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ABSTRACT
We model peer-to-peer real-time streaming as a multistage
congestion game with strategies consisting of time-sequences
of network nodes (or peers), and identify a large set of
strategy profiles through which the whole content reaches
all peers in a minimum number of time-periods. In order
to make these profiles sustainable as equilibria, we provide
strategy restriction mechanisms implementing those equilib-
ria where both streaming duration and congestion are min-
imized. Their functioning is exemplified in a simple simula-
tion environment. The potential and social cost of equilib-
rium without strategy restrictions are also investigated.

Keywords
Equilibrium analysis, Selective and timely dissemination of
information, Coordination in network communications, Dis-
tributed artificial intelligence.

1. INTRODUCTION
Real-time streaming is concerned with those many situa-

tions where some media content is produced and distributed
in time. Specifically, one new content unit is periodically
generated by a source (or broadcaster) and made available
to a set of interested users. Given the real-time generation
of contents, a main issue is their timely dissemination. It is
widely accepted that this can be addressed with the creation
of specifically designed overlay networks composed of the
nodes interested in the contents. In these networks, nodes
(or peers) collaborate toward data dissemination by forward-
ing the received data. This Peer-to-Peer (P2P) based overlay
network can be designed in different ways. In any case, three
main concerns are: i) the overall load due to forwarding ac-
tivity should be evenly shared among the participants; ii)
the time needed for full dissemination should be minimized;
and iii) the protocol should be fair in that the expected
time needed to receive the whole content should be the same
across all peers.
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In recent times, game theory is proving very useful for
modeling communication systems and dynamic distributed
environments. In this paper we model real-time streaming
scenarios in terms of multistage congestion games. Roughly
speaking, in congestion games there is a set of facilities and
players have to choose what facilities to use. Each facility
provides some common utility level to all its users, which
depends on the number of users, and finally each player gets
the sum over used facilities of the utility levels that these lat-
ter provide. In particular, the larger the number of players
who use a facility, the lower the common utility level that
they attain from that facility (monotonicity). Congestion
games are potential games, thereby possessing pure-strategy
(possibly strong) equilibrium [16]. When using congestion
games for modeling real-time streaming, facilities are players
themselves: at any stage of the game, some content distri-
bution over peers prevails, and therefore each peer faces a
facility set containing all other participants with some addi-
tional content units (i.e. possible data forwarders).

Our modeling of real-time streaming in terms of conges-
tion games allows the analysis to distinguish between the
number of stages needed to fully disseminate the whole con-
tent (or streaming length) on the one side, and stage-wise
congestion on the other. In addition, and most importantly,
it enables to identify a strategy restriction mechanism which
at each stage prevents peers from asking certain content
units, given the prevailing content distribution over the pop-
ulation. With such restrictions, at equilibrium both stream-
ing length and stage-wise congestion are minimized. This
is detailed by means of a distributed algorithm that we de-
velop for implementing the proposed equilibrium selection
method.

The paper is organized as follows: in Section 2 the back-
ground is presented. In Section 3 we introduce the needed
basic concepts and notation. In Section 4, the problem of
multimedia live streaming is presented as a multistage con-
gestion game. In Section 5 we focus on how to distribute
the whole content over the whole population in a minimum
number of stages. In Section 6, we compute the maximum
streaming length (or worst case) induced by (pure-strategy)
equilibria. In the following Section 7, we show that a sim-
ple strategy restriction mechanism allows to minimize, at
equilibrium, both streaming length and stage-wise conges-
tion. In Section 8 the described model is translated into a
distributed algorithm to be executed independently on each
peer; its functioning is evaluated in Section 9. Some remarks
conclude the paper (Section 10).



2. BACKGROUND
Current approaches to multimedia streaming provide meth-

ods for the construction of a P2P, adaptive overlay network
allowing to distribute contents across peers [5]. Collabora-
tive behavior may be achieved in different ways by suitably
designing peer interaction so to avoid free-riding [13]. This
yields fair protocols, enabling to rapidly distribute content
units produced by broadcasters. In one direction, BitTorrent
philosophy led to design tit-for-tat-based policies, thereby
guaranteeing that every participant contributes to satisfy-
ing others’ needs [4]. Along another route, P2P streaming
may resort to a pseudo-random partner selection in a gos-
sip scheme where peers have no incentive to deviate from
the protocol [10]. In general, the issue may be dealt with
by modeling multicast protocols as non-cooperative games
[8] whose equilibrium outcomes display (socially) desirable
features.

