the system and how the queueing mechanism af-
fect it. Nonetheless, dealing with classes we realize that an
additional important quantity is the relative treatment given
to the different classes. We thus introduce a new metric,
called class discrimination, which is a variant of RAQFM,
and which accounts for the expected discrimination experi-
enced by the customers of a certain class. Analysis of this
metric, its properties and its relations to the RAQFM un-
fairness measure is given in Sections 2.3 and 2.4. In partic-
ular we show that the weighted discrimination of any class
is bounded by the square root of the system unfairness.

Next (Section 3), we study class prioritization. There is a
large body of literature on such priority schemes (e.g. text-
books [10, 13, 26]) where the focus in evaluating system
performance is on the system expected waiting time, or the
mean waiting cost, under linear cost parameters. Optimiza-
tion of the system with non-preemptive priorities, based on
this performance objective, shows (e.g. [5, pp. 84–85]) that
the optimal scheduling policy is to provide a higher priority
to jobs with smaller mean service times, or when costs are
involved, apply the µC rule. Such priority may, however, re-
sult with long jobs waiting for the completion of many short
jobs who arrive behind them, and thus, possibly, to unfair
treatment by the system. Thus, system operation that ac-
counts both for efficiency and fairness, might have to resort
to a different scheduling.

We start Section 3 with providing a“justification”for short
job prioritization. Of course there is little need to justify
such prioritization in terms of performance, as such justifi-
cation was provided as early as 1996 in the case of SRPT, see
[25]. Our justification, on the other hand, is in terms of class
discrimination. We show that for any service policy that se-
lects customers for service independently of their required
service times, the discrimination experienced by a customer
is monotone non-decreasing with respect to its service time.
This means that an implicit discrimination is applied in favor
of the long jobs. This implies that from fairness perspective,
providing preferential service to shorter jobs may be justi-
fied in many cases. We then (Section 3.2) study the effect
that class prioritization can have on class discrimination.
We show that under general arrival and service conditions,
the class discrimination of the highest (lowest) priority class
is always positive (negative). Nonetheless, we show that
in a multi-class system the class discrimination of a higher
priority class is not necessarily higher than that of a lower
priority class. We then (Section 3.3) provide numerical re-
sults from an analysis of unfairness for a system with two
customer classes and class prioritization. The results show
that in many cases, though not in all, prioritization of the
short jobs over the long jobs leads to higher fairness than
that of First Come First Server (FCFS).

In Section 4 we turn to deal with the dedication of re-
sources to classes, where the common strategy is to construct
a multi-server system in which a set of servers is dedicated
to each class. Examples of such systems include call centers
with multiple classes of customers, and airport passport con-

trol systems. An operational question of interest is whether
to allocate equal amount of resources to the different classes
or to grant more resources to the class with the larger ser-
vice time. We first show that for a system consisting of two
GI/M/1 queues, if either i) The inter-arrival time of class 1
is stochastically larger than that of class 2, or ii) the mean
service time of class 1 is smaller than that of class 2, then
class 1 experiences positive class discrimination while class 2
experiences negative class discrimination. While this might
sound intuitive it does not hold under all conditions: We
show a counetr example for G/G/1 queues. Second, we deal
with how to compute class discrimination in a system with
several classes, either several M/M/1’s or several M/GI/1’s.
We propose an algorithm that computes class discrimina-
tion in a computation complexity which is polynomial in the
number of classes. We conclude with some numerical results
for stochastic service times and for a special “rush hour sce-
nario”. The results show that sometimes neither allocating
the resources equally, nor allocating them proportionally to
the service times lead to the least unfairness.

Concluding remarks are given in Section 5.

1.3 Related Work
We now briefly survey some related works on the subject

of fairness. For lack of space we do not go into details. A
broader survey is available in [20].

Fairness in our work corresponds to fairness to specific
jobs in the system, and is denoted job fairness. A compre-
hensive overview of alternative measures for job fairness is
available in two recent surveys [3, 27]. Example approaches
include Skips and Slips [7], Expected Slowdown [28], Slow-
down Fairness [2], and Discrimination Frequency [24]. None
of the studies that proposed these approaches dealt explic-
itly with prioritization and classification mechanisms. It is
an open question whether these alternative approaches can
be applied to derive and study the relative fairness of the
mechanisms studied in this work. This is the subject of cur-
rent work.

Fairness has been excessively treated in contexts different
than that of job fairness. In the area of flow control the
best known notion in this area is that of Max-Min Fairness
(Starting with [9] and used by many afterwards), followed
by Proportional Fairness ([11] and others). A large volume
of literature also exists on Weighted Fair Queueing (e.g. [6],
[8]). Another area where related works are starting to ap-
pear is parallel job schedulers, e.g. [23].

2. SYSTEM MODEL AND MEASURES

2.1 System Model
Consider a queueing system with M servers. Customers

are indexed C1, C2, . . . , and arrive according to this order.
Let al and dl denote the arrival and departure epochs of Cl

respectively and let sl denote the service requirement of Cl,
measured in time units. Each customer belongs to one of U
classes, indexed 1, 2, . . . , U . Let υ(Cl) be the class to which
Cl belongs. The arrival rate and expected service require-
ment of class u customers are are λu and 1/µu respectively,

where
∑U

u=1 λu = λ. An order of priorities is assigned to
the classes, where lower class index means higher priority.

