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ABSTRACT

This paper introduces and addresses the multiarmed mul-
timode restless bandit problem, concerning the optimal dy-
namic allocation of a shared resource to a collection of projects
which can be operated in multiple modes, subject to a peak
resource consumption constraint, thus extending the conven-
tional multiarmed restless bandit problem where projects
are restricted to a binary-mode (active or passive) opera-
tion. After discussing a motivating application, concerning
the optimal dynamic power allocation to multiple users shar-
ing a wireless downlink communication channel subject to
a peak energy constraint, a general approach is developed
to design and compute a tractable heuristic policy based on
marginal productivity indices (MPIs) defined separately for
each project. Sufficient conditions are given which ensure
both the existence of such an index and the validity of an
adaptive-greedy algorithm for its computation. Such condi-
tions extend to multimode projects those introduced by the
author in earlier work for binary-mode projects.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: Markov processes;
F.2.1 [Analysis of Algorithms and Problem Complex-

ity]: Numerical Algorithms and Problems

General Terms

Algorithms, Theory

Keywords

Markov decision processes, dynamic resource allocation, mul-
timode projects, restless bandits, index policies
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1.1 Motivation and Background
A decision-maker aims to extract the maximum gain out

of a portfolio of M dynamic and stochastic projects labeled
by m = 1, . . . , M . Project m is modeled as a discrete-time
Markov decision process (MDP) moving on the finite state
space Xm, which at each time is to be operated in one of a
finite set of modes am ∈ Am , {0, 1, . . . , Am} representing
intensity or effort levels. Thus, am = 0 corresponds to idling
the project, and am = Am to operating it at full gear. If
engaged in mode am when it occupies state im, the project
yields a one-period reward Ram

m (im) and changes state at
the next time period to jm with probability pam

m (im, jm). It
further expends an amount 0 ≤ Qam

m (im) ≤ q of a certain
shared resource, where q > 0 is the resource amount avail-
able per period for all projects. We assume that, for each
state im ∈ Xm,

0 ≤ Q0
m(im) ≤ Q1

m(im) ≤ · · · ≤ QAm
m (im) ≤ q, (1)

i.e., the higher the intensity level the larger the resource
expenditure. Rewards and resource expenditures are dis-
counted over time with factor 0 < β < 1.

It will be convenient to partition the state space Xm for

each project m into the (possibly empty) set X
{0}
m of uncon-

trollable states, where all actions are effectively identical to

idling the project (hence the notation), i.e., for im ∈ X
{0}
m ,

Q0
m(im) = Q1

m(im) = · · · = QAm
m (im)

R0
m(im) = R1

m(im) = · · · = RAm
m (im),

(2)

and the remaining set Xm of controllable states. We assume
that the latter is nonempty, and that, for such states, the
resource consumption measure is increasing in the mode:

Q0
m(im) < Q1

m(im) < · · · < QAm
m (im). (3)

Decisions as to the mode in which to operate each project
at each time are based on adoption of a scheduling policy
π. In addition to being drawn from the class Π of nonan-
ticipative randomized policies that use only past or present
information on states and actions, in order to be admissible
a policy must further not expend more than the available
q units of resource per period. The multiarmed multimode
restless bandit problem (MAMRBP) introduced herein is to
find an admissible policy that maximizes the expected total
discounted reward earned over an infinite horizon. Denoting
by Xm(t) and am(t) the prevailing state and action (mode)
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on project m at time t, we can formulate such a problem as

v∗(i) = max E
π

i

[

∞
∑

t=0

M
∑

m=1

Ram(t)
m

(

Xm(t)
)

βt

]

subject to

M
∑

m=1

Qam(t)
m

(

Xm(t)
)

≤ q, t = 0, 1, 2, . . .

π ∈ Π,

(4)

where Eπ

i [·] denotes expectation under policy π conditioned
on the initial joint state being equal to i = (im).

We will further consider the MAMRBP under the (long-
run) average criterion:

v̄∗(i) = max lim inf
T→∞

1

T
E

π

i

[

T
∑

t=0

M
∑

m=1

Ram(t)
m

(

Xm(t)
)

βt

]

subject to

M
∑

m=1

Qam(t)
m

(

Xm(t)
)

≤ q, t = 0, 1, 2, . . .

