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ABSTRACT

We consider joint strategies of bandwidth allocation and ad-
mission control for elastic users competing for a downlink
data channel in a cellular network. For the sake of ro-
bustness and generality of the results we focus on the set
of strategies whose performance does not depend on the
detailed traffic characteristics beyond the traffic intensity.
Performance is studied at the flow level in a dynamic setting
where users come and go over time. A number of user classes
are considered, which are characterized by their achievable
bit rate, guaranteed throughput, arrival rate and mean flow
size. We aim at characterizing a strategy which is optimal
in the sense of having the lowest blocking probability. Such
characterization provides some interesting insights into the
optimal policy and its evolution as the system load increases.
Unfortunately, from a practical perspective computing the
optimal policy can be exceedingly complex except for lightly
loaded systems. Alternatively, we propose a computation-
ally feasible suboptimal policy that achieves a good relative
performance.
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1. INTRODUCTION
In spite of the enormous variety of traffic flows in the

multiservice Internet and the corresponding difficulty in its
characterization, the abstraction of flows pertaining to two
broad classes (elastic and streaming) has proven to be sim-
ple yet practical for traffic engineering purposes [26]. Future
wireless cellular networks are expected to provide not only
voice service but also data services —mainly Internet ac-
cess traffic— thus carrying the same traffic type than wired
access networks, although not necessarily in the same pro-
portion.

Streaming traffic corresponds to real-time audio or video
and hence has rather stringent requirements on packet delay
and jitter. Elastic traffic in turn can adapt to available band-
width up to a minimum. If available bandwidth drops be-
low that minimum flows may abandon before completing the
transaction leading to an unwanted waste of resources [23,
12]. Therefore, despite the adaptability of elastic flows it
is advisable to enforce some type of admission control (AC)
in order to guarantee a minimum bandwidth per flow and
ensure an efficient use of resources.

In the quest of an equivalent of the Erlang formula for
the Internet, Bonald and Proutiére, following the seminal
work of Kelly [20], invented the concept of balanced fair-
ness [9, 10], which is defined as the most efficient way to
share network capacity among different flows so that (under
some assumptions on the generation of flows) the resulting
system is insensitive, i.e., the stationary distribution of the
underlying queuing network does not depend on the detailed
distribution of service requirements beyond their means. A
further extension of the results on insensitive queuing net-
work is presented in [4]. In [8] balanced fairness allocation
is applied to several network types and its performance is
compared with that of max-min fairness and proportional
fairness.

Despite the packetized nature of data in 3G networks,
performance analysis of wireless data networks at the flow
level has attracted a considerable interest during the last
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years [5, 6, 11, 14, 17, 15, 16, 22, 28]. The vast major-
ity of these studies rely to some extent on queuing models
based on Processor Sharing (PS) and Discriminatory Pro-
cessor Sharing (DPS) queues; see, for instance, the seminal
paper [18] and [1, 2, 3, 29].

In [14, 17] it is shown that the Proportional Fair scheduler,
which is commonly deployed in downlink data channels, at
the flow level can be satisfactorily evaluated by means of a
Processor Sharing (PS) based queuing model. The resulting
model has the advantage of being insensitive. Applications
of such model to a single cell with no moving users can be
found in [11, 14, 17].

On the other hand, DPS based models are introduced to
model the unequal capacity sharing arising in some situa-
tions. Unequal sharing may arise fundamentally due to TCP
rate control or service differentiation enforced by packet
schedulers. However, in normal load conditions, realizing
service differentiation through a packet scheduler that oper-
ates in a DPS manner is rather ineffective [13].

In this paper we focus on elastic traffic carried over a
wireless cellular network. Specifically, we address jointly
the problem of bandwidth allocation (BWA) and admission
control (AC). Our main goal is to characterize the optimal
joint BWA-AC scheme —in the sense of having the lowest
loss probability— among those that are insensitive to the
distribution of the flow size, i.e., only depends on their mean
values.

Our work inherits some of the ideas of a series of papers
dealing with insensitive dynamic load balancing [7, 19, 21].
In all of them —and also here— the simplicity and robust-
ness of insensitivity is an essential condition for the optimal
policy that is sought. In [7] it is assumed that capacities
are allocated according to balanced fairness and then the
optimal routing policy is sought constrained to being bal-
anced in order to preserve insensitivity. The optimality ob-
jective is to minimize the overall blocking probability or the
maximum per-class blocking probability. A simple charac-
terization of the optimal routing policy is obtained for the
single-class traffic and also for the more general multi-class
traffic. However, in the latter case the policy optimization is
restricted to the set of decentralized policies, i.e., strategies
where the routing decision for a class-k customer does not
depend on the number of customers of other classes.

