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ABSTRACT

This paper studies non-cooperative population games with
several individual states and independent Markov process.
Each member of each class of the population has (i) its own
state (ii) its actions in each state, (iii) an instantaneous re-
ward which depends on its state and the population’s pro-
file, (iv) a time-average (coupled) constraints. We apply this
model to battery-dependent power control in wireless net-
works with several types of renewable energies. We show
that the game has an equilibrium in stationary strategies
under ergodic assumptions and we present a class of evolu-
tionary game dynamics which converge to stationary equi-
libria.

Keywords

Population games, Markov decision process, power control,
access control.

1. INTRODUCTION
We study in this paper a multiclass stochastic population

game model with individual states. We consider several
large subpopulations (classes or groups) of players. Each
player from each subpopulation is associated with a con-
trolled Markov chain, whose transition probabilities depend
only on the action of that player (individual state). Each
player interacts with a large number (possibly infinite) of
others players. It does not know the states of, and the ac-
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tions taken by other players. There are payoff (called also
fitness, reward, utility) functions (one per subpopulation)
that depend on the individual state and actions of all play-
ers.

1.1 Contributions
We characterize and establish the existence of stationary

equilibrium in the stochastic population game model with
individual independent states with time-average constraints
under ergodic properties. A probabilistic representation of
ε−equilibrium for time-average Cesaro payoff is obtained
in the general (non-)communicating stochastic population
game under feasibility conditions. We apply this model to
dynamic renewable energy-state dependent power control
and access control in wireless networks.

In the battery model, players (which correspond to users,
mobiles etc) have their own battery. The state of each
battery is described as a Markov decision process (MDP)
[1]. Several types (classes) of batteries and several modes
of rechargeable batteries are considered (renewable energy:
solar, wind etc). In the battery-dependent power control
population game, a non-decreasing function of the signal to
interference plus noise ratio (SINR) is used as the instan-
taneous reward of the user. An equilibrium is explicitly
determined in that case and the equilibrium payoff is ex-
pressed as function of the stationary distribution associated
to that equilibrium. This model offers us a new class of
repeated games: constrained repeated games with individual
states and unknown horizon in a large population. We show
that this class of games has a constrained 0−equilibrium
(theorem 6.1.2) under ergodic and Slater conditions respec-
tively on each individual Markov chain and constraints .

1.2 Related Works
Shapley [15] introduced the model of atomic stochastic

games and proved that every two-player zero-sum discounted
stochastic game has a discounted value. Moreover, there
are stationary equilibrium profiles. We refer the reader to
[21] and the references therein for details and recent results
on stochastic two-player games. Fink [8], Takahashi [18]
generalized this result for n−player atomic stochastic games.
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A single decision-maker stochastic game is called Markov
Decision Process (MDP).

The n-player stochastic game model with individual state
has been first introduced by Altman et al. 2005 [6], see also
[5]. A product state formulation of their model called prod-
uct game has been proposed by Flesh et al.[9] in 2007. They
showed that an equilibrium exists under aperiodicity condi-
tions on the transition law between the states. Note that in
stochastic population games with periodic Markov decision
process (common state for all populations), the existence re-
sult does not holds in this case as well as in atomic stochastic
games. For two players (atomic) stochastic games, Vieille
[20] showed existence of ε−equilibria for all ε > 0. See for
example the modified Big Match and Paris Match games in
Sorin[16] where 0−equibria do not necessarily exists.

1.3 Structure of the paper
The remainder of this paper is organized as follows. In

next section we present two simple examples that motivate
us to consider with stochastic population games. In Section
3 we present the model of stochastic multi-population game
with individual states. We give a class of dynamics which
converge to stationary equilibria (when it exists). In Section
4 and 2.2, we apply our model to power control and energy
management in wireless networks. In Section 5, we extend
our model to the case where each player has (coupled) con-
straints on its strategies.

2. MOTIVATIONS, ILLUSTRATING EXAM-

PLES

2.1 Battery-State Dependent Power Control as
a Stochastic Population Game

Consider a large number of mobiles terminals controlling
their transmission power and a distributed base stations.
Each mobile has an amount of energy E when its battery is
new (typically it is the case if the battery is new or if the
battery is completely recharged). Each mobile implements
a power control policy where the transmission power is al-
lowed to depend on the energy level (state) of its battery.
The available action (reachable base stations and powers)
depends on the state of the battery. Given the remaining
energy of its battery, the mobile have to choose the optimal
power level. One of the important element for each mobile
is its instantaneous throughput which can be characterized
as a function of the signal to interference plus noise ratio
(SINR) at the base station where he transmits. The battery
is replaced only when it is completely empty. The cost of
new battery cost is C. The new battery has the same energy
of E. The mobile have to control both the power consump-
tion as well as the time at which the batteries are changed.
At each slot, each mobile is faced to a random number [19] of
interacting players which transmit at the same base station.
Each battery life-time game corresponds to a stochastic pop-
ulation game with finite horizon (absorbing state of battery
when the energy is very small). The aim here is to find
jointly the power levels and the base stations such that all
users achieve as high payoff as possible, minimum guarantee
(e.g. QoS requirement thresholds) but also to control the
battery-state.

When batteries are recharged dynamically with different
types of alternative energy such as renewable energies (solar,

wind etc). The battery transition state becomes irreducible
Markov decision process under each policy depending on an
exogenous parameter which characterizes the good weather
(good weather will correspond to the sun for the solar-power
systems and to the wind for wind-powered systems). In this
case, the interaction becomes a stochastic population game
with infinite horizon and we shall consider time-average re-
ward (discounted or not).