π ∈ Π.

(5)

Problems (4)–(5) furnish a new, powerful modeling frame-
work for optimal dynamic resource allocation in multipro-
ject settings that substantially expands the scope of previ-
ous frameworks considered in the literature. Consider the
following special cases:

(a) The classic multiarmed bandit problem (MABP). The
projects of concern are classic, in the sense that they
only allow two actions (am = 0: passive; am = 1:
active) and their states do not change while they are
passive. The resource to be allocated at each time
period is the attention of a single operator, which is
modeled by setting q = 1, Q0

m(im) ≡ 0 and Q1
m(im) ≡

1. Note that while the conventional formulation of the
MABP requires that exactly one project be engaged at
each time, the case where at most one project is to be
engaged is easily reduced to such a binding case. This
model was solved in [4] by means of an index policy
based on attaching a certain (Gittins) index ν∗

m(im)
to each project m as a function of its state im. For
the conventional case where the resouce constraint is
binding, it is optimal to engage at each time a project
of largest index; for the nonbinding case, it is optimal
to engage at each time a project of largest positive
index, if any, and otherwise to idle all projects.

(b) The MABP with multiple plays (cf. [9]). This model
extends the classic MABP by allowing up to q ≥ 2
projects to be engaged at each time. The parame-
ters Qam

m (im) are as in (a). Although in this case the
Gittins index policy is generally suboptimal, [9] shows
that it is optimal under certain conditions.

(c) The conventional multiarmed restless bandit problem
(MARBP). The projects of concern are restless, in the
sense that they can change state while passive, al-
though they only allow two modes of operation (active
and passive). Again, the parameters Qam

m (im) are as in
the MABP. The MARBP was introduced by Whittle in
[13]. Although the problem is generally intractable, he

proposed a heuristic index policy for the long-run av-
erage criterion case with a binding resource constraint,
based on Lagrangian relaxation ideas, which in the
classic MABP recovers the optimal policy.

(d) The problem of dynamic power allocation to multiple
users sharing a wireless downlink communication chan-
nel subject to a peak energy constraint, in the setting
of the Markovian model addressed in [2]. This problem
represents a concrete and relevant motivating applica-
tion for the new modeling framework in (4)–(5). In
such a setting, the projects represent users sharing a
downlink fading wireless channel, the state of a project
comprises both the number of packets awaiting trans-
mission to the corresponding user, with packets being
held in a separate finite buffer for each user, and the
user’s binary channel state (good or bad). The modes
for a project/user correspond to a set of possible trans-
mission rates (which in [2] is taken as an interval, which
would have to be discretized to fit the model in the
present framework). The reward for a project/user is
its average throughput. As for the shared limited re-
source, it represents transmission power, so that the
quantities Qam

m (im) are amounts of power expended.
Actually, the problem addressed and solved (via La-
grangian methods) in [2] under the average criterion is
not (5), but the simpler problem obtained by replacing
the peak power consumption constraint in (5) by the
average power consumption constraint

lim sup
T→∞

1

T
E

π

i

[

T
∑

t=0

M
∑

m=1

Qam(t)
m

(

Xm(t)
)

]

≤ q.

The authors state in [2, p. 41] why they choose to focus
on the latter problem instead of on (5):

“Undoubtedly, a constraint on the total power
consumption rate, that is, a peak power con-
straint, as opposed to a constraint on average
power consumption would be more appropri-
ate as the users may be allocated very high
power levels at short time spans under an
average power constraint. However, such a
peak power constraint renders our formula-
tion intractable.”

Since problems (4)–(5) are generally intractable, we will
address the goals of designing and computing a well-grounded
and tractable heuristic scheduling policy that performs well.
The availability and success of index policies for the special
cases (a)–(c) of binary-mode projects (cf. [8] and the ac-
companying discussions), motivates the interest of extending
such results to design tractable index-based heuristic poli-
cies for multimode projects, which would be applicable to
more complex models such as that in case (d) above.