For the purpose of obtaining the insensitivity property
it is not necessary that capacity allocation and routing are
balanced separately. Actually, it was already noted in [9]
that a better performance can be achieved if capacity allo-
cation and routing are jointly balanced, which is a weaker
requirement than separate balancing. This approach is fol-
lowed in [19] and [21]. However the performance advantage
of joint balancing comes at the cost of higher complexity.
In [19] the authors obtain and characterize the optimal joint
allocation-routing policy in a single-class traffic scenario. To
best of our knowledge no similar results exists for the mul-
ticlass traffic scenario. A multiclass traffic scenario with
global information policies is studied in [21] but the aim is
not a characterization of the optimal policy. An approach
based on the theory of Markov Decision Processes (MDP)
is used to formulate the optimization as a Linear Program-
ming (LP) problem (see, for instance, [27]). The LP formu-
lation allows more flexibility and hence a greater variety of
problems, objective functions and constraints can be consid-
ered [21].

In this paper we address the more general problem of seek-
ing a characterization of the optimal global policy in a mul-
ticlass traffic setting, but in turn we restrict ourselves to a
simpler network topology — which fits a cellular scenario
— than in all the aforementioned studies of this kind [7, 19,
21]: all traffic classes have a single feasible route into which
they are allocated or otherwise blocked, and there is a single
constraining resource, i.e. the time-slotted wireless channel.
We employ the same optimization approach as in [21] based
on an MDP-LP formulation.

The remainder of the paper is structured as follows. Sec-
tion 2 describes the model of the system and the optimiza-
tion problem is formally stated. In Section 3 we present
the characterization of the optimal policy and introduce a
suboptimal policy. Numerical experiments illustrating the
contents of this section are shown in Section 4. Concluding
remarks are given in Section 5.

2. MODEL DESCRIPTION AND PROBLEM

FORMULATION
We model traffic at the flow level and ignore interactions

at the packet level (scheduling, buffer management, TCP
congestion control,. . . ). The flow content is then viewed as
a fluid which is transmitted as a continuous stream with
rate changes occurring only at flow arrivals and departures.
This is a widely used traffic model in the literature (see for
instance [8] and its references). We focus on a single base
station with a downlink channel allocated to data users. We
consider that the downlink resources are time-shared among
active users, i.e., flows. Transmission is done in a one-by-
one fashion using time slots with duration much shorter than
flow duration or flow inter-arrival times so that the validity
of the flow level abstraction is maintained [11, 28].

Flows are classified into K different classes. Class-i flows
arrive as a Poisson process with rate λi, their mean flow size
(expressed in bits) is 1/µi and require a minimum bit rate
ϕi. Let Ci denote the feasible bit rate for class-i flows, i.e.,
the bit rate that is achieved during a slot assigned to one
of such flows. Moreover, let us introduce ρi = λi/(Ciµi),

ρ =
∑K

i=1 ρi and λ =
∑K

i=1 λi. Classes can be defined by
the feasible rates —which correspond to different locations
within the cell [11, 25]—, flow types —having different mean
flow sizes or minimum rate requirements—, or both.

Let x = (x1, . . . , xK) denote the system state, where xi is
the number of active flows of the i-th class. The BWA-AC
policy is described by φi(x) and pi(x): when the system is at
state x arriving class-i flows are accepted with probability
pi(x) and the ensemble of class-i flows is served with bit
rate φi(x) = Ciτi(x), i.e., a fraction τi(x) of time-slots is
assigned to class i; note that

K
∑

i=1

τi(x) = 1. (1)

Within a class, bandwidth is fairly shared among the flows.
The bit rate seen by a class-i flow is φi(x)/xi (if xi > 0).

Subject to the minimum bit rate per flow requirements
φi(x) ≥ xiϕi and the total capacity constraint (1), it is
easily seen that the set of feasible states is

S :=

{

x :
K

∑

i=1

xi

βi
≤ 1

}

,
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where βi = Ci/ϕi.
Denote by π(x) the stationary state probabilities and by

Pb the aggregate blocking probability. We want to find the
insensitive BWA-AC policy that minimizes Pb while fulfilling
the minimum rate requirements. More formally the problem
can be stated as:

Find: φi(x) and pi(x) for i = 1, . . . , K and
x ∈ S that

Minimize: Pb

Subject to: 1. insensitivity with respect to the flow
size distribution;

2. minimum rate requirements: φi(x) ≥
xiϕi, ∀i.