2.2 Energy Management in Distributed Hy-
brid ALOHA Networks

Consider a distributed Aloha network with large number
of mobile terminals. Each mobile can choose both the chan-
nels and powers (this is in contrast to standard Aloha model
in which users are associated to the closest receivers). Each
terminal is faced to a random number of interacting players
which transmit at the channel. A terminal attempts trans-
missions during a finite horizon of times depending on the
state of its battery energy. At each slot, each terminal have
to take a decision on the transmission power based on the
battery state. At each state of the battery, there are a fi-
nite power levels. At the lowest state of battery no power
is available and the mobile have to replaced the battery by
a new or to recharge its battery. A transmission is success-
ful if no other user transmit during the slot or the mobile
transmits with a power which is bigger than the power of all
others transmitting mobiles at the same receiver. The pair-
wise interactions case of this problem has been studied by
Altman and Hayel in [2] as a stochastic evolutionary game.
They have considered three states: Full, Almost Empty and
Empty, and simultaneous interactions with more two users
are neglected1. Their model can be extend to more than
two opponent interactions and also to finitely many states
as shown in Section 3. We can also extend to the case where
each terminal is faced to a random number [19, 3] of inter-
acting terminals which transmit at the same range and each
terminal have to control an arbitrary transition state of its
energy.

3. A MULTICLASS MARKOV POPULATION

GAME MODEL
Consider the following model of population game denoted

by

Γ = (P, (Y p)p∈P , (Ap(y))p∈P,y∈Y p , (Qp)p∈P , (rp)p∈P ),

where

• The population is composed as several subpopulations.
Each subpopulation contains a large number of players.
P denotes the set of subpopulations (we assume that
P is finite).

• Each player of each subpopulation p has its own state
Y p (finite) and Markov transition structures Qp be-
tween the states.

• For every player i from the subpopulation p ∈ P and
every state y ∈ Y p of i, Ap(y) is the set of actions
available. The action space of the subpopulation p is

1Note that this assumption does not holds in dense net-
works.
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given by
∏

y∈Y p Ap(y). The set of all actions at all
states is given by Allp where

All
p = {(y, a), y ∈ Y

p
, a ∈ A

p(y)}.

• We denote by ∆(Y p) the (|Y p| − 1)-dimensional sim-

plex of R
|Y p| and by qp : Allp → ∆(Y p) a transition

rule between the states. The transition probability
distribution between states is defined by

Q
p

y,a,y′ := q
p(y′|y, a) = q

p(y′|y1, a1, . . . , yt−1, at−1, y, a)

for each y′, y ∈ Y p, a ∈ Ap(y).

• For every subpopulation p ∈ P,

r
p :

∏

p′

∏

y∈Y p′

X p′

(y) → R

∑

y∈Y p′ |Ap′
(y)|

is the vector of all instantaneous payoff functions of a
player from the class p′,

X p′

(y) =
{

(xp′

(y, b))
b∈Ap′

(y) | x
p′

(y, b) ≥ 0,

∑

y∈Y p′

∑

b∈Ap′
(y)

x
p′

(y, b) = m
p′







where mp′

is the mass associate to the subpopulation
p′. Given a state y and strategy profile xp, x−p, the
payoff obtained by playing the action a ∈ Ap(y) is
rp

y,a(x)

• The game is played many times.

3.1 Histories and Strategies
Histories A history ht at time t is a collection of states

and actions (y1, a1, x1, . . . , yt−1, at−1, xt−1, yt). We denote
by

H
p
t = (All

p ×X )t−1 × Y
p

the set of histories of a member of the subpopulation p at
time t. At t = 1, H

p
1 = Y p. Let Hp

∞ be the set of all infinite
histories of the subpopulation p endowed with the product
σ−field and H∞ =

∏

p∈P Hp
∞.

Strategies

• Pure strategy A pure strategy of a player from sub-
population p at time t is a map σ

p
t : H

p
t −→ Ap(yt).

The collection σp = (σp
t )t≥1 of pure strategy at each

time constitutes a pure strategy of the subpopulation
p. We denote by Σp the set of all pure strategies of
subpopulation p, by Σ =

∏

p Σp the set of all pure
strategy profiles. Note that the number of pure strate-
gies is infinite.

• Stationary strategy: σ is stationary strategy if for
each population p and every time t and histories,

ht = (y1, a1, x1, . . . , yt−1, at−1, xt−1, yt),

h
′
t = (y′

1, a
′
1, x

′
1, . . . , y

′
t−1, a

′
t−1, xt−1, y

′
t)

such that if yt = y′
t one has σt(ht) = σt(h

′
t) i.e a

stationary strategy is a history and time independent
strategy which depends on the state only.

Lemma 3.1.1. The number of pure stationary strate-
gies is

∏

p∈P

∏

y∈Y p |Ap(y)|.

• Behavioral strategy A behavioral strategy at time
t is a function that assigns each finite history to a
mixed action profile of the current state: σ

p
t : H

p
t −→

∏

p ∆(Ap(yt)), p ∈ P.

• Mixed strategy A mixed strategy profile is a col-
lection of probability distributions on Σ. Using Ty-
chonoff’s theorem, the set of all these notions of strate-
gies is compact in the product set histories spaces in
the sense of the weak-topology. A general mixed strat-
egy is a probability distribution on the behaviorial
strategies set.

For any strategy profile σ = (σp)p∈P and every initial
state distribution profile µ = (µp)p∈P , a probability mea-
sure Pσ,µ is induced by σ and µ. The stochastic process
(yt, at, xt)t≥1 is defined on H∞ in a canonical way, where
the random variables yt, at, xt describe the individual state,
the action in this state and the population profile.