In our discussion, when we mention the Preemptive Pri-
ority class of scheduling policies, the order of service within
each class of customers is FCFS, and preempted customers
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return to the head of the queue of their class. For discussion
of this, and other variants, see [26, Sec. 3.4].

2.2 System Unfairness Measure: RAQFM
RAQFM was proposed in [22] and defined there for a sin-

gle server with fixed rate. Below we slightly generalize it
to multiple servers with time varying rate, a generalization
which was also used in [21]. RAQFM evaluates the unfair-
ness in the system by first providing a metric of the discrim-
ination of a customer, and then using a summary formula to
evaluate the system unfairness. The discrimination is evalu-
ated as follows: The fundamental assumption is that at each
epoch, all customers present in the system deserve an equal
share of the total service available. If we let 0 ≤ ω(t) ≤ M
denote the total service rate available at epoch t, then the
fair share, called the instantaneous warranted service rate,
is ω(t)/N(t), where N(t) is the number of customers in the
system at epoch t.

The choice of ω(t) depends on the specific application,
and on what is perceived as the service rate available to cus-
tomers. One simple option is to use ω(t) = M , the number
of servers. However, this option is less appropriate in many
situations, for example, a multiple server system where only
one job is present, and it is physically impossible to serve
that job with more than one server. We therefore choose
to focus on a second, more realistic option; the total service
rate available at epoch t is the total service rate physically
granted to customers present at the system at that epoch.
Other choices of ω(t) are also possible, but as these issues
are more pronounced in multi-server multi-queue systems
we discuss them in depth in a study that focuses on these
systems ([21]).

Let σl(t) be the instantaneous rate at which service is
given to Cl at epoch t. This is called the instantaneous
granted service rate of Cl.

The instantaneous discrimination rate of Cl at epoch t,
denoted cl(t), equals, when Cl is in the system, the difference
between its granted service and warranted service,

cl(t) = σl(t) −
ω(t)

N(t)
, (1)

and cl(t)
def
= 0 if Cl is not in the system at epoch t.

The total discrimination of Cl, denoted Dl, is

Dl =

∫ dl

al

cl(t)dt. (2)

For systems in which the total service given to a customer
over time equals its service requirement, i.e.

∫

∞

0
σl(t) = sl,

we have from (1) and (2)

Dl = sl −
∫ dl

al

ω(t)

N(t)
dt. (3)

Let D be a the discrimination experienced by an arbitrary
customer C (a random variable). An important property of
RAQFM (shown for a non-idling server in [22], and extended
here to the measure formulation presented in this work) is
the following:

Theorem 2.1 (Zero Expected Discrimination).
In a stationary system, the expected value of discrimination
always obeys E{D} = 0.

Proof. Follows immediately from the definition of the
instantaneous discrimination rate that when taken over all
customers, sums to zero at any time epoch t. At idling
epochs both ω(t) and σl(t) are zero.

Intuitively, this theorem means that RAQFM has the
“zero sum” property, where positively discriminating a cus-
tomer must be done on the account of negatively discrimi-
nating other customers, in equal total amount.

Since E{D} = 0, and following [22], the summary formula
used to evaluate the unfairness of the system is the variance
of the discrimination, which is equal to the second moment
of the discrimination, namely E{D2}. Other possible ap-
proaches are to use the expected absolute value E{|D|} or
to use higher moments and cumulants (see for example [29]).

2.3 Class Discrimination and its Basic Prop-
erties

For systems with customer classification it is important to
evaluate the comparable, or relative treatment given to each
class. To this end we introduce the notion of class discrim-
ination which we define here on the basis of RAQFM, and
relates to the discrimination experienced by a certain class
of the population. For a class u the discrimination D expe-
rienced by an arbitrary customer C, when the system is in
steady state, is a random variable denoted D(u) = D|υ(C) =
u. Our interest will be in the expected discrimination ex-
perienced by u’s customers, namely E{D(u)}, termed Class
Discrimination.

A second useful notion is that of class discrimination rate.
The instantaneous discrimination rate of class u at time t is
the sum of discriminations over all u’s customers present in
the system at time t. Let D̃(u)(t) =

∑

υ(Cl)=u cl(t) denote

this variable and let D̃(u) = limt→∞ D̃(u)(t) be a random
variable denoting the instantaneous discrimination rate of
class u when the system is in steady state. Taking expec-
tation of this variable we get the class discrimination rate
E{D̃(u)}.

We observe that the relationship between the variables
D(u) and D̃(u) is analogous to the equilibrium relationship
between the variables customer delay (delay experienced by
an arbitrary customer) and number of customers in the sys-
tem (number of customers present at an arbitrary moment)
in a stationary queueing system. While the former is more
appropriate to describe the customer’s perception, the latter
might be more appropriate to describe the system’s state.
We therefore choose to focus on the former.

Using Brumelle’s theorem H = λG, where H and G are
respectively time and customer averages of the same quan-
tity ([4]), we derive

E{D̃(u)} = λuE{D(u)}. (4)

Note that while class discrimination was defined for a sys-
tem in steady state it can also be computed for a given sce-
nario, where instead of using the expected value of a random
variable one uses the statistical average of a given realiza-
tion. For lack of space we do not give the full definition.