We formulate the optimization problem above as an MDP-
LP. The state of the MDP consists of the system state x, the
admission decision d vector, and the bandwidth allocation b
variable. The admission vector d = (d1, . . . , dK) ∈ {0, 1}K

codes which traffic classes will have their newly arriving
flows accepted: if di = 1 new class-i flows are accepted, and
rejected otherwise. The bandwidth allocation variable codes
to which class the transmission capacity is allocated: b = i
means that transmission capacity is allocated to class i. Let
π(x, d, b) denote the MDP state probability, in other words,
the probability that the system is at state x, accepts only
those new flows belonging to classes in the set {i : di = 1},
and the transmission capacity is allocated to ongoing class-b
flows.

The system state probabilities π(x), blocking probability
Pb and policy parameters φi(x) and pi(x) can be expressed
in terms of π(x, d, b) as

π(x) =
∑

d∈{0,1}K

K
∑

b=1

π(x, d, b),

Pb =
K

∑

i=1





λi

λ

∑

d:di=0

∑

x∈S

K
∑

b=1

π(x, d, b)



 ,

τi(x) =

∑

d
π(x, d, i)

∑

d

∑

b π(x, d, b)
, (2)

pi(x) =

∑

d:di=1

∑

b π(x, d, b)
∑

d

∑

b π(x, d, b)
. (3)

The LP problem can now be written as follows

min
π(x,d,b)

∑

i

(

λi

λ

∑

d:di=0

∑

x

∑

b

π(x, d, b)

)

, (4)

subject to:

π(x, d, b) ≥ 0 ∀x ∈ S, d ∈ {0, 1}K , b = 1, . . . , K, (5)

∑

x

∑

d

∑

b

π(x, d, b) = 1, (6)

βi

∑

d

π(x, d, i) ≥ xi

∑

d

∑

b

π(x, d, b)

∀x ∈ S, i = 1, . . . , K, (7)

ρi

∑

d:di=1

∑

b

π(x − ei, d, b) =
∑

d

π(x, d, i)

∀i = 1, . . . , K, x ∈ S : xi > 0, (8)

where ei is the vector with a 1 in the i-th position and 0’s
elsewhere.

Equations (5) and (6) refer to probabilistic nature of π(x, d, b),
Eq. (7) represents the minimum rate requirement and Eq. (8)
is the detailed balance condition. In the ordinary LP for-
mulation of MDP theory, global balance conditions appear
as linear constraints on the decision variables. In order to
retain insensitivity, we impose stricter detailed balance con-
ditions as constraints [21], which is equivalent to the balance
condition [21, 4]

ψi(x − ej)

ψi(x)
=

ψj(x − ei)

ψj(x)

i, j = 1, . . . , K, x ∈ S : xi, xj > 0,

where

ψi(x) = ρi
pi(x − ei)

τi(x)
. (9)

Note that the radio channel capacity constraint is implicitly
included in the definition of π(x, d, b). From (2) it readily

follows that
∑K

i=1 τi(x) = 1, actually it also holds for x =
(0, . . . , 0), although it has no physical sense.

3. POLICY CHARACTERIZATION
For a given configuration, the LP formulated in the pre-

vious section can be numerically solved to obtain the values
of π(x, d, b) and by applying Eqs. (2)–(3), the BWA-AC pa-
rameters are obtained.

Our goal is to find a characterization for the optimal in-
sensitive joint BWA-AC policy. In our quest we followed
an inductive and rather experimental process: from the ob-
servation of particular solutions in rather simple scenarios
we extracted and generalized the underlying characteristics
of the optimal policy, which have been subsequently tested
against a variety of more complex settings. In this section
we describe the general form of the optimal insensitive joint
BWA-AC policy. Since in some instances the general form
may turn out to be excessively complicated for practical pur-
poses, we also describe a simpler suboptimal form.