3.2 Fitness
We examine the limit average Cesaro-type payoff

F
p
µ (σp

, σ
−p) = Eσ,µ

[

lim inf
T−→+∞

1

T

(

T
∑

t=1

r
p
yt,at

(xt)

)]

where Eσ,µ denotes the expectation over the probability mea-
sure Pσ,µ induced by σ, µ on the set of histories endowed with
the product σ−algebra.

Given a strategy σ and a initial state y, we define the ex-
pected time-average payoff. We denote by Πp the stationary
limit average matrix:

Πp(σp) = lim
t−→+∞

1

t

t
∑

j=1

(Qp)j(σp).

The matrix Πp is well-defined, commutes with Qp and sat-
isfies the projection equation: Πp × Πp = Πp.

If F p is the vector (F p
y (x))y∈Y p , we have that F p(x) =

Πprp(x) for all stationary strategy profile x. Then, F p =
ΠpF p. Note that the function x 7−→ F p(x) is not necessarily
continuous because the limit matrix Πp(x) can be discontin-
uous on x.

Definition 3.3. A strategy σ is an ε−equilibrium if for
all p,

F
p(σ) + ε ≥ F

p(σ′p
, σ

p), ∀ σ
′p ∈ ∆(Σp).

A 0−equilibrium is called equilibrium.

Remarks

• When each member of each subpopulation has a single
state, we obtain a population game model which each
local interaction is repeated game.

• If there exists a subpopulation p∗ such that |Y p| = 1
for all p 6= p∗. We obtain a stochastic population game
with single class of controllers which is the subpopula-
tion p. We can adapts the model of Vieille, Rosenberg
and Solan[22] on two player zero-sum stochastic game
with single controller and incomplete information to
stochastic population game with incomplete informa-
tion.
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3.4 Markov Decision Process Decomposition
For each population p, the state y communicates with

state y′ if it is true that both y is accessible from y′ (there
exists an integer k such that ∀a, P(Xp

k = y′ | X
p
0 = y, a) > 0

and that y′ is accessible from y. A set of states Y p ⊆ Y p

is a communicating class if every pair of states in Y p com-
municates with each other, and no state in Y p communi-
cates with any state not in Y p. It is known that commu-
nication in this sense is an equivalence relation (reflexiv-
ity,symmetry,transitivity).

Given a strategy σp, the associate Markov chain is decom-
posed in communicating class J

p
1 , . . . , Jp

m which constitute
a partition of Y p. We associate to the MDP − (p, i) the re-
stricted state-actions transition to J

p
i ⊂ Y p. A Markov chain

is said to be irreducible if its state space is a communicating
class; this means that, in an irreducible Markov chain, it is
possible to get to any state from any state. A Markov deci-
sion process (a stochastic game with single decision-maker)
is irreducible if for any strategy, the induced transition law
is irreducible.

Proposition 3.4.1. Assume that for each subpopulation
p and any stationary strategy σp, the state process is an ir-
reducible Markov chain with one ergodic class then

• For any strategy σ the frequencies (called also occupa-
tion measures) (fp,t

σ,µ(y, a))p∈P,t≥1 where

f
p,t
µ,σ(y, a) =

1

t

t
∑

k=1

Pσ(Xk = y, ak = a|y1 = µ)

are tight.

• Denote by BRp the best response correspondence for a
player in class p. If σp ∈ BRp(σ−p) then fp

µ(σ) is inde-
pendent of the initial state distribution µ and the linear
programming problem : find zp(σ) = (zp(σ)(y, a))y,a

that maximizes
∑

y,a

r
p(y, a, σ

−p)zp(σ)(y, a)

subject to
∑

y,a

[δy′(y) − Q
p

yay′ ]z
p(σ)(y, a) = 0

z
p(σ)(y, a) ≥ 0, ∀y ∈ Y

p
, a ∈ A

p(y)

∑

y,a

z
p(σ)(y, a) = m

p

where δy′ is the Dirac distribution concentrated in y′.

A proof of the proposition is given together with the result
5.2.1.

Definition 3.5. The stationary strategy x is an equilib-
rium if

∀p,
∑

y∈Y p

∑

a∈Ap(y)

(−z
p(y, a) + x

p(y, a))F p
y,a(x) ≥ 0,

for all zp ∈ X p satisfying
∑

y∈Y p,a∈Ap(y)

(δy′(y) − Q
p

yay′)z
p(y, a) = 0, ∀y

′ ∈ Y
p
.

Result 3.5.1. The stochastic population game with indi-
vidual independent states has an equilibrium in stationary
strategies under ergodic properties of the each class of MDP
and continuity of the payoff function r = (rp)p.

Proof. For any subpopulation p, the existence of a vec-
tor x = (xp)p∈P of the (−1+

∑

y |A
p(y)|)−simplex satisfying

he variational inequality :∀z ∈ X p, one has

〈xp−z
p
, r

p(x)〉 :=
∑

y∈Y p

∑

a∈Ap(y)

(−z
p(y, a)+x

p(y, a))rp
y,a(x) ≥ 0,

Multiplying the inequality 〈xp − zp, rp(x)〉 ≥ 0 by ς >

0, and adding 〈xp, zp − xp〉 to both sides of the resulting
inequality, one obtains

〈zp − x
p
, x

p − [xp + ςr
p(x)]〉 ≥ 0.

Recall that the projection map on the simplex which is con-
vex and closed set is characterized by: w ∈ R

∑

y∈Y p |Ap(y)|, z′p =
ΠXpw is equivalent to 〈z′p − w, zp − z′p〉 ≥ 0, ∀zp ∈ X p.

Thus, xp = ΠXp (xp + ςrp(x)) . According to Brouwer’s or
Schauder’s fixed point theorem, given a map Ψ : X p −→
X p, with Ψ continuous, there is at least one zp ∈ X p, such
that zp = Ψ(zp). Observe that since the projection ΠXp

and (I + ςrp), are each continuous, ΠXp(I + ςrp) is also
continuous.