Among non-cooperative approaches, potential games [12]
include congestion ones as a sub-class. Routing problems
probably constitute the main networking issue which is fruit-
fully framed in terms of congestion (or, more generally, po-
tential) games. Broadly speaking, in basic routing problems
modeled as games there is a given network one of whose
nodes is the common destination. Then, each player is as-
signed to some origin node, and has to reach the destina-
tion through a route (or origin-destination path) provided
by the network. Each arc induces a cost, which is greater the
greater the number of players who choose a route using that
arc, so that players selfishly aim at minimizing their own
route cost. This game can be enriched in different ways;
for example, it may be assumed to be repeated [1], so to
exploit best response dynamics [2, 3] or more. In addition,
for certain cases even strong equilibrium has been analyzed
in detail [6, 7, 18]. Finally, from another perspective, im-
portant results have also been derived through cooperative
game-theoretical approaches [15].

Congestion game modeling of live streaming crucially has
to take into account that the game intrinsically must be
multistage: for given numbers of content units and peers,
any course of the streaming is fully characterized by a time-
sequence of directed trees, each spanning all nodes, and
specifying how each content unit reaches each peer from the
broadcaster. Note that what game is actually played at each
stage depends on what content distribution over peers does
prevail at that stage. In fact, a main concern in this dy-
namic setting is streaming length. More specifically, each
player aims at receiving all the content as fast as possible,
but how long the whole dissemination will actually take de-
pends on how peers distribute their requests to receive at
each stage. This is a typical coordination issue, where selec-
tive and timely dissemination of content units deeply affects
the overall performance of the system. Our analysis focuses
on strategy restriction mechanisms enabling selfish agents
to reach overall coordination through optimizing behavior.
More specifically, in this paper the focus is on costs mea-
sured in terms of (expected) streaming length or duration,
and thereby congestion seems most suitably measured by
counting, at each stage, how many requests for additional
content reach each peer and the source.

Finally, participants are assumed to fully cooperate, in
that they all satisfy one request whenever they receive some
valid one (see below). In fact, a main tool for limiting free-
riding is the capability to tag those who do not cooperate, so

that everybody can recognize them. This is especially true
in dynamic environments, where each participant has to in-
teract one-to-one with several others, several times, as in our
case. In this respect, the proposed method constructs a new
P2P network for each content unit to be distributed, and
thereby each peer is expected to interact with all other peers
several times during the whole course, therefore incentive-
based schemes are applicable [14].

3. PRELIMINARIES
We assume stream production to occur over a finite time-

sequence t = 0, 1, . . . , T . Starting at time t = 0, a source
provides one new unit ct of content at the beginning of each
time-period (or stage/round) t → t + 1, until the end T

is reached, while n peers aim at receiving all the content as
soon as possible. This may be modeled as a multistage game
[11] by means of congestion game forms [7], with player set
N = {1, . . . , n} and naturals 1, . . . , n being peers’ identifiers.
Also denote the source by 0 and let N0 = {0, 1, . . . , n}.

A multistage game is identified by a tree each of whose
nodes corresponds to a moment at which at least one player
has to take action, and thereby rooted at the start, which
here is when the source has just finished producing the very
first content unit c0 and peers begin to line-up in order to re-
ceive it. All paths from the start to some node referring to a
fixed time t bijectively correspond to all distinct courses the
game may take up to t. What nodes are actually reached,
during any course, obviously depends on what actions play-
ers actually take. In stochastic games, for given per-node
actions what successive node is actually reached depends on
some random event. We assume perfect information: when
asked to take action, at any time t, all players know exactly
what node has been reached at t. The leaves of the tree cor-
respond to outcomes, over which players have preferences.
A strategy, for a player, specifies an (admissible) action to
take at each node. The rules of our game are
Ru1: the source can send each unit ct, 0 ≤ t ≤ T over time
period t → t + 1 only (i.e. just after that unit is produced)
and, additionally, to only one (i.e. some) peer;
Ru2: if a peer at the end t of any time-period t− 1 → t has
already received units ct1 , . . . cth , with 0 ≤ t1, . . . , th < t,
then in the following time-period t → t + 1, or equivalently
in the following stage or round t, this peer can send only
one of such units and to one (i.e. some) other peer only;
Ru3: in any round, each peer may ask to receive some unit
either from one other peer, or else from the source.