Denote by ρ̂ = (ρ̂1, . . . , ρ̂K) = ρ−1ρ the traffic share
across classes. Let us denote by letter ω with a subscript
a BWA-AC policy, i.e., a set of values for {τi(x), pi(x) : x ∈
S, i = 1, . . . , K}. Let ω(ρ) represent the optimal policy as
a function of the system load ρ. It has been found that,
for a given traffic share ρ̂, there exists a finite number of
thresholds for ρ

0 = ρ(0) < ρ(1) < ρ(1) < · · · < ρ(m) = ∞,

such that ω(ρ) = ωj for ρ ∈ [ρ(j−1), ρ(j)]. Therefore, ω(ρ)
(and thus τi(x) and pi(x)) is a piecewise constant function
of ρ. Moreover, as it will be seen below, the policy settings
ωj do not depend on the load conditions (ρi), they only
depend on the values of Ci and ϕi. On the contrary the
load thresholds ρ(j) do depend on the load conditions. In
Section 3.1 we precisely specify the form of ω1 and in Sec-
tion 3.2 we describe the transformations that ω1 undergoes
as ρ increases giving rise to ω2, · · · , ωm.

On the other hand, if the policy specification is available
then the values of ψi(x) can be easily computed (see Eq. (9))
and from these the system state probabilities easily follow
as

π(x) = π(0)ψi1(ei1)ψi2(ei1 + ei2) · · ·ψin(x). (10)
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Where 0 = (0, . . . , 0), n =
∑K

i=1 xi is the number of flows in
the state x, and

〈0, ei1 , ei1 + ei2 , . . . , ei1 + · · · + ein = x〉 ,

is any direct path from state 0 to state x. Note that the
simple product-form above for the system state probabilities
is another consequence of the detailed balance condition.
The blocking probability can be then computed by

Pb =
K

∑

i=1

(

λi

λ

∑

x∈S

(1 − pi(x)) π(x)

)

.

In principle having the piecewise characterization of ω(ρ)
does not save having to solve the LP since the load thresh-
olds ρ(j) remain to be known, but it can be circumvented
and the exact policy to apply can be determined as

ω(ρ) = arg min
ωj

Pb(ωj , ρ). (11)

This approach can be especially convenient if working with
suboptimal policies (see Section 3.3 below).

3.1 The First Policy ω1

For a sufficiently low load the optimal policy is ω1, i.e.,
ω(ρ) = ω1 if 0 ≤ ρ < ρ(1). Here we describe the observed
principles that characterize ω1 and by applying those prin-
ciples we obtain a method for computing the policy param-
eters.

Throughout this subsection we assume, without loss of
generality, that C1 ≥ C2 ≥ · · · ≥ CK . Define κ(x) =
max{i : xi > 0}.

At any state x, the observed principles can be stated as:

1. The constraining resource (i.e., transmission time) is
shared equally among flows unless this allocation fails
to satisfy some class’ rate requirement. In the lat-
ter case the throttled classes are allocated their min-
imum required rate (xiϕi) and the remaining capac-
ity is equally shared among the flows of non-throttled
classes. Hence for x ∈ S, τi(x) can be computed for
classes in descending order as follows

τK(x) =
xK

min
(

∑K
i=1 xi, βK

) ,

τi(x) = max

(

xi

βi
,

xi
∑i

j=1 xj

(

1 −

K
∑

j=i+1

τj(x)

))

.

2. Let i be a class such that all classes with lower feasible
rates have no active flows, then, if accepting one more
flow of this class leads to a feasible state, new flows are
accepted with probability 1. In a more formal manner,
for i ≥ κ(x) if x + ei ∈ S then pi(x) = 1. Obviously,
whatever the traffic class i, if x + ei /∈ S, pi(x) = 0.

The first principle precisely specifies the BWA whereas the
second one gives the AC probabilities only in some cases.
Those cases not covered can be worked out by applying
the fact that, since the system satisfies the detailed bal-
ance equations, it is reversible and, in particular, satisfies
the Kolmogorov’s criterion (see, for instance, [24, Chapter
10]). The method for doing so is detailed in what follows.

Through all discussion we assume that x, x + ei ∈ S and
i < κ(x), otherwise the value of pi(x) is already known:

pi(x) = 0 if x + ei /∈ S, and pi(x) = 1 if x + ei ∈ S but
i ≥ κ(x).