It follows from compactness of X p and the continuity of
ΠXp(I + ςrp) that a such xp exists. The result follows from
Kakutani’s fixed point theorem and Theorem 2.6 (ii) in [4]
or the Theorem 1 in [10] by adapting to population game
concept.

3.6 Evolutionary game dynamics in station-
ary strategies

Let ν
p,y,a
b (x) conditional switch rate from the pure strat-

egy a to the strategy b in state y for a player of class p. The
flow of the population is specified in terms of the functions
ν

p,y,a
b (x) which determine the rates at which an player who

is considering a change in strategies opts to switch to his
various alternatives. The function ν

p,y,a
b (.) depends on the

strategy of the population but also on the payoffs.
The inflow into the action a at state y is

∑

b∈Ap(y)

x
p(y, b)νp,y,b

a

and outflow from the action a in y is

x
p(y, a)

∑

b

ν
p,y,a
b

where xp(y, b) represents the fraction of players of the sub-
population p in state y which use the pure action b. We
assume that the revision protocols satisfy

ν
p,y,a
b > 0 =⇒ b, a ∈ A

p(y).

Let V
p,y,a

F (x) be the difference between the inflow and out-
flow of the action a at state y,

∑

b∈Ap(y)

x
p(y, b)νp,y,b

a (x) − x
p(y, a)

∑

b∈Ap(y)

ν
p,y,b
a (x).

The evolutionary game dynamics is given by

ẋ
p(y, b)(t) =

d

dt
x

p(y, b)(t) = V
p,y,b

F (x(t)), (1)

y ∈ Y
p
, b ∈ A

p(y).
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The revision protocol ν defined by

ν
p,y,b
a (x) = µ

p
[

max
{

0, F
p
y,a(x) − F

p
y,b(x)

}]θp

, µ
p
, θ

p
> 0,

if x satisfies
∑

y∈Y p,a∈Ap(y)

(δy′(y) − Q
p

yay′)x
p(y, a) = 0

and 0 otherwise, induces an evolutionary game dynamic with
the following properties:

• (i) every stationary equilibrium of the game is a sta-
tionary point of the dynamic.

• (ii) every stationary point of the dynamic is an equi-
librium point of the game.

Note that the well-known replicator dynamics does not sat-
isfies the second point (ii). The parameter µp can be in-
terpreted as a probability to have a base station/channel
around the range of the players (density distribution of the
resources in the space). This parameter have positive effect
on the rate/speed of convergence of the dynamics. θp is a
positive number.

4. BATTERY-STATE DEPENDENT POWER

CONTROL WITH DIFFERENT TYPES OF

RENEWABLE ENERGY
Power control in wireless networks has became an impor-

tant research area. Since the technology in the current state
cannot provide batteries which have small weight and large
energy capacity, the design of tools and algorithms for effi-
cient power control is crucial.

Thanks to the renewable energy techniques, designing au-
tonomous mobile terminal and consumer embedded elec-
tronics that exploit the energy coming from the environment
is becoming a feasible option. However, the design of such
devices requires the careful selection of the components, such
as power consumption and the energy storage elements, ac-
cording to the working environment and the features of the
application.

Menache and Altman have studied in [13] a battery-energy
dependent power control with finite number of mobiles as a
dynamic non-cooperative game with power cost assumption.
In this model we consider a stochastic population game ap-
proach with dynamic rechargeable battery based on renew-
able energy. Environmental energy is becoming a feasible al-
ternative for many low-power systems, such as wireless sen-
sor/mesh networks. Nevertheless, environmental energy is
an exciting challenge. Because of the limited amount of en-
ergy over time, the power provided is unpredictable. Power
storage elements, such as rechargeable batteries or super-
capacitors, in order to have energy available for later use
has been proposed. Alternative energy as solar, wind, or
nuclear energy, that can replace or supplement traditional
fossil-fuel sources, as oil, and natural gas is needed. We refer
the reader to [14] for advantageous to use renewable energy
in broadband wireless networks such as Wi-Fi, Wimax or
mesh networks.

We consider several class of large number of mobiles termi-
nals controlling their transmission power and a distributed
base stations. The mobiles with the same type of renew-
able energy (wind, solar, hydro) are in the same class or
subpopulation. Each mobile of the subpopulation p has an

amount of energy Ep when its battery is at the full state.
Each mobile implements a power control policy where the
transmission power is allowed to depend on the energy level
(state) of its battery. The available action (reachable base
stations) depends on the state of the battery. Given the
remaining energy of its battery, the mobile have to choose
the optimal power level. One of the important element for
each mobile is its instantaneous throughput which can be
characterized as a function of the signal to interference plus
noise ratio (SINR) at the base station where he/she trans-
mits. The battery is recharged by different techniques of
renewable energy (solar-power, wind-power etc). The mo-
bile have to control both the power consumption as well as
the level of its battery and its throughput. Each mobile is
faced to a non-cooperative stochastic game with individual
states with many others mobiles which transmit at the same
base station or at the same range. The goal of a terminal
is to find jointly the power levels and the base stations such
that the terminal achieves as high payoff as possible, mini-
mum guarantee (e.g. QoS requirement thresholds) but also
to control the battery-state.