With these rules, spreading the whole content (or time-
sequence of units) CON = {c0, c1, . . . , ct, · · · , cT } over the
whole peer set surely requires much P2P exchange, as the
source sends each unit precisely once, to only one peer, and
next the unit has to be P2P-exchanged exactly n− 1 times.
For turning this into a game, the first step is determining
the players, which clearly are the peers. Next, the nodes
in the game tree have to be identified: a time-indexed node
Ct, referring to time t, is a n + 1-set Ct = {Ct

0, C
t
1, . . . , C

t
n}

where each Ct
i ⊆ {c0, c1, . . . , ct} specifies what content units

up to t peer i ∈ N0 has received. Hence, a game tree
node Ct may be looked at as a 0 − 1-matrix with i, t′-entry

Ct
i (t

′) ∈ {0, 1} defined by Ct
i (t

′) = 1 if ct′ ∈ Ct
i (i.e. if in

node Ct peer/source i ∈ N0 has unit ct′) and 0 otherwise.
Notice that, given Ru1, the source is constrained to provide
at each time only the current unit: Ct

0(t
′) = 1 if t′ = t



and 0 otherwise for all 0 ≤ t ≤ T , while Ct
0(t

′) = 0 for all
t > T, t′ ≥ 0. For each i ∈ N , a strategy specifies, for each
game tree node Ct, some j ∈ N0 from whom to ask, in round

t, a content unit ct′ , 0 ≤ t′ ≤ t. These strategies are finite
sequences as long as some upper bound T∗ < ∞ on duration
(in stages) of the game, over all conceivable courses, exists.

In the sequel, this worst-case (or longest) streaming length
at equilibrium T∗ is observed in terms of the streaming tree,
whose vertex set N0 contains all peers together with the
source, and through which each content unit spreads over
the whole peer population. In fact, as already outlined, the
streaming tree is a nested time-sequence of sub-streaming
trees, one for each content unit. Specifically, the whole
streaming, from an ex post perspective, is identified by the
T +1 trees, with peers as vertexes, describing how each of the
T +1 content units actually reaches the whole population. In
each of these trees edges are directed and, in particular, the
in-degree is 1 for each vertex (apart from the source). That
is, while in general peers may well forward a content unit
several times (to several different other peers, in different
rounds), they receive each content unit only once.

Let N t denote the set of all game tree nodes referring
to time t ≥ 0. That is, N t is the family of all (0 − 1-
matrices specifying) content distributions over peers that
may be reached along some game course up to t, when the
above main constraint Ru1-3 applies: in any round each peer
can forward at most one unit and can also submit at most
one request for receiving. In our model, a strategy Ai for
peer i ∈ N has form Ai : N → N0, where N = ∪

0≤t≤T∗

N t,

and with Ai(C) = j denoting the one (i.e. peer or source)
j ∈ N0 from whom i asks to receive at game tree node
C ∈ N . Hence j ∈ {0, . . . , i − 1, i + 1, . . . n}, although we
interpret Ai(C) = i as one possible way (see below) in which
peer i at node C does not ask to receive any content, from
anybody. Thus, all game tree nodes are unified into a single
set N , independently from what different game courses let
them prevail, and at what time. The resulting analysis pro-
vides behavioral rules according to which players respond
to any realized content distribution over the population, at
any time. The main concern is what game course length
(or number of rounds needed to distribute the whole con-
tent over all peers) may be the outcome of selfish, node-wise
optimization by players.

4. CONGESTION GAMES AND FORMS
In a congestion game form there is a set N of players and a

set M of facilities, and each player i ∈ N has a set Σi ⊆ 2M

of strategies, where 2M is the (power) set of all subsets of M .
Usually, M is the edge set of a graph, and each player i ∈ N

has to reach a destination vd
i from an origin vo

i . Then, the
set Σi of strategies for i contains all (edges of) vo

i −vd
i -paths.

A congestion game form F = (N, M, Σ1 × · · · ×Σn) iden-
tifies a whole class of congestion games, each obtained by
specifying the payoffs πi : Σ → R+ of players i ∈ N , where
Σ = Σ1 × · · · ×Σn. Profile A = {A1, . . . , An} ∈ Σ of strate-
gies identifies congestion vector σ(A) = {σa(A) : a ∈ M}
specifying how many players have each facility a ∈ M in
their strategy Ai. That is, σa(A) = |{i ∈ N : a ∈ Ai}|. The
game is monotone when each a ∈ M has an associated utility
function ua : Z+ → R+ satisfying ua(k) < ua(k′) whenever
k > k′, and each i ∈ N gets a payoff given by the sum over
all the chosen facilities a ∈ Ai of the corresponding util-

ity: πi(A) =
P

a∈Ai ua(σa(A)). Finally, a congestion game
form (and any game derived from it) is symmetric when the
strategy set is the same across players: Σ1 = · · · = Σn [7].