2.4 The Relation between System Unfairness
and Class Discrimination

The following analysis relates the system unfairness, ex-
pressed by E{D2}, to the class discrimination. We first show
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that if the overall unfairness is small then so is the absolute
value of class discrimination of every class.

Theorem 2.2. The class discrimination of class u is
bounded from above by the overall system unfairness as fol-
lows:

λu

λ
|E{D(u)}| ≤

√

E{D2}.

Proof. Since E{D(u)
2} − (E{D(u)})2 ≥ 0 we have

λu

λ
|E{D(u)}| ≤

λu

λ

√

E{D(u)
2}.

But

λu

λ

√

E{D(u)
2} ≤

√

λu

λ
E{D(u)

2}

≤

√

√

√

√

U
∑

i=1

λi

λ
E{D(i)

2} =
√

E{D2}.

Note a similar result in the area of bandwidth sharing [12].
Our result can be viewed as an extension of this work.

Corollary 2.1. Consider an arbitrary system with U
customer classes. If the system unfairness obeys E{D2} = 0
then for every class 1 ≤ u ≤ U the class discrimination
obeys E{D(u)} = 0.

The proof is immediate from Theorem 2.2.
Note that the opposite is not correct. If class discrimi-

nation of each class u obeys E{D(u)} = 0, then the system

unfairness, E{D2} can still be positive.
For example, consider a system with two classes, A and

B. Assume that the service requirement is one unit for all
customers and the arrival process is in pairs, one customer
of each type. Assume that the inter-arrival time, between
two consecutive arrival epochs, is given by x > 2 and that
the server serves half of the pairs in the order A first B last,
and half of them in reverse order. One can easily observe
that half of the customers experience positive discrimination
of 0.5 and half experience negative discrimination of −0.5.
Thus E{D2} = 0.25. Nonetheless the class discrimination is
zero for both classes.

2.4.1 Practical Implications

The practical implications of these results are: 1) If one
maintains very low system unfairness it guarantees that the
class discrimination of large population classes (classes with
relatively high arrival rates) will be very small, while the
discrimination of a lightly populated class can still be very
high. 2) Maintaining low class discrimination to all classes
does not guarantee a fair system, since there could be un-
fairness in treatment of customers within a class.

3. CLASS PRIORITIZATION
In this section we study the effect class prioritization has

on the system unfairness. We first show that generally
speaking, prioritizing short jobs is justified, since otherwise
these jobs are negatively discriminated. We then show the
effectiveness of class prioritization, and that while prioriti-
zation can guarantee positive discrimination to the highest

priority class and negative discrimination to the lowest pri-
ority class, it cannot guarantee monotonicity in discrimina-
tion. Lastly, we provide numerical results from evaluating
the unfairness in single server systems with preemptive pri-
ority.

3.1 Prioritizing Short Jobs is Justified

Definition 3.1 (Stochastic Dominance). Consider
nonnegative random variables X1, X2 whose distribution
functions are FX1

(t) = P{X1 ≤ t}, FX2
(t) = P{X2 ≤ t}.

We say that X1 stochastically dominates X2, denoted
X1 � X2, if FX1

(t) ≤ FX2
(t) ∀t ≥ 0.

Theorem 3.1. Let Cl be a customer with service require-
ment sl. Consider a G/G/M system under non-preemptive
service policy, where the service decision is independent of

the service times. Let Cl be a customer, and let D
(sl)
l be a

random variable denoting the discrimination in steady state

of Cl as function of its service time sl. Then D
(sl)
l is mono-

tone non-decreasing with respect to sl, namely if s′l > sl then

D
(s′

l
)

l � D
(sl)
l .

Proof. Consider service times sl, s
′

l, s′l > sl. Observe
a customer Cl. Under any non-preemptive service policy,
Cl waits until epoch ql, when it enters service, and stays in
service until its departure. (2) can thus be written as

Dl =

∫ ql

al

cl(t)dt +

∫ dl

ql

cl(t)dt. (5)

The first term in this sum is independent of the service re-
quirement. In the second term dl − ql = sl.

To prove the monotonicity we consider a specific sample

path π and compare the values of D
(sl)
l and D

(s′
l
)

l for this

path, denoted by D
(sl)
l,π and D

(s′
l
)

l,π . From (5) we have

D
(s′

l
)

l,π − D
(sl)
l,π =

∫ ql+s′

ql+s

cl(t)dt ≥ 0, (6)

where the inequality is due to cl(t) ≥ 0, which follows from
(1). Since (6) holds for every sample path π, the proof fol-
lows.

This simple theorem, stated in terms of deterministic ser-
vice requirements, can also be stated using stochastic ser-
vice requirements, i.e. if the customer’s service require-
ments are stochastic variables Sl and S′

l , and S′

l � Sl then

D(Sl) � D(S′

l
) and clearly E{D(S′

l
)} ≥ E{D(Sl)}.

Similarly, using class notation, if Sx is the service require-
ment distribution of class x customers. Then Su � Su′ ⇒
E{D(u)} ≥ E{D(u′)}.