Yet, carrying out such an extension raises fundamental re-
search challenges, as the concept of “index policy” for prob-
lems (4)–(5) in the general multimode project case has not
been previously defined in the literature. Thus, two issues
need to be addressed: (1) How to define appropriate in-
dices for multimode projects that extend those known for
binary-mode projects?; and (2) How to use indices defined
for individual projects to construct scheduling policies for
the multiproject problems?
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Concerning the first issue, the only prior work is a pro-
posal outlined by Weber in [12], in the setting of a partic-
ular queueing admission control model, for defining indices
ν∗,am

m (im) attached to a multimode project m depending on
both its mode am and state im, which extend those intro-
duced by Whittle [13] for binary-mode projects. As for the
second issue, to the author’s knowledge it has not been pre-
viously addressed in the literature. A third related issue of
interest is to obtain tractable upper bounds on the optimal
performance objective for problems (4)–(5), which can be
used to assess in large-scale instances the degree of subopti-
mality of proposed heuristic policies.

Motivated by such issues, this paper presents the follow-
ing contributions, which extend to the MAMRBP the ap-
proach introduced in [13] for the MARBP with binary-mode
projects: it develops a general approach to the design and
computation of a tractable heuristic policy based on marginal
productivity indices (MPIs) defined separately for each project.
Sufficient conditions are given which ensure both the exis-
tence of such an index and the validity of an adaptive-greedy
algorithm for its computation. Such conditions extend to
multimode projects those introduced by the author in ear-
lier work for binary-mode projects.

We remark that the results for multimode projects offer a
new approach to a variety of problems addressed in the liter-
ature on optimal control of queues by conventional methods.
See, e.g., [3], [10], [5], and [11]. We further remark that the
approach to indexation of a multimode restless project de-
veloped herein extends the ideas outlined by Weber in [12],
and builds on the author’s earlier results on indexation for
binary-mode projects starting in [6], which are reviewed in
[8].

The remainder of the paper is organized as follows. Sec-
tion 2 develops a Lagrangian relaxation approach to the
MAMRBP, focusing on the discounted problem (4). Sec-
tion 3 develops the indexation theory for a multimode rest-
less project. Section 4 ends the paper with some concluding
remarks.

Proofs of the results announced in this paper will be given
in the full version, currently under preparation, along with
the results of a computational study.

2. BOUNDS AND INDEX POLICIES

2.1 Centralized Problem Relaxation
We focus the ensuing presentation on the discounted MAM-

RBP (4). This is with no loss of generality, since the follow-
ing discussion can be readily adapted to the time-average
criterion. To obtain a simpler relaxed problem, imagine that
each project m is autonomously operated by a dedicated op-
erator, who implements a policy πm drawn from the class
Πm of nonanticipative randomized policies for operating the
project as if it were in isolation. Overall control is central-
ized by a central controller who is in charge of choosing and
assigning to each project operator his corresponding policy,
subject to the coordinating constraint that the expected to-
tal discounted amount of resource expended does not exceed
q/(1 − β):

M
∑

m=1

E
πm
im

[

∞
∑

t=0

Qam(t)
m

(

Xm(t)
)

βt

]

≤
q

1 − β
. (6)

Such a discounted average resource consumption constraint

relaxes the peak resource consumption constraint in (4).
The relaxed problem so obtained is

vR(i) = max
M
∑

m=1

E
πm
im

[

∞
∑

t=0

Ram(t)
m

(

Xm(t)
)

βt

]

,

subject to

(6)

πm ∈ Πm, m = 1, . . . , M.

(7)

Note that the optimal value of (7), vR(i), furnishes an upper
bound on the optimal value of (4), i.e., v∗(i) ≤ vR(i).

2.2 Decentralized Lagrangian Relaxation
To address (7) we deploy a Lagrangian approach, by at-

taching a Lagrange multiplier ν to constraint (6). This al-
lows us to dualize such a constraint, bringing it into the ob-
jective, which yields, after eliminating the constant νq/(1−
β) from the objective, the problem

max
M
∑

m=1

E
πm
im

[

∞
∑

t=0

{

Ram(t)
m

(

Xm(t)
)

− νQam(t)
m

(

Xm(t)
)

}

βt

]

,

subject to

πm ∈ Πm, m = 1, . . . , M.