4.1 Battery-state transition
We consider the energy reserve of the battery type p,

(Xp
t )t≥1 and power level management as a Markov decision

process. For each state y 6= 0, the action space is Ap(y)
with at least two elements, and Ap(0) has at most one ele-
ment (empty or singleton). Given a stationary policy σ and
a strategy of all the populations the change in energy re-
serves of the battery type p is described by the (first order,
time-homogeneous) Markov process (Xp

t ) with the transi-
tion law qp. ∀y 6= 0, np, ∀a, , the probability of transition
qp(Xp

t+1 = y′|Xp
t = y, a) is expressed as















1 − R
p
γp,y(a) − Q

p
γp,y(a) if y′ = y − 1

R
p
γp,y(a) if y′ = y + 1

Q
p
γp,y(a) if y′ = y

0 otherwise

,

q
p(Xp

t+1 = y
′|Xp

t = n
p
, a) =







Q
p
γp,np(a) if y′ = np − 1

1 − Q
p
γp,np(a) if y′ = np

0 otherwise
,

and

q
p(Xp

t+1 = y
′|Xp

t = 0, 0) =







γp if y′ = 1
(1 − γp) if y′ = 0

0 otherwise
,

where ∀ y, a, γp 7−→ R
p
γp,y(a) ∈ [0, 1] is an increasing func-

tion with R
p
0,y(a) = 0, 0 ≤ R

p
γp,y(a) + Q

p
γp,y(a) ≤ 1. The

factor γp represents a function of the probability to have
a ”good weather”(for example, the sun for the solar-power
battery, the wind for wind-power battery) and the probabil-
ity for battery of type p to go from state 0 to state 1. If γp

is zero, the state 0 is absorbing. For γp 6= 0 is the chain is
communicating.

Note that each user controls the transition state of its bat-
tery: qp is independent of the decision of the other mobiles.

4.2 Reward
We focus on utility function based on a simplified version

of the signal to noise plus interference ratio (SINR). The
battery-state have the property that more energy is available
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Figure 1: Generic battery state transition rule.

in high state. Hence, that set of powers in y + 1 contains
the set of power available in y. For example,

∅ ⊂ A
p(0) = {pow

p
0} ⊂ A

p(1) = {pow
p
0 , pow

p
1} ⊂

A
p(2) = {pow

p
0 , pow

p
1 , pow

p
2} ⊂

. . . A
p(np) = {pow

p
0 , pow

p
1 , . . . , pow

p
np}

The signal to noise plus interference ratio of a mobile with
the battery type p in state y at the position λ = (λ1, λ2, λ3)
is

SINRp
y(a, x; λ, BS) =

agpp

(ε2+(λ1−x0)2+(λ2−y0)2+(λ3−z0)2)
α
2

N0 + κIown(xp) + κIother(x−p)
,

a ∈ A
p(y), p ∈ P, y ∈ Y

p = {0, 1, 2, . . . , n
p}

where

Iown(xp) =
∑

y,b

bg
pp

x
p(y, b)hpp

Iother(x
−p) =

∑

k 6=p

∑

y,b

g
kp

bx
k(y, b)hkp

,

where

h
kp =

∫

λ∈D

dµk,BS

(ε2 + (λ1 − x0)2 + (λ2 − y0)2 + (λ3 − z0)2)
α
2

xj(y, a) is the fraction of the sub-population j in state y

with the power level a, N0 is the power of the thermal back-
ground noise, µp,BS is the distribution of mobiles (in the 3-
dimensional space) with the battery type p around the base
station BS, D ⊆ R

3 is the domain (geographical placement
of base stations and mobiles) and α is the path-loss and κ is
the inverse of the processing gain of the system, it weights
the effect of interferences, depending on the orthogonality
between codes used during simultaneous transmissions. The
coefficient κ is equal to 1 in a narrow band system, and is
smaller than 1 in a broadband system that uses CDMA. The

instantaneous expected reward rp
y,a(x) of an user in state y

is expressed as
∫

λ∈D

f
(

SINRp
y(a, x, λ, BS)

)

dµ
p(λ)

where f is a non-decreasing function with f(0) = 0. ε is
a positive parameter (to eliminate of continuity problem
at zero) and the gij are positive gain parameters. The
3−dimensional vector (x0, y0, z0) describes the position of
the base station BS in R

3

Computing the interference term in presence of
continuum of users

In order to compute explicitly the SINR term, we first need
the following lemma:

Lemma 4.2.1.

ν ≥ 1, bν =

∫ +∞

0

1

(1 + x2)ν
dx =

{

π
2

if ν = 1
√

π

2

Γ(ν− 1
2
)

Γ(ν)
if ν > 1.

where Γ is the Euler function Γ(x) =
∫ +∞
0

e−ttx−1 dt.

Proof. For ν = n a positive integer, the polynomial
(1 + z2)n has two zeros z = ±i each zero with the order
n. Consider the circuit CR′ = [−R′, R′] ∪ {R′eiθ, 0 ≤ θ ≤
π}. Since the complex function z ∈ C −→ 1

(1+z2)n has no

zero on the circuit CR′ , Using residue’s theorem of complex
analysis, we obtain the following result:

∫

x≥0
1

(1+x2)n dx =

πiRes(ξ(z), i). The residue of ξ around z = i, a pole of order
n, can be found by the formula:

Res(ξ, i) =
1

(n − 1)!
lim

z−→i
(

d

dz
)n−1 [(z − i)n

ξ(z)]

Thus, bn =
√

π

2

Γ(n− 1
2
)

Γ(n)
. We then use the extension of the

Euler function Γ on the positive real axis.