In conclusion, we have shown that service policies that do
not give preferential service to shorter jobs, actually discrim-
inate against those jobs. This provides one more justification
for prioritizing shorter jobs.

3.2 The Effect of Class Prioritization
We now move on to study how class prioritization affects

the class discrimination.

Theorem 3.2. In a G/G/M system with U classes, if the
scheduling policy belongs to the class of preemptive priority
scheduling policies, then E{D(1)} ≥ 0 and E{D(U)} ≤ 0.
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Proof. Let Nu(t) be the number of class u customers in
the system at epoch t. As the scheduling policy belongs
to the class of preemptive priority scheduling policies, if
N1(t) ≤ M , then all N1(t) customers are served at epoch
t. Otherwise, M out of them are served. Thus

D̃(1)(t) =

{

N1(t) − ω(t)N1(t)
N(t)

N1(t) ≤ M

M − MN1(t)
N(t)

N1(t) > M

=







N1(t)
(

1 − ω(t)
N(t)

)

N1(t) ≤ M

M
(

1 − N1(t)
N(t)

)

N1(t) > M
,

which is nonnegative since ω(t) ≤ N(t) and N1(t) ≤ N(t).

Thus, D̃(1)(t) ≥ 0 ⇒ D̃(1) ≥ 0 ⇒ E{D̃(1)} ≥ 0, and from
(4), E{D(1)} ≥ 0.

As for D̃(U)(t), it equals zero when either NU (t) = N(t),
or N(t) < M , or NU (t) = 0. Otherwise there are two cases,
either N(t) − NU (t) ≥ M or N(t) − NU (t) < M . In the
first case there are more than M customers of higher prior-
ity in the system, and thus no class U customers are being
served. Therefore, D̃(U)(t) = −NU (t)M/N(t) which is neg-
ative. In the second case there are some class U customers
being served. In this case let ωU (t) be the number of class
U customers served at epoch t. Using this notation

D̃(U)(t) = ωU (t) − NU (t)M

N(t)
=

ωU (t)N(t) − NU (t)M

N(t)
. (7)

To prove that this value is negative, let N ′(t) = N(t) − M
denote the number of customers waiting at epoch t, all of
whom must be of class U . We can write N(t) = M + N ′(t),
NU (t) = ωU (t) + N ′(t). Substituting into (7) yields

D̃(U)(t) =
ωU (t)(M + N ′(t)) − (ωU (t) + N ′(t))M

N(t)

=
(ωU (t) − M)N ′(t)

N(t)
< 0,

since ωU (t) < M . Thus, D̃(U)(t) < 0 ⇒ D̃(U) < 0 ⇒
E{D̃(U)} < 0, and from (4), E{D(U)} < 0.

The important thing about Theorem 3.2 is that the the most
prioritized class has nonnegative discrimination, even if the
customers are extremely small. This means that at least for
the first priority class, certain discrimination can be guar-
anteed.

Having shown that the discrimination of the most pri-
oritized class is always non-negative, and that of the least
prioritized class is always non-positive, one might expect
that the discrimination is monotonic with respect to the
class priority. However, as the following example shows,
this is not the case. Consider a 4-class M/M/1 type system
with preemptive resume priority. All four classes have an
arrival rate of 0.01, and all but class 2 have a mean ser-
vice requirement of 10 (µ = 0.1). For class 2 we will con-
sider µ = 0.1, 0.2, 0.3, 0.4, 0.5. Figure 1 depicts the class dis-
crimination for the four classes. The results were achieved
through simulation, although similar results can be achieved
through numerical analysis, using the method presented in
[20].

Observe that when the service requirement of class 2 is
equal to that of the other classes, the class discrimination is
monotonic with respect to the class priority. However, when
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Figure 1: The Effect of Preemptive Priority on Four

Classes of Customers. λ1 = λ2 = λ3 = λ4 = 0.01, ρ1 =
ρ3 = ρ4 = 0.1.

class 2 has smaller service requirement, this is not the case.
This means that class prioritization is limited in its effect in
multiple class systems.

One interesting case is where there are two classes, and the
prioritized class has infinitesimal service requirements (i.e.
1/µ1 → 0). It is easy to see that in this case E{D(1)} → 0.
Interestingly if λ1/λ2 � ∞ it is also easy to see that
E{D(2)} → 0. This can be seen immediately if one con-
siders the following conservation law, which is consequence
of Brumelle’s theorem ([4]):

∑U
u=1 λiE{D(i)}

∑U
u=1 λi

= 0. (8)

It is interesting to draw the similarity of this law to the con-
servation law regarding the waiting time of customer classes
in a single server systems (see [13, Chap. 3.4]).

3.3 Fairness Single Server Systems with Pre-
emptive Priority

For lack of space we do not bring the full analysis, which
can be found in [20]. The analysis is based on the methodol-
ogy developed in [22] which is extended to deal with classes
and prioritization. It is immediately applicable to systems
with exponential service and inter-arrival times, and can be
generalized to arbitrary phase-type distributions.