(8)

Denote by vL(i; ν) the optimal value of (8) plus such a con-
stant. Note that, for every nonnegative value ν ≥ 0 of the
multiplier, (8) is a Lagrangian relaxation of (7), in the sense
that vR(i) ≤ vL(i; ν).

In the setting of the economic interpretation outlined above,
(8) is a decoupled or decentralized problem where the central
controller’s role is reduced to informing the project opera-
tors of the resource unit price ν. Based on such information,
operators are then left free to seek policies that maximize
their own projects’ objective values (net of resource expen-
ditures), by solving the individual project subproblems

max
πm∈Πm

E
πm
im

[

∞
∑

t=0

{

Ram(t)
m

(

Xm(t)
)

− νQam(t)
m

(

Xm(t)
)

}

βt

]

,

(9)
for m = 1, . . . , M .

Denoting by v∗
m(im; ν) the optimal value of subproblem

(9), the relaxed Lagrangian value vL(i; ν) is represented as

vL(i; ν) =
q

1 − β
ν +

M
∑

m=1

v∗
m(im; ν). (10)

Consider now the issue of whether relaxed resource allo-
cation problem (7) can be effectively decentralized, i.e., re-
duced to (8), by pitching the resource unit price ν to an ap-
propriate critical level ν∗ for which vR(i) = vL(i; ν∗). Note
that, if such a value ν∗ exists, it can be obtained by solving
the Lagrangian problem

min
ν≥0

vL(i; ν), (11)

which is a convex optimization problem —since each func-
tion v∗

m(im; ν) is convex in ν, being the maximum of linear
functions in ν. Now, in the case of finite state and action
projects of concern herein, we can indeed ensure existence
of such a critical value ν∗, as it follows from the strong du-
ality theorem of linear programming (LP), noting that all
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of the above problems, being finite-state and -action con-
strained MDPs, are readily formulated as LP problems (cf.
[1]). Note further that, generally, the critical multiplier ν∗

will depend on the initial joint project state, i.e., ν∗ = ν∗(i).

2.3 Indexable Projects and the Marginal Pro-
ductivity Index

In order to deploy the above approach, one must be able to
solve efficiently the individual project subproblems (9) as the
resource price parameter ν varies. We will refer henceforth
to (9) as the ν-price subproblem for project m.

It appears reasonable to expect that, in models arising
from relevant applications, as the resource price ν gets higher
the optimal project operating mode should get smaller (as a
higher mode incurs a larger consumption; cf. (1)). Such an
intuitive idea is formalized in the following definition.

Extending the approach outlined in [12] in an admission
control model to the present general setting, let us say that
project m (or its ν-price subproblem (9)) is indexable if, as
the resource unit price ν increases from −∞ to ∞, the lowest
optimal action (mode) in each controllable state jm ∈ Xm

decreases monotonically from Am to 0. In such a case, opti-
mal policies for (9) are determinined by an index ν∗

m(am, jm)
that is monotone nonincreasing in am, i.e.,

ν∗
m(Am, jm) ≤ · · · ≤ ν∗

m(1, jm), (12)

as follows: under any initial state im, action am = Am

is optimal in state jm iff ν ≤ ν∗
m(Am, jm); action am ∈

{1, . . . , Am−1} is optimal iff ν∗
m(am+1, jm) ≤ ν ≤ ν∗

m(am, jm);
and action am = 0 is optimal iff ν ≥ ν∗

m(1, jm).
Thus, for an indexable project, index value ν∗

m(am, jm)
is the unique critical value of the unit resource price ν un-
der which one should be indifferent between engaging the
project in mode am or in mode am − 1 when it occupies
state jm, as both actions are then optimal. Extending to
the present setting the terminology introduced in [7], based
on the economic interpretation of the index, we will refer
to ν∗

m(am, jm) as the project’s marginal productivity index
(MPI).