Define ξi(x) = ψi(x + ei)/ρi = pi(x)/τi(x + ei) and by
applying the Kolmogorov’s criterion to the cycle

x − xκ(x)eκ(x) + ei ←− · · · ←− x + ei




�

�





x − xκ(x)eκ(x) −→ · · · −→ x

,

we obtain

ξi(x) = ξi(x − xκ(x)eκ(x))

xκ(x)
∏

j=1

ξκ(x)

(

x − jeκ(x) + ei

)

ξκ(x)

(

x − jeκ(x)

) .

(12)
Since

ξκ(x)(x) =
1

τκ(x)(x + eκ(x))
=

1

max
(

xκ(x)+1

βκ(x)
,

xκ(x)+1

1+
∑

K
m=1 xm

)

=
min

(

βκ(x), 1 +
∑κ(x)

m=1 xm

)

xκ(x) + 1
,

Eq. (12) becomes

ξi(x) = ξi(x − xκ(x)eκ(x))
min

(

βκ(x), 1 +
∑κ(x)

m=1 xm

)

min
(

βκ(x), 1 +
∑κ(x)−1

m=1 xm

) ,

(13)
and by applying (13) recursively it follows that

ξi(x) =
min

(

βi, 1 +
∑i

m=1 xm

)

xi + 1
×

κ(x)
∏

j=i+1

min
(

βj , 1 +
∑j

m=1 xm

)

min
(

βj , 1 +
∑j−1

m=1 xm

) .

Finally, pi(x) can be computed as pi(x) = τi(x + ei)ξi(x).

3.2 Policy Evolution
The first policy ω1 can be considered, in a way, biased

towards less-favored traffic classes in terms of feasible rate,
which makes sense given the low load situation. As load in-
creases, however, situation changes and optimal policy ori-
entation shifts towards efficiency, limiting the access to the
system of the more resource-consuming traffic classes. More
precisely, we say that class i consumes more resources than
class j if µiCi < µjCj . In other words, resource consump-
tion of a class is measured as the flow mean sojourn time
in the system considering there are no other active flows.
Throughout this subsection it is assumed without loss of
generality that µ1C1 ≥ µ2C2 ≥ · · · ≥ µKCK , i.e., traffic
classes are sorted in ascending order according to resource
consumption. It has been found that starting with ω1, a se-
ries of transformations Ti, which penalize the most resource
consuming classes and favor the least resource consuming
ones, are successively applied as load increases

ω1
T1−→ ω2

T2−→ · · ·
Tm−1
−→ ωm.

The last policy ωm is at the opposite side of ω1, i.e., all
resources are reserved for class 1, which is the least resource
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consuming class:

pi(x) =

{

1 if i = 1 and x + e1 ∈ S

0 otherwise
,

τi(x) =

{

1 if i = 1 and x ∈ S

0 otherwise
i = 1, . . . , K.

Next we describe the type of policy transformations Ti.
Before doing so we need to introduce some additional nota-
tion. Let us define

R :=
{

x = (0, x2, . . . , xK) : x ∈ S
}

,

and introduce the order relation  defined as follows: we
say that x  y if xj > yj and xi = yi for i = j + 1, . . . , K.
Now consider that y1, y2, · · · , y|R| is a sorted list of all the
elements in R, i.e. y1  y2  · · ·  y|R|. Finally, for each
yi we define the set

∆i :=
{

x = x1e1 + yi, x ∈ S
}

.

Let us start with the policy ω1. The set of feasible states
for ω1 is S1 = S. The transformation T1 will affect one or
more states in ∆1 in one of the following ways:

A: the bandwidth allocation to class K is set to its min-
imum, i.e., τK(x) = βKxK , and the released capacity
is shared by the remaining classes

B: some admission probabilities of the least resource con-
suming class are set to 1 (if all the admission proba-
bilities in ∆1 of the least resource consuming class are
already 1, the second least resource consuming class is
considered and so on)

C: states in ∆1 are made unfeasible by rejecting those
flow arrival that would lead the system to a state in
∆1, i.e., if x + eK ∈ ∆1 then pK(x) = 0.

Note that since the detailed balanced condition has to be
satisfied, changes applied to a state may also affect other
neighboring states, which might be outside ∆1. Before the
type-C transformation is applied, none or several transfor-
mations of types A or B can be applied. Obviously af-
ter the type-C transformation no more transformations can
target states in ∆1 since these are not feasible anymore.
After the type-C transformation, the set of feasible states
becomes S2 = S1 � ∆1, then none or several type-A,B
transformations are applied to states in ∆2 followed by the
type-C transformation which clips the feasible state space
to S3 = S2 � ∆2,. . . This process is repeated until the fea-
sible state space becomes SM := {(x1, 0, . . . , 0) : x1 ≤ β1},
which corresponds to the last policy ωm. Note that after
some type-C transformations (more specifically after �βK�
of them) no class-K flows are let into the system and class
(K −1) will then play the role of the most resource consum-
ing class. Again, when class (K − 1) has been completely
removed it will be substituted by class (K −2), and so forth
until only class 1 is let into the system.