We go directly to presenting numerical results. One spe-
cific case of interest is the following: suppose that a call
center services two types of customers, one requiring only
a brief approval, and one requiring the full attention of a
service person for several minutes. It is common to suggest,
due to fairness reasons, that customers with shorter service
requirement should be served ahead of other customers (this
situation applies also to other fields where customers of dif-
ferent service requirements are served by the same servers).
For simplicity assume that the rates of arrival of both cus-
tomer classes are equal.

It might be true that this suggestion is indeed fair. This,
however, may depend on the parameters, and it is reason-
able to predict that the shorter the service times of the pri-
ority class are, the greater are the fairness benefits relative
to FCFS. One can therefore predict that there is some mini-
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mum ratio of the mean service requirement of the“preferred”
class, to that of the rest of the population, below which the
priority schedule is more fair than FCFS.

To this end, we examine the unfairness as a function of the
service difference between the customer classes, expressed by
the mean service time ratio µ1/µ2. As demonstrated in [22],
the unfairness of the system is sensitive to the utilization
ρ. Therefore, we maintain constant utilization ρ = 0.8, in-
dependently of c. For simplicity, the evaluation is done for
equal arrival rates of λ1 = λ2 = 0.1.

Figure 2(a) depicts the unfairness of the system, and com-
pares it to the unfairness in a FCFS schedule. For the FCFS
system one can observe that since the system does not pre-
fer either of the classes they are interchangeable, and the
unfairness is therefore symmetric with respect to µ1/µ2.

For the prioritized system one may observe that: 1) The
highest system unfairness is observed at the left part of the
figure. This is the case where very long jobs (class 1) re-
ceive priority over the short jobs. This behavior is natu-
rally expected. 2) In the right side of the figure, where the
shorter jobs receive priority, the system unfairness slightly
increases with the service requirement ratio, but much less
than in the FCFS case. Comparing the systems, we observe
that: 3) When class 1 customers have longer expected ser-
vice requirement it is less fair, system-wise, to give them
priority. 4) When class 1 customers have shorter expected
service requirement and the ratio is over 2 : 1 it is more
fair, system-wise, to use two queues and give priority to the
shorter jobs.

Figure 2(b) and Figure 2(c) shows results where the ser-
vice distribution has the same expected value, and the dis-
tribution is Erlang-10 and Coxian-2 respectively (see e.g.
[1, Chap. 2])). For the Erlang-10 distribution we have a
coefficient of variance of 1/

√
10 (The coefficient of vari-

ance of a random variable X is V ar{X}/E{X}). For the
Coxian-2 distribution we use the settings suggested by [14],
to achieve a coefficient of variance of

√
10: to achieve an

expected value of S with a coefficient of variance of C use
µ1 = 2/S, p1 = 1/(2C2), µ2 = 1/(C2S).

One may observe that the behavior is very similar to the
behavior observed for Exponential distribution. One differ-
ence is that for the priority service, in the right side of the
figures, for the Erlang-10 distribution there is almost no in-
crease in system unfairness, and in the Coxian-2 there is a
large increase. This agrees with our expectations since for
Erlang-10 there is very little variability within the class, and
the opposite for Coxian-2.

To conclude this section, we observe that each distribu-
tion is characterized by a threshold. If the ratio between
the mean non-prioritized job size and the mean prioritized
job size is below this threshold, it is more fair to serve the
customers in FCFS manner. Otherwise, the priority manner
is more fair.

Recall the call center example, presented in the beginning
of this section. The results seem to agree with common
intuition—it is less fair to prioritize a specific class of cus-
tomers over another class, unless the service requirement of
the prioritized customers is small enough compared to the
others.

4. RESOURCE DEDICATION
In this section we deal with the dedication of resources to

classes. We consider systems where each class is assigned

a dedicated set of servers and a FCFS queue. We focus
on analyzing the class discrimination in these systems. In
Section 4.1 we analyze systems with two classes, where each
class has a single dedicated server. In Section 4.2 we provide
an algorithmic approach for deriving the class discrimination
for more general systems. In Section 4.3 we show numerical
examples.

4.1 Dominance Results for 2 Class Systems
In this section we analyze systems with two classes, where

each class has a single dedicated server. We show that in
many cases equal resource allocation results in negatively
discriminating the heavier loaded class.

Theorem 4.1. Consider a system with two classes, where
each class is served by a single server on a single GI/M/1
queue, in a manner that does not take size or remaining
size into account. Let Au, Su, u = 1, 2 be random variables
denoting the interarrival time and the service requirement,
respectively, of class u customers. Then, if either (i) A1 ≺
A2 and 1/µ1 ≥ 1/µ2, or (ii) A1 � A2 and 1/µ1 > 1/µ2 then
E{D(1)} < E{D(2)}.

Proof. Let D̃(u) be a random variable denoting the total
instantaneous discrimination rate to class u customers at
steady state. D̃(1) can be derived by conditioning on the
system state and examining three cases: 1) Case 1—server
1 is idle: In this case no class 1 customers are present in the
system and thus D̃(1) = 0. 2) Case 2—server 2 is idle and
server 1 is busy: In this case the total warranted service to
class 1 customers is 1 and the granted service to the class is
also 1. Thus D̃(1) = 0. 3) Case 3—server 1 and server 2 are
busy: Let ni > 0 be the number of customers present at the
system of class i. Then the total warranted service to class 1
customers is given by 2n1/(n1+n2) while the granted service

is 1. The total discrimination is D̃(1) = 1− 2n1/(n1 +n2) =
(n2 − n1)/(n1 + n2).