From the lemma 4.2.1, we derive immediately that, n ≥

2,
∫ +∞
0

x2

(1+x2)n dx = bn−1 − bn

Proposition 4.2.2. hjp = 4π2

ε2α−3 (b α
2
−1 − b α

2
)

Proof. Using spherical coordinates from cartesian coor-
dinates by the transformation







λ1 = r sin θ cos φ

λ2 = r sin θ sin φ

λ3 = r cos θ

and the volume element r2dr sin θdθdφ, one has,

h
jp = 4π

2

∫ +∞

0

r2

(ε2 + r2)
α
2

dr =
4π2

ε2α−3

∫ +∞

0

r2

(1 + r2)
α
2

dr

i.e hjp = 4π2

ε2α−3 (b α
2
−1 − b α

2
)

Proposition 4.2.3. The highest payoff that a mobile with
the battery type p can obtain against any strategies of others
mobiles in the one-shot power control game is given by

v̄
p
y =

∫

D

f







up
ygpp

(ε2+(λ1−x0)2+(λ2−y0)2+(λ3−z0)2)
α
2

N0 +
∑

j

∑

y hjpu
j
ym

j
ygjp






dµ

p

where up
y is the maximum power level available in the battery-

type p in state y.
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Proof. Since the payoff decreases when the others play-
ers increases their power levels (in average), the minmax
point is obtained when they uses their high powers. The
maximum payoff that a mobile with the battery type p can
obtain against any strategies of others mobiles is then given
by

v̄p
y = max

a∈Ap(y)

∫

D

f







agpp

(ε2+(λ1−x0)2+(λ2−y0)2+(λ3−z0)2)
α
2

N0 +
∑

j

∑

y hjpu
j
ym

j
ygjp






dµp

=

∫

D

max
a∈Ap(y)

f







agpp

(ε2+(λ1−x0)2+(λ2−y0)2+(λ3−z0)2)
α
2

N0 +
∑

j

∑

y hjpu
j
ym

j
ygjp






dµp

=

∫

D

f






max

a∈Ap(y)

agpp

(ε2+(λ1−x0)2+(λ2−y0)2+(λ3−z0)2)
α
2

N0 +
∑

j

∑

y hjpu
j
ym

j
ygjp






dµp.

This completes the proof.

Result 4.2.4. Each mobile with the battery type p can
guarantee the payoff

∑

y 6=0

Πp
y v̄

p
y

for all γp > 0, where Πp
y = lim

t−→∞
P(Xp

t = y) is the proba-

bility to be in state y under the maximum power strategy.

Proof. Πp
y is the frequency of visit of the battery state in

y. From Proposition 4.2.3, each mobile with the battery type
p can obtain at least v̄p

y against any strategies of others mo-
biles. Each mobile of subpopulation can then obtain at least
∑

y Πp
y v̄p

y which is an equilibrium payoff. This completes the
proof.

5. CONSTRAINED STOCHASTIC POPULA-

TION GAMES
In addition to the model described in Section 3, we assume

that players have (possibly coupled) average constraints on
their actions in any state. The payoff of the subpopulation
p is

Eσ,µ

(

lim inf
t−→+∞

1

t

t
∑

k=1

r
p
yk,ak

(xk)

)

with σp ∈ ∆(Σp) subject to

• Orthogonal constraints:

p ∈ P, Pσp

(

lim sup
t−→+∞

1

t

t
∑

k=1

D
p(yk, ak) ≤ β

p

)

= 1,

where Dp : Allp −→ R is an individual cost function
(independent of the strategies of the others players),
βp ∈ R is a given cost threshold.

• Coupled constraints:

p ∈ P, Pσ,µ

(

lim sup
t−→+∞

1

t

t
∑

k=1

C
p
yk,ak

(xk) ≤ α
p

)

= 1

where Cp : Allp × X −→ R is a cost function which
depends on the individual state-action but also on the
population profile i.e the strategies of the others play-
ers (in the same class or not).

A strategy σ is a constrained equilibrium if for all p,

F
p(σ) ≥ F

p(σ′p
, σ

p), ∀ σ
′p ∈ ∆(Σp)

and σp ∈ Λ(σ−p) where Λ(σ−p) is the set feasible strategies
(that satisfy the orthogonal and coupled constraints) given
the strategies of the others populations σ−p.

5.1 Communicating case
Throughout this subsection fix an p ∈ P. Consider the evo-

lution of the state and action processes for a player in the
subpopulation p. We say that a Markov chain is commu-
nicating it is a Markov chain with single class. We assume
this property in this subsection. We define the following
constrained programming problem:

CPPp : v
p(σ−p) = max

∑

y,a

r
p(y, a, σ

−p)zp(y, a)

subject to

∑

y,a

[δy′(y) − Q
p

yay′ ]z
p(y, a) = 0, (2)

z
p(y, a) ≥ 0, ∀y, a and

∑

a

z
p(y, a) = m

p
y, ∀y, (3)

∑

y,a

z
p(y, a) =

∑

y

m
p
y = m

p
, (4)

∑

y,a

D
p(y, a)zp(y, a) ≤ β

p
,
∑

y,a

C
p(y, a, σ

−p)zp(y, a) ≤ α
p (5)

The relation between CPPp and best response correspon-
dence is given by the following: there exists a feasible strat-
egy for the subpopulation p against σ−p if and only if CPPp

has a solution. Moreover, a solution is a best reply to σ−p.

If CPPp is feasible for a given strategy σ−p then for each
ε > 0 there exists a stationary p−feasible strategy xp such
that Fµ(xp, σ−p) is independent of the initial state and

F
p
µ (xp

, σ
−p) + ε > v

p(σ−p).

5.2 Non-communicating chain: multichain
Each player of the class p can decompose its transition

state into a partition J
p
i , i = 1, 2, . . . such that the restricted

state-action game (P, J
p
i , A

p
i (.), rp) where A

p
i (y) is the set of

actions such that if the player start in the state y ∈ J
p
i , the

state process will remain in the communicating class J
p
i .