2.4 An Index-based Scheduling Policy
Supppose now that each project in (4) is indexable. We

next address the issue of how to use the indices ν∗
m(am, jm)

which are defined separately for each project to obtain a
scheduling policy for the multiproject problem (4). In the
case of binary-mode projects on which prior work has fo-
cused, the appropriate scheduling policy is obtained by en-
gaging (in the active mode: 1) at each time those projects,
up to a maximum of q, which occupy a controllable state
jm, and have higher positive index values ν∗

m(1, jm), if any,
and idling (passive mode: 0) other projects. Yet, extending
such an index policy to the case of multimode projects is not
trivial, since the policy must prescribe the mode in which
each project is to be run.

The proposal we introduce next is based on the economic
interpretation of index ν∗

m(am, jm) as the marginal produc-
tivity on project m that corresponds to taking action am

when it occupies state jm. Thus, suppose that at time t
project m lies in state Xj(t) = jm, for m = 1, . . . , M . We
then propose to obtain the mode a∗

m in which to run each
project m in time period t by solving the problem

max
M
∑

m=1

ν∗
m(am, jm)

subject to

M
∑

m=1

Qam
m (jm) ≤ q

am ∈ Am, m = 1, . . . , M,

am = 0, jm ∈ X
{0}
m ,

(13)

where we take ν∗
m(0, jm) ≡ 0. Note that (13) is a nonlinear

integer knapsack problem, which in the case of binary-mode
projects does yield the appropriate index policy. The mo-
tivation and intuition behing problem (13) is that it seeks
to obtain a feasible resource allocation that maximizes the
total marginal productivity at each joint state j = (jm).

3. MULTIMODE PROJECT INDEXATION:

THEORY AND COMPUTATION
This section extends to the setting of multimode restless

projects the approach introduced and developed by the au-
thor in previous work for the special binary-mode case (cf.
[8]) for establishing that a given project model is indexable,
and computing its MPI.

We will thus consider a single multimode restless project
as above, for which we will drop henceforth the label m from
the notation. We evaluate the value of rewards earned under
policy π starting in state i by the discounted reward measure

fπ(i) , E
π
i

[

∞
∑

t=0

Ra(t)(X(t)
)

]

, (14)

and similarly evaluate the corresponding amount of resource
expended by the discounted resource consumption measure

gπ(i) , E
π
i

[

∞
∑

t=0

Qa(t)(X(t)
)

]

. (15)

For a given resource unit price ν ∈ R, consider the project’s
ν-price problem,

max
π∈Π

fπ(i) − νgπ(i), (16)

which is to find an operating policy that maximizes the value
of rewards earned minus resource consumption expenses.

We say that the project’s ν-price problem (16) is indexable
if, as the resource unit price ν increases from −∞ to ∞,
the lowest optimal action (mode) in each controllable state
j ∈ X decreases monotonically from A to 0. In such a case,
the optimal policies for (16) are determinined by an index
ν∗(a, j) that is monotone nonincreasing in the mode a, i.e.,

ν∗(A, j) ≤ · · · ≤ ν∗(1, j), (17)

as follows: under any initial state i, action a = A is optimal
in state j iff ν ≤ ν∗(A, j); action a ∈ {1, . . . , A−1} is optimal
iff ν∗(a + 1, j) ≤ ν ≤ ν∗(a, j); and action a = 0 is optimal
iff ν ≥ ν∗(1, j).

3.1 Exploiting Special Structure: Indexabil-
ity relative to a Family of Policies

While one can readily test numerically whether a given
multimode restless bandit instance is or not indexable, a
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researcher investigating a particular model will instead be
concerned with establishing analytically its indexability un-
der an appropriate range of model parameters. The key
to achieving such a goal is to exploit special structure by
guessing an appropriate family of stationary deterministic
policies among which an optimal policy for (16) exists for
every resource unit price ν ∈ R.