Let p(n1, n2) be the probability that at an arbitrary epoch
there are n1, n2 customers in the system. Then the above
leads to:

E{D̃(1)} =
∞

∑

n1=1

∞
∑

n2=1

p(n1, n2)
n2 − n1

n1 + n2
.

The class discrimination for class 1, E{D(1)} can be derived
from (4). Further, note that in the case of server dedication
N1 is independent of N2 and thus p(n1, n2) = p1(n1)p2(n2)
where pi(ni) is the probability that Ni = ni. These lead to:

E{D(1)} =
1

λ1

∞
∑

n1=1

∞
∑

n2=1

p1(n1)p2(n2)
n2 − n1

n1 + n2

E{D(2)} =
1

λ2

∞
∑

n1=1

∞
∑

n2=1

p1(n1)p2(n2)
n1 − n2

n1 + n2
.

Now the difference between these values is :

E{D(2)} − E{D(1)} =

(
1

λ1
+

1

λ2
)

∞
∑

n1=1

∞
∑

n2=1

p1(n1)p2(n2)
n1 − n2

n1 + n2
.

Note that when n1 = n2 the term inside the sum is zero.
We can therefore sum just for n1 = n2 in the following way:
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Figure 2: Unfairness in a Single Server System with Two Customer Classes, λ1 = λ2 = 0.1, ρ = 0.8

E{D(2)} − E{D(1)}

= (
1

λ1
+

1

λ2
)
(

∞
∑

n1=1

n1−1
∑

n2=1

p1(n1)p2(n2)
n1 − n2

n1 + n2

+

∞
∑

n2=1

n2−1
∑

n1=1

p1(n1)p2(n2)
n1 − n2

n1 + n2

)

=

(
1

λ1
+

1

λ2
)×

∞
∑

n1=1

n1−1
∑

n2=1

(

p1(n1)p2(n2) − p1(n2)p2(n1)
)n1 − n2

n1 + n2
.

We now require that E{D(2)} − E{D(1)} > 0. Since n1 >
n2, a sufficient requirement is that

p1(n1)

p1(n2)
>

p2(n1)

p2(n2)
(9)

for any n1 > n2 ≥ 1, and we move on to show when this
condition holds.

For the GI/GI/1 model with Preemptive Last Come First
Served, where interarrival and service requirements are dis-
tributed as A and S respectively, it is known that the steady
state probability of having n customers in the system at ar-
bitrary times is geometric, given by p(k) = ρ(1−σ)σk−1, k =
1, 2, . . . where ρ = E{S}/E{A} = λE{S} < 1, σ = (E{B} −
1)/E{B}, and B is the steady state number of customers
served in one busy period (see [16] for a review of the liter-
ature on this subject).

In the GI/M/1 case with FCFS, where S is exponentially
distributed with mean 1/µ, the same applies, and we have
E{B} = (1 − A∗(µ))/(1 − 2A∗(µ)) where A∗(s), s ≥ 0 is
the Laplace transform of A. This is immediately obtained
when noticing that B is 1 with probability 1 − A∗(µ) and
is distributed as B1 + B2, where B1 and B2 are i.i.d as B,
with probability A∗(µ). Therefore σ = A∗(µ)/(1 − A∗(µ)).

Using the geometric forms of p1(n) and p2(n) we get that
(9) is true iff σ1 > σ2 which is true iff A∗

1(µ1) > A∗

2(µ2)
where A∗

i (s), s ≥ 0 is the Laplace transform of Ai, i = 1, 2.
Since A∗

i (s) is monotone non-decreasing this holds when ei-
ther (i) or (ii) holds.

Remark 4.1 (Some Comments on Theorem 4.1).
1) In the M/M/1 and D/M/1 cases conditions (i) and
(ii) take the form ρ1 > ρ2. 2) Conditions (i) or (ii) are
sufficient but not necessary. In fact A∗

1(µ1) > A∗

2(µ2) is also

satisfactory. 3) The final part of the proof (proving that (9)
holds when either (i) or (ii) holds) can be achieved in several
other ways, e.g. utilizing the fact that σ = A∗(µ − µσ)
and that in our case A∗

1(s) < A∗

2(s). However, we find
that the proof above is more elegant, and requires the least
limitations.

Corollary 4.1. Under the same conditions as in Theo-
rem 4.1, E{D(1)} < 0, E{D(2)} > 0.

This is clear from Theorem 4.1 and (8).
We conjecture that a similar theorem can also be proved

for M/GI/1 systems. This is based on the fact that the
steady state occupancy probabilities in an M/GI/1 type sys-
tem, p(n), can be expressed using the following recursion
(see [15]):

p(0) = 1 − ρ

p(k + 1) =
1

a0
[αk+1p(0) +

k
∑

v=1

αk−v+2p(v)],

where a = {aj}∞0 is the probability function of the number of
arrivals during a customer’s service time and αj =

∑

∞

k=j ak.