3.3 Suboptimal Policies
The description of policy transformations given in previ-

ous section is not sufficient to obtain ωj≥2 from ω1. That
will require, at least, knowing how many and in which order

· ·

· · · · ·

· · · · ·

· · · · · ·

· · · · · · ·

· · · · · · · · ·

· · · · · · · · · · ·

p1

τ1

p2

τ2

(10, 0)

(8, 1)

(6, 2)

(5, 3)

(3, 4)

(1, 5)

(0, 6)

Figure 1: State space.

type-A,B transformations occur between two type-C trans-
formations. Unfortunately, in our experiments we could not
observe any general and simple rule for the occurrence of
transformations of types A and B. Besides, even if we were
able to determine the exact sequence of transformations the
load values at which transformations occur (ρ(j)) will remain
unknown. As mentioned above, not knowing the thresholds
ρ(j) can be circumvented by the approach of Eq. (11) but
this requires computing Pb for each policy ωj . Observe that
if the system state probabilities have been computed under
policy ωj and Tj is of type C, the system state probabilities
under policy ωj+1 can be recomputed by simply renormal-
izing.

Motivated by the aforementioned reasons we propose a set
of suboptimal policies which are defined as follows: ω̂1 ≡ ω1

and ω̂j ≡ ω1(restricted to Sj) for j = 2, . . . , M , which is
equivalent to say ω̂1 ≡ ω1 and then only the type-C trans-
formations are applied. By definition ω̂1 = ω1, and also
ω̂M = ωm but in general ω̂j is not necessarily included
in {ω1, . . . , ωm} since, as noted previously, a transforma-
tion of type B or C may also affect states outside its tar-
get set of states ∆l. For a given value of ρ the subopti-
mal policy can be obtained using the approach of Eq. (11),
ω̂(ρ) = arg minω̂j

Pb(ω̂j , ρ).
In the next section we present a numerical evaluation ex-

ample that shows the good performance achieved by the
suboptimal policies introduced here.

4. NUMERICAL EXAMPLES
Consider the basic configuration: (C1, C2) = (5, 3); (ϕ1, ϕ2) =

(1/2, 1/2); (µ1, µ2) = (1, 1); ρ̂ = (2/5, 3/5); Fig. 1 displays
its state space.

4.1 First Policy
The first policy ω1, which is obtained as described in Sec-
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tion 3.1, is given by

[τ1(i, j)]ij =



































0 0 0 0 0 0

1 1/2 1/3 1/4 1/5 1/6 ·

1 2/3 1/2 2/5 1/3 · ·

1 3/4 3/5 1/2 1/3 · ·

1 4/5 2/3 1/2 · · ·

1 5/6 2/3 1/2 · · ·

1 5/6 2/3 · · · ·

1 5/6 · · · · ·

1 5/6 · · · · ·

1 · · · · · ·

1 · · · · · ·



































,

[τ2(i, j)]ij =



































1 1 1 1 1 1

0 1/2 2/3 3/4 4/5 5/6 ·

0 1/3 1/2 3/5 2/3 · ·

0 1/4 2/5 1/2 2/3 · ·

0 1/5 1/3 1/2 · · ·

0 1/6 1/3 1/2 · · ·

0 1/6 1/3 · · · ·

0 1/6 · · · · ·

0 1/6 · · · · ·

0 · · · · · ·

0 · · · · · ·



































,

[p1(i, j)]ij =



































1 1 1 1 1 1 0

1 1 1 1 1 1 ·

1 1 1 1 2/3 · ·

1 1 1 3/4 0 · ·

1 1 4/5 3/5 · · ·

1 5/6 2/3 0 · · ·

1 5/6 0 · · · ·

1 5/6 · · · · ·

1 0 · · · · ·

1 · · · · · ·

0 · · · · · ·



































,

[p2(i, j)]ij =



































1 1 1 1 1 1 0

1 1 1 1 1 0 ·

1 1 1 1 1 · ·

1 1 1 1 0 · ·

1 1 1 1 · · ·

1 1 1 0 · · ·

1 1 0 · · · ·

1 1 · · · · ·

1 0 · · · · ·

1 · · · · · ·

0 · · · · · ·



































.