We will represent a stationary deterministic policy by its
corresponding partition S = (S0, S1, . . . , SA) ∈ P̄(X), where
Sa is the set of states where the policy prescribes to use
mode a, and P̄(X) denotes the class of partitions which

idle the project in uncontrollable states, i.e., X{0} ⊆ S0. A
family of such policies is thus given as a family F of par-
titions S ∈ P̄(X), and hence we will refer to the family
of F -policies. Relative to such a family, we will say that
the project is F -indexable if (i) it is indexable, and (ii) F -
policies are optimal for ν-price problem (16), i.e., for every
resource price ν ∈ R there is an optimal partition S∗ ∈ F

for (16).
We next introduce a partial order relation on such parti-

tions as follows: S = (S0, S1, . . . , SA) � S′ = (S′
0, S

′
1, . . . , S

′
A)

if, for every controllable state i ∈ X it holds that, if i ∈ Sa

then i ∈ S′
b for some b ≥ a. In other words, S � S′ if

Sa ⊆ ∪A
b=aS′

b.
For a pair of such partitions S = (S0, S1, . . . , SA) and

S′ = (S′
0, S

′
1, . . . , S

′
A), the join S′′ = S ∨ S′ relative to such

a partial order relation is given by

S′′
a =

(

Sa ∩
(

∪a
b=0 S′

b

)

)

∪
(

S′
a ∩

(

∪a
b=0 Sb

)

)

,

and the meet S′′ = S ∧ S′ is given by

S′′
a =

(

Sa ∩
(

∪A
b=a S′

b

)

)

∪
(

S′
a ∩

(

∪A
b=a Sb

)

)

.

We further introduce an operator T a,b
i on such partitions

as follows. Given a partition S = (S0, S1, . . . , SA) with i ∈
Sa, and a mode b 6= a, we say that S′ = (S′

0, S
′
1, . . . , S

′
A) =

T a,b
i S if such partitions differ only in the states assigned to

modes a and b as follows: S′
a = Sa \ {i}, S′

b = Sb ∪ {i}.
Namely, if partition S′ is obtained from S by assigning to
state i action b instead of action a.

We say that two partitions S and S′ are adjacent if they
are of the form S′ = T a,a−1

i S or S′ = T a,a+1
i S for some i, a.

We further denote by Smin , (X, ∅, . . . , ∅) and by Smax ,

(X{0}, ∅, . . . , ∅, X) the minimum and the maximum parti-
tions relative to such a partial ordering, respectively.

We impose the following connectivity requirements on F .

Assumption 3.1. F satisfies the following conditions:

(i) Smin,Smax ∈ F ;

(ii) for every pair S,S′ ∈ F with S ≺ S′ there exist (i, a)

and (i′, a′) such that T a,a+1
i S � S′, S � T a′,a′−1

i′
S′,

and T a,a+1
i S, T a′,a′−1

i′
S′ ∈ F ;

(iii) for any S, S′ ∈ F , S ∨ S′, S ∧ S′ ∈ F .

Note that condition (iii) in Assumption 3.1 means that F

is a lattice relative to the given partial order. As for con-
dition (ii), it ensures that any two nested partitions S,S′ ∈
F with S ≺ S′ can be connected by an increasing chain
S = S0 ≺ · · · ≺ Sk = S′ of adjacent partitions in F . Fur-
ther, condition (i) ensures that one can connect in such a

fashion (X, ∅, . . . , ∅) to, (X{0}, ∅, . . . , ∅, X). We will call a set
family F satisfying Assumption 3.1(ii, iii) a monotonically
connected lattice.

3.2 Indexability Conditions and Index Algo-
rithm.

Suppose that, for a given multimode restless bandit model,
a suitable family of partitions F as above has been iden-
tified relative to which one seeks to establish analytically
F -indexability. We next introduce sufficient conditions and
an index algorithm which extend to the present multimode
setting those introduced by the author in earlier work for
binary-mode projects.