Let a(i) = {a(i)
j }∞

0
, i = 1, 2 denote the probability func-

tion for class i, and similarly define α
(i)
j . Then obvi-

ously both (i) and (ii) imply that a
(1)
i ≥ a

(2)
i , i ≥ 1 and

a
(1)
0 ≤ a

(2)
0 , implying α

(1)
i ≥ α

(2)
i , i ≥ 1 and hinting that

p1(n1)/p1(n2) > p2(n1)/p2(n2).
The claim of Theorem 4.1 does not necessarily hold if

one demands only that ρ1 > ρ2 and considers an arbitrary
G/G/1 system. Consider for example a system where the
service times of both classes are deterministic, equalling one
unit, the arrivals of class 1 are deterministic at intervals
of one unit (D/D/1) and the arrivals to class 2 occur in
bulks of size k at inter-arrival time of m > k units. The
instantaneous discrimination of class 1 is given by E{D̃(1)} =
1
m

∑k
i=1(1 − 2

i+1
) and that of class 2 is given by E{D̃(2)} =

1
m

∑k
i=1(1 − 2i

i+1
). It is easy to see that E{D̃(1)} > 0 and

E{D̃(2)} < 0 and thus E{D(1)} > 0 > E{D(2)}.

4.2 Analysis of Class Discrimination in Sys-
tems with Many Classes

Consider a system with U classes, indexed 1, . . . , U , each
directed to a dedicated server with a single queue and served
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according to FCFS. We assume that the arrival process and
service times of class i are independent of that of class j
(1 ≤ i = j ≤ U). Thus, the steady state occupancy (number
in system) of class i is independent of that of class j.

Let pi(n) denote the probability that the number of cus-
tomers of class i present in the system is n. Since class i
forms an independent queue, the values of pi(n) can be de-
rived from the literature for a wide class of systems. For
example, for an M/M/1 type queue pi(n) = (1 − ρi)ρ

n
i . For

an M/G/1 queue one can take the Pollaczek-Khinchin For-
mula of the Laplace-Stieltjes Transform (LST) of the queue
occupancy and use standard numerical procedures to derive
from it the values of pi(n). We will therefore assume that
these values are given and show how to derive from them
the class discriminations.

Below we demonstrate how to compute the discrimination
experienced by class u. Let p(1,2,...,k)(n, l) denote the steady
state probability that the system of classes 1, 2, . . . , k con-
tains together n customers and l of their servers are busy.
Obviously, one should consider only 0 ≤ l ≤ k and n ≥ l
. We can now compute p(1,2,...,k,k+1)() from p(1,2,...,k)() and
pk+1() as follows:

p(1,2,...,k+1)(n, l) = p(1,2,...,k)(n, l)pk+1(0)

+

n
∑

i=1

p(1,2,...,k)(n − i, l − 1)pk+1(i)
1 ≤ l ≤ k(10a)

p(1,2,...,k+1)(0, 0) = p(1,2,...,k)(0, 0)pk+1(0)

=

k+1
∏

i=1

(1 − ρi)
l = 0. (10b)

Note the convolution in (10a). Let N be the number of
probability elements one keeps for each vector. Then the
computational complexity of performing this convolution is
O(N2). Since 1 ≤ l ≤ k the overall complexity for evaluat-

ing p(1,2,...,k+1)() from p(1,2,...,k)() is O(kN2). Applying this
procedure recursively for all classes up to u − 1 leads to an
overall complexity of O(u2N2).

Now, the expected instantaneous discrimination rate for
class u can be computed from the vectors p(1,2,...,u−1)() and
pu() as follows:

E{D̃(u)} = 0 · P u(0)

+

N
∑

i=1

pu(i)

u−1
∑

l=0

N
∑

j=l

p(1,2,...,u−1)(j, l)

(

1 − (l + 1)
i

i + n

)

.

(11)

The total computational complexity is therefore O(u2N2).
If one wishes to compute the expected value of the instan-

taneous discrimination rate for all U classes the computa-
tional complexity is O(U3N2) steps.

Finally, the class discrimination can be derived from (11)
and (4).

4.3 Numerical Results
Several questions need to be addressed in this context of

resource dedication to classes. 1) How servers should be
assigned to each class as to lead to maximally fair schedul-
ing. 2) How fair are current practices. 3) How high is the
class-discrimination experienced under various server assign-
ments.

We start with a simple stochastic service example. Con-
sider a system where the Poisson arrival rates of the two
classes are identical λ1 = λ2 = 0.005 and the service times
are exponential where the mean of class 1 doubles that of
class 2: µ1 = 0.12, µ2 = 0.24. We consider a system consist-
ing of 12 servers and evaluate system unfairness and class
discrimination as a function of the server assignment policy
(dedication of k : 12− k where k is the dedication to class 1
and 12 − k to class 2). Figure 3 depicts these results. Note
that class discriminations are plotted against the left y-axis,
while unfairness is plotted against the right y-axis.
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Figure 3: Unfairness and Class Discrimination in a

12 server Dedication System

The figure demonstrates that the discrimination of a class
increases with the number of servers allocated to it. It also
demonstrates that equal assignment of servers negatively
(and drastically) discriminates class 1 and that the best op-
eration point (smallest unfairness value and smallest abso-
lute values of class discriminations) is to assign the servers
proportionally to the mean service requirement of the class.
Nonetheless, the class discrimination experienced at the op-
timal operation point (8:4) is not exactly zero, resulting from
the slight differences in behavior between the 8 server system
and the 4 server system.