4.2 Policy Evolution
Figures 2–7 show the evolution of the policy parameters as

the load increases. Figure 8(a) depicts the blocking probabil-
ity and a “summary” of the policy evolution. For each value
of x2 the admission probabilities for class 2, p2(x1, x2), have
been averaged over those values of x1 such that (x1, x2+1) ∈
S, i.e., p2(x1, x2) > 0 in ω1. The resulting curves show
the relative position (loadwise) of policy changes affecting a
“row” of states (x2 constant), and in particular values of ρ
at which such rows are removed from the feasible states.

Figure 8(b) shows the same type of plot as Fig. 8(a) but
now ρ̂ = (1/3, 2/3) has been varied. From the shape of the
curves we observe that, as expected, varying ρ̂ changes the
values ρ(j) but not the set of optimal policies ωj .
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Figure 2: p2(0, 5), τ2(0, 6)
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Figure 3: p1(x1, 5), p2(x1, 4), τ1(x1+1, 5), τ2(x1, 5); curves

are parameterized by x1

In order to see the effect of modifying the resource con-
sumption ordering we set µ2 = 2. Now C1 = 5 > 3 = C2

but µ1C1 = 5 < 6 = µ2C2, so the optimal policy evolves
limiting the access of class 1 traffic as shown in Fig. 9.

4.3 Comparison of policies
The curves in Fig. 10 represent the relative value of Pb

for the different policies taking the optimal insensitive pol-
icy as the reference. The first policy (ω1) show important
degradations as the load moves away from their optimality
regions so it does not seem advisable to keep using ω1 far
beyond ρ(1). It is noticeable that the suboptimal policy ω̂ is
an excellent approximation to ω, which is the targeted op-
timum, so its relative performance is also excellent; in this
scenario the maximum deviation of Pb(ω̂) from Pb(ω) is a
1.3%. We also plotted a curve corresponding to the opti-
mal (non-necessarily insensitive) policy, which exhibits an
important gain over the more restrictive case of insensitive
policies. For this curve, though, the validity of the results is
limited to the case where the flow sizes are exponentially dis-
tributed. In order to compute Pb for the optimal policy the
set of equations corresponding to the detailed balanced con-
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Figure 10: Relative performance: basic configura-

tion.
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dition in the linear program (see Eq. (8)) were substituted
by the global balance equations

∑

i



I{x+ei∈S}λi

∑

d:di=1

∑

b

π(x, d, b)

+ I{x−ei∈S}Ciµi

∑

d

π(x, d, i)

− λi

∑

d:di=1

∑

b

π(x − ei, d, b)

−Ciµi

∑

d

π(x + ei, d, i)

)

= 0 ∀x ∈ S,

where I{·} is the indicator function and by convention
π(x, d, b) = 0 if x /∈ S.

In Fig. 11 the sensitivity of the relative suboptimal per-
formance to different configuration parameters is analyzed.
All curves but the last one (µ2/µ1 = 0.5) display an excel-
lent performance of ω̂. Further experiments in that direction
revealed that it is indeed the imbalance between µ1C1 and
µ2C2 that is the cause of the performance degradation.

5. CONCLUSION
We have considered the joint optimization of bandwidth

allocation and admission control for elastic users competing
for a downlink data channel in a cellular network. Robust-
ness and generality of the results were main concerns in our
research and so we focused on those strategies that are in-
sensitive to the detailed traffic characteristics beyond mean
values. The optimization problem has been formulated using
a Markov Decision Process-Linear Programming approach.
A characterization of the optimal policy has been obtained
inductively. It has been found that the optimal policy is a
piecewise constant function of the system load having only
finitely many pieces. Moreover, the policy settings for each
piece do only depend on the minimum rate requirements and
feasible rates, in particular they are not dependent on the
arrival rates. These features confer additional robustness to
the solution.

We observed that except for low loads the complexity of
computing the optimal policy may make this policy imprac-
tical. As an alternative we proposed a much simpler subopti-
mal policy that satisfies the same requirements and achieves
a good relative performance unless the values µiCi (recip-
rocal of the mean sojourn time if a class-i user was alone
in the system) for the different user classes are significantly
imbalanced.
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