Result 5.2.1. Suppose now that σ is feasible and the prob-
ability that the process X

p
t ∈ J

p
i almost any time (a.a.t) is

positive (under σ and the initial distribution). The following
constrained programming problem CPP(p,i) is feasible and

Pσ,µ

(

lim inf
t−→+∞

1

t

t
∑

k=1

r
p
yk,ak

(xk) ≤ v
p
i | X

p
t ∈ J

p
i aat

)

= 1

where

CPP(p,i) : v
p
i (σ−p) = max

∑

y,a

r
p(y, a, σ

−p)zp(y, a)
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subject to
∑

y,a

[δy′(y) − Q
p

yay′ ]z
p(y, a) = 0, y

′ ∈ J
p
i (6)

z
p(y, a) ≥ 0, ∀y ∈ J

p
i , a ∈ A

p
i (y) (7)

∑

a∈A
p
i

z
p(y, a) = m

p
y, ∀y ∈ J

p
i (8)

∑

y∈J
p
i

,a∈A
p
i
(y)

z
p(y, a) = m

p (9)

∑

y∈J
p
i

,a∈A
p
i
(y)

D
p(y, a)zp(y, a) ≤ β

p (10)

Proof. See appendix.

5.3 Constrained stationary strategies
For each player of the subpopulation p ∈ P, its pure action

set in state y is Ap(y) and

Ap
y : X → 2∆(Ap(y))

is its restricted constrained correspondence which restricts
the strategies in to the subset Ap

y(x−p) ⊆ ∆(Ap(y)) when
the state of the population is y.

5.3.1 Example: coupled/orthogonal constraints

Ap(x−p) =
{

a, C
p
j (a, x

−p) ≤ α
p
j ,

D
p
l (a) ≤ β

p
l j = 1, . . . , n

p
, l = 1, . . . , n

′p}
.

Result 5.3.2. Assume that

• The chain of each player from each subpopulation is
ergodic for any stationary strategies.

• Slater conditions: For stationary profile x, each popu-
lation p has some strategy σp ∈ {a, D

p
l (a) ≤ β

p
l , l =

1, . . . , n′p} such that

C
p
j (σp

, x
−p) < α

p
j , j = 1, . . . , n

p

then a constrained equilibrium exists in stationary strategies.

Proof. Under the two above assumptions, we can apply
the Theorem 2.1 in [5] in which an optimal stationary strat-
egy is obtained using constrained linear programming.

6. EXTENSIONS

6.1 Constrained stochastic population games
with unknown stopping time

In general, the lifetime of individual or system is not
known. We shall integrate this considerations in our interac-
tion model. In this section we develop a general formulation
of a local interaction with unknown stopping time. Play-
ers does not known the length of the local interaction but
have a common probability structure on the stochastic local
game. At time t, they assign some probability P(T = t) to
the event {T = t} that the local interaction ends in time t.

t ≥ 1, P(T = t) ≥ 0,
∑

t≥1

P(T = t) = 1.

Fix an anonymous member of some subpopulation p, and a
sequence of state-actions σ. A player from the class p will
receive

F
p
µ (σ) = Eσ,µ

[

lim inf
t→+∞

∑t

k=1 P(T = k)(
∑k

j=1 rp
yj ,aj

(xj))
∑t

j=1 jP(T = j)

]

under the constraints: p ∈ P,

Pσ

(

lim sup
t→+∞

∑t

k=1 P(T = k)(
∑k

j=1 Cp
yj ,aj

(xj))
∑t

j=1 jP(T = j)
≤ α

p

)

= 1,

Pσp

(

lim sup
t→+∞

∑t

k=1 P(T = k)(
∑k

j=1 Dp(yj , aj))
∑t

j=1 jP(T = j)
≤ β

p

)

= 1,

Result 6.1.1.

F
p
µ (σ) = Eσ,µ lim inf

t→+∞
F

p,t
µ (σ)

where F
p,t
µ (σ) :=

1
∑t

j=1 jP(T = j)

t
∑

j=1





t
∑

k=j

P(T = k)



 r
p
yj ,aj

(xj)

Proof. We apply Fubini’s theorem on finite summation
to change the order between k and j in the expression of
F p,t

µ (σ) where

F
p,t
µ (σ) =

∑t

k=1 P(T = k)(
∑k

j=1 rp
yj ,aj

(xj))
∑t

j=1 jP(T = j)
.

Examples: This model generalizes the finite and infinite
horizon payoff notions:

• If T is the Dirac measure concentrated on t∗ i.e P(T =
j) = 0 if j 6= t∗ and P(T = t∗) = 1, we obtained the
arithmetic average payoff

Eσ,µ

∑t∗
j=1 rp

yj ,aj
(xj)

t∗

• If T is the geometric distribution P(T = t) = (1 −
δ)δt−1, then we obtain the average discounted payoff:

(1 − δ) Eσ

+∞
∑

t=1

δ
t−1

r
p
yt,at

(xt)

• Note that when the expected horizon of local inter-
action is finite (for example when the lifetime of the
system or of the user is finite - in expectation - but
the end of the interaction is not known)2, the average
payoff can be rewritten as

F
p
µ (σ) =

∑+∞
j=1

(

∑+∞
k=j

P(T=k)
)

Eσ,µrp
yj,aj

(xj)
∑+∞

j=1
jP(T=j)

(11)

=
∑

t≥1 P(T≥t)Eσ,µrp
yt,at

(xt)

E(T )
(12)

The following theorem generalizes the Theorem 2.1 in [5]
for constrained games and also the Theorem 2.6 (ii) in [4]
and the Theorem 1 in [10] for unconstrained product games.

2Note that the expected horizon can be finite and P(T =
t) > 0. It is the case for P(T = t) = δt−1(1 − δ), δ ∈
(0, 1).E(T ) = 1

1−δ
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Result 6.1.2. Assume that each subpopulation has a sin-
gle (aperiodic) ergodic class under each stationary strategy.
Then the stochastic population game with individual inde-
pendent states and unknown lifetime has an equilibrium in
stationary strategies. Moreover, the constrained game has
an equilibrium under Slater condition.