For comparison we also evaluate a system where the two
classes mix together and share the 12 servers (under a single
FCFS queue). In this system the unfairness becomes very
small (13.773 compared to 121 in the dedicated server sys-
tem), suggesting that this is a more fair strategy. As for class
discrimination, its absolute values are quite small (0.20995
and −0.20995). Note that the large jobs (class 1) now enjoy
positive discrimination while the short jobs (class 2) suffer
from negative discrimination, as expected from Section 3.1.

We repeated this examination for uniformly distributed
service times and found similar results.

We now move on to another interesting scenario, the rush
hour scenario. In some cases customers appear over a short
period of time, the“rush hour”, and are served from that mo-
ment until all customers leave the system. One example for
such a system is a computerized call centers or an Internet
Web server, which expects a large influx of customers arriv-
ing concurrently, due to a major TV advertisement. Such a
system may be expecting two customer classes, previously
registered members and new members, with different service
times. A second example is the queue for the restrooms in
theaters, at the beginning of the theater break. For simplic-
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ity we assume that all customers arrive concurrently.
For the sake of presentation, and to obtain tractable re-

sults, we consider a simple deterministic example. We as-
sume a total number of 12 servers and 12j customers in each
class, j even. The service times of class 1 and class 2 are
1 and 2 time units respectively. We consider two intuitive
and common server assignment policies: 1) Proportional to
the service length, that is 4 and 8 servers to class 1 and 2,
respectively, and 2) Equal, namely 6 servers to each class.

We track the system in the proportional case along time
slots of one time unit. Since 12j jobs of each type are
present at time zero, the number of slots is 3j. The num-
ber of short jobs present, counting from the last slot back-
wards, is given by 4i, i = 1, ..., 3j , and the number of
long jobs is 8, 8, 16, 16, 24, ..., 12j, 12j. Thus the overall war-
ranted service of class 1 (along the 3j slots) is given by

12
∑3j/2

i=1
2i
4i

+ 2i−1
4i−1

. Recalling that the total granted ser-
vice to class 1 is 12j, and that there are 12j customers, the
class discrimination of class 1 is given by

E{D(1)} = 1− 3

4
− 1

j

3j/2
∑

i=1

2i − 1

4i − 1
≈ 1

4
− 1

j

∫ 3j/2

x=1

2x − 1

4x − 1
dx

=
1

4
− 6j + ln 3 + ln(6j − 1) − 4

8j
,

which for large values of j tends to −1/2, while E{D(2)} =
−E{D(1)} = 1/2.

For the equal allocation case a similar analysis yields the
overall warranted service of class 1 to be: 12

∑j
i=1

2i−1
j+3i−1

+
2i

3i+j
, which yields the class discrimination:

E{D(1)} ≈ 1 − 1

9j

(

− 12 + 12j − 2j ln 4 + 2j ln
3 + j

j

+ (1 + 2j)
(

ln(2 + j) − ln(4j − 1)
)

)

which for large values of j tends to (log 256 − 3)/9 ≈ 0.28.
The analysis reveals that under our fairness model, nei-

ther proportional assignment nor equal assignment is most
fair. Under proportional assignment the short jobs are neg-
atively discriminated due to the relatively small number of
servers allocated to them (out of proportion to their part in
the population). Under equal assignment the long jobs are
negatively discriminated due to the considerable amount of
time during which they form a large majority of the pres-
ence (most short jobs are gone earlier) while receiving only
half of the resources. The values of discrimination under
both allocations are considerably high. The “optimal” point
of operation is therefore at the 7:5 allocation in which a
simulation shows that E{D(1)} ≈ 0.06.

5. CONCLUDING REMARKS
Our study dealt with the issues of fairness and class dis-

crimination, where we focused on the practices of class pri-
oritization and resource dedication to classes. To address
class discrimination we introduced a new metric called class-
discrimination, which is a variant of RAQFM, and used it
in addition to the RAQFM measure for system unfairness.

We established several general results for these systems,
such as: 1) The weighted value of class discrimination is
always bounded by the system unfairness; that is, a class
cannot be highly discriminated if the overall system unfair-
ness is low. 2) If service order is not based on service times,

short jobs are negatively discriminated. 3) In a preemp-
tive priority system, the highest priority class always enjoys
positive discrimination. 4) In a one-server per-class system
of the GI/M/1 type, a class whose service times are larger
and arrival intervals shorter is guaranteed to benefit positive
discrimination.

The importance of these results is that it is perhaps the
first attempt to evaluate the fairness aspects of these priority
mechanisms and conduct it in quantitative manner. The
results derived and the techniques developed can be used
for conducting fairness evaluation of such practical systems
in a variety of applications.

Lastly, the study of queue fairness is yet in its infancy and
many subjects, including fairness in many server cases, fair-
ness in a queueing network and others, remain untouched.
These call for future research. In particular, fairness aspects
of prioritization and resource dedication via alternative fair-
ness approaches, such the ones mentioned in Section 1.3, is
a subject of current research.
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