To formulate the conditions and the index algorithm we
need to define certain marginal measures, as follows. For an
action a ∈ A and a partition S ∈ P̄(X), denote by 〈a,S〉 the
policy that takes action a in the initial stage, and adopts the
S-policy thereafter. For a state i, an action a, and a partition
S, define the marginal resource measure wS(a, i) by

wS(a, i) , g〈a,S〉(i) − gS(i), (18)

i.e., as the marginal increase in the amount of resource ex-
pended which results from using initially mode a in state i,
provided that the S-policy is adopted thereafter. Note that
such a marginal resource measure vanishes at uncontrollable
states:

wS(a, i) ≡ 0, i ∈ X
{0}. (19)

Further, define the marginal reward measure rS(a, i) by

rS(a, i) , f 〈a,S〉(i) − fS(i), (20)

i.e., as the corresponding marginal increase in the value of
rewards earned. Finally, for wS(a, i) 6= 0 define the marginal
productivity measure νS(a, i) by

νS(a, i) ,
rS(a, i)

wS(a, i)
. (21)

We will further refer to the adaptive-greedy index algo-
rithm given in Table 1 —in its top-down version, where index
values are meant to be computed from highest to lowest; one
could similarly consider the symmetric bottom-up version.
Such an algorithm has a very simple structure, as it con-
structs in n steps, where n , A|X| is the number of nonzero
modes times the number of controllable states, an increas-
ing chain of adjacent partitions S0 = Smin ≺ S1 ≺ · · · ≺
Sn = Smax in F , proceeding at each step in a greedy fash-
ion. Thus, once partition Sk−1 ∈ F has been constructed,
the next adjacent partition Sk is obtained by gearing up
one notch from a − 1 to a the mode of some controllable
state i, in such a way that the choice of such a mode and
state maximizes the marginal productivity rate νSk−1(a, i),
while restricting attention to action-state pairs for which
the partition Sk so obtained remains in F . Ties are broken
arbitrarily.

The main result of this section, giving the new indexability
conditions and ensuring the validity of the adaptive-greedy
index algorithm to compute the MPI, is stated next.

Theorem 3.2. The following holds:

(a) Suppose that:
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Table 1: Adaptive-greedy Index Algorithm AGF .

ALGORITHM AGF :
Output:

{(ak, ik), ν∗(ak, ik)}n
k=1

S0 := Smin

for k := 1 to n do

pick (ak, ik) ∈ arg max
i∈S

k−1

a−1
,T

a−1,a
i

Sk−1∈F

νS
k−1

(a, i)

ν∗(ak, ik) := νS
k−1

(ak, ik); Sk := T ak−1,ak

ik Sk−1

end { for }

(i) for every partition S ∈ F ,

wS(a, i) > 0, i ∈ Sa−1, T
a−1,a
i S ∈ F ,

wS(a, i) < 0, i ∈ Sa+1, T
a+1,a
i S ∈ F ;

(22)

or, equivalently, for every nested partition pair
S ≺ S′ with S,S′ ∈ F ,

(

gS

i

)

i∈X
�

(

gS
′

i

)

i∈X
. (23)

(ii) for every resource price ν ∈ R there exists an op-
timal F -policy for ν-price problem (16).

Then, the project is F -indexable and algorithm AGF

gives its MPI ν∗(ak, ik) in nonincreasing order.

(b) If the project is indexable then it satisfies conditions
(i) and (ii) in part (a) for some nested family F of
adjacent partitions.

Note that the reformulation of condition (ii) in (23) clar-
ifies its intuitive meaning: it means that resource consump-
tion measure gS

i is monotone nondecreasing in the parti-
tion S within the domain F , and that two nested partitions
S ≺ S′ in F give different resource consumption vectors
(

gS

i

)

i∈X
and

(

gS
′

i

)

i∈X
.

4. CONCLUSIONS
This paper has introduced a significant extension to the

conventional multiarmed restless bandit problem, by allow-
ing projects to have multiple operating modes instead of
only two. A relevant application, concerning the optimal dy-
namic power allocation to multiple users sharing a wireless
downlink communication channel subject to a peak energy
constraint, has been presented. The paper has introduced
a tractable heuristic policy based on indices defined indi-
vidually for each project, and has further advanced the key
results on the underlying theory and computation of such
indices. The author is currently engaged in work aimed at
testing the effectiveness of such results, believing them to
be widely applicable to a variety of relevant resource allo-
cation problems fitting into the new multiarmed multimode
restless bandit problem framework.
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