For the proof we need tightness properties of the measure
generated by the frequencies state-actions under the distri-
bution of the horizon.

Proposition 6.1.3. Assume that for each subpopulation
p and any stationary strategy σp, the state process is an ir-
reducible Markov chain with one ergodic class then, for any
strategy σ the frequencies state-actions

(fp,t
µ,σ(y, a))p∈P,t≥1

where

f
p,t
σ,µ(y, a) =

∑t

j=1

(

∑t

k=j P(T = k)
)

Pσ(Xj = y, aj = a|y1 = µ)
∑t

j=1 jP(T = j)

are tight.

Proof. See Appendix.

The occupation measures in this extended model are char-
acterized by the following convergence result: Pσ,µ almost
surely, the random variables that give the frequencies state-
action
∑t

k=1 P (T = k)
∑k

j=2 δy′ (Xp
j ) −

∑

y,a Q
p

yay′δ(y,a)(X
p
j−1, a

p
j−1)

∑t
j=1 jP (T = j)

(13)

goes to zero when t goes to infinity, for all y′ ∈ Y p, p ∈ P.

Hence, when E(T ) =
∑

k≥0 P (T > k) =
∑

k kP (T = k) <

+∞ then we obtain the equation:
∑+∞

k=1 P (T = k)
∑+∞

j=2 δy′(Xp
j ) −

∑

y,a Q
p

yay′δ(y,a)(X
p
j−1, a

p
j−1)

∑∞
j=2 P (T ≥ j)

(14)

7. CONCLUSIONS AND PERSPECTIVES
In this paper we have investigated power control inter-

action based on stochastic modeling of the remaining en-
ergy of different types of battery in large networks. We
have showed existence of equilibria in the general model of
constrained Markovian population games under ergodic as-
sumptions. This model offers a new class of repeated games:
constrained repeated games with individual transition states
and unknown horizon.

APPENDIX

We first need the following lemma:

Lemma .0.4. For all strategies σ and all initial states µ,
∑

i

Pσp,µ(Xp
t ∈ J

p
i almost any time) = 1, and

Pσp,µ(ap
t ∈ A

p
i (yt) almost any time) = 1

Proof the result 5.2.1. Combining the Proposition 3.4
and the strong law of large number for martingale differences
[7] one has the following results:

• Pσ,µ almost surely, the random variables that give the
frequencies state-action satisfy

lim
t−→+∞

1

t

t
∑

k=2

[

δy′(Xp
k ) −

∑

y,a

q
p

yay′δ(y,a)(X
p
k−1, a

p
k−1)

]

= 0

for all y′ ∈ Y p, p ∈ P.

• Let Ω be set (y1, a1, x1, y2, a2, x2, . . . , ) in H∞ that sat-
isfy (i) at ∈ Ap(yt), t ≥ T for some integer T. (ii)

lim
t−→+∞

1

t

t
∑

k=2

[

δy′(Xp
k ) −

∑

y,a

q
p

yay′δ(y,a)(X
p
k−1, a

p
k−1)

]

= 0

(iii) lim supt−→+∞
1
t

∑t

k=1 Cp
yk,ak

(xk) ≤ αp,

(iv) lim supt−→+∞
1
t

∑t

k=1 Dp(yk, ak) ≤ βp,

Due to lemma .0.4 and the fact that σ is feasible, we have
that Pσ,µ(Ω) = 1. It suffices therefore to show that CPP(p,i)

is feasible and the event

{Xp
t ∈ J

p
i almost any time}

⋂

Ω

is contained in the event {lim inft−→∞
1
t

∑t

k=1 rp
yk,ak

(xt) ≤
v

p
i (x)}. Let define the random variable associate to the fre-

quencies state-actions fp,t(y, a) = 1
t

∑t

k=1 δ(y,a)(yk, ak) for
y ∈ Y p, a ∈ Ap(y). We have that any limit point {fp(y, a)}
of fp,t(y, a)t≥1 is a feasible solution of CPP(p,i) and that

∑

y∈J
p
i

∑

a∈A
p
i
(y)

r
p
y,a(x)fp(y, a) ≤ v

p
i (x)

Thus, Pσ,µ almost surely, one has,

F
p
µ (σ) =

∑

i

δ{Xt∈J
p
i
aat }

∑

y∈J
p
i

∑

a∈A
p
i
(y)

Πp
i (y)fp

i (y, a)rp
y,a(x−p),

∑

y∈J
p
i

∑

a∈A
p
i
(y)

Πp
i (y)fp

i (y, a)Cp
y,a(x−p) ≤ α

p
,

∑

y∈J
p
i

∑

a∈A
p
i
(y)

Πp
i (y)fp

i (y, a)Dp(y, a) ≤ β
p

where Πp
i (y) is the unique stationary distribution associate

to the state-process restricted to J
p
i , and aat :=almost any

time.

Proof of the Proposition 6.1.3. Since each subpop-
ulation has a single (aperiodic) ergodic class under station-
ary strategies, stationary state probabilities exists (depend-
ing on the strategy) and (Qp(σ))j goes to Πp(σ). Hence,
fp,t

σ,µ(y, a) converges weakly to Πp(σ)y,aσy,a. Using Lemma
18.2 in [1], The claim for general strategies follows from
the bounded convergence theorem: the sequence {fp,t

σ,µ} is
bounded (by one) and converges weakly. Hence, for any
strategies ℘ ∈ Σp we have that, limt〈℘, fp,t

σ,µ〉 = 〈℘, limt fp,t
σ,µ〉.

This completes the proof.
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