P2P streaming systems may be approached through con-
gestion games with facilities being players themselves: every
strategy profile A = (A1, . . . , An) has an associated conges-
tion matrix σ(A) = {σi

C(A) : C ∈ N , i ∈ N0}, where

σ
i
C(A) = |{j ∈ N : i = A

j(C), Ci 6⊆ Cj}|

is the number of peers who ask to receive from i ∈ N0 some
content that this latter has but they miss. That is to say,
at any reached game tree node C ∈ N , if a peer asks to
receive from someone who has no additional content, then
such a request is simply ignored by the system: it causes null
congestion. A request is valid if it contributes to congestion.

Denote by κ = |N | the whole number of game tree nodes.
A strategy Ai for a peer i ∈ N can be regarded as a point
Ai ∈ Nκ

0 , as it specifies somebody (although possibly with
no additional content) to ask from at each node C ∈ N that
may be reached. Hence, the corresponding congestion game

form is F =

0

@N, Nκ
0 , N

κ
0 × · · · × N

κ
0

| {z }

n

1

A.

Players’ payoffs πi : Nκn
0 → R+ are assumed to con-

sist of a sum over nodes of some (possibly 0) utility or
per-node payoff received at each C ∈ N . This utility de-
pends on the prevailing content distribution (which is pre-
cisely what the game tree node C specifies), and on the
profile A1(C), . . . , An(C) of per-node strategies that players
choose at node C. Hence, per-node payoffs received by peers
i ∈ N may depend on congestion, which here is the number
of other peers i′ ∈ N with the same (valid) per-node strat-

egy Ai′(C) = Ai(C). This models real-time streaming in
terms of congestion games with facilities being pairs (j, C),
where j ∈ N0 is either a peer or the source and C = Ct is a
game tree node or content distribution that may prevail at
some time t.

In a simplest form1 for πi : Nκn
0 → R+ (i ∈ N), the payoff

πi(A) of any given strategy profile A ∈ Nκn
0 to a peer i ∈ N

is the sum, over all conceivable game tree nodes C ∈ N , of
the values taken by utility uCj , which in turn depends only

on congestion σ
j
C(A), that is,

π
i(A) =

X

C∈N

X

j∈N0:Cj 6⊆Ci

Ai(C)=j

uCj

“

σ
j
C(A)

”

. (1)

For any strategy profile A, each peer i ∈ N gets a utility at
each node C ∈ N which depends exclusively on the number
σ

j
C(A) of those with the same (valid) per-node strategy.
A profile A = (A1, . . . , An) is Pareto-optimal if there is no

profile B = (B1, . . . , Bn) such that πi(B) ≥ πi(A) for all i ∈
N , with strict inequality for at least one i. Hence, from an
aggregate perspective, Pareto-optimal profiles are efficient:
there is no chance of improving someone’s payoff without
deteriorating someone else’s one. Congestion games allow
for neat conditions under which desirable properties, such
as Pareto-optimality and strength of equilibrium, attain. In
fact, in symmetric and monotone such games, these proper-
ties depend on the structure of the union ΣU = ∪i∈NΣi of

1Further payoff functions, possibly also depending on the differ-
ence between the sender’s and the receiver’s contents (and hence
P2P-specific [9]), are considered in [17].



strategy spaces. In particular, on whether a bad configura-
tion appears or not. Formally, ΣU displays a bad configura-
tion when there are three strategies X, Y, Z ∈ ΣU and two
facilities x, y ∈ M such that x ∈ X 6∋ y and x 6∈ Y ∋ y but
x ∈ Z ∋ y. Thus, two facilities give rise to a bad configu-
ration if there are strategies in ΣU which use one of them
but not the other, and there is also a strategy in ΣU which
uses both of them. The latter never occurs if ΣU consists of
singletons [7, pp. 87-88]. As the name suggests, it is de-
sirable that no bad configuration exists. Here facilities are
players themselves, although any fixed player corresponds
to two distinct facilities when referring to two distinct game
tree nodes. By Ru3 above, strategies are time-sequences of
singletons, and hence the safe case applies.

If πi(A−i, Ai) ≥ πi(A−i, Bi) for all i ∈ N and Bi ∈ Nκ
0 ,

where A−i ∈ N
κ(n−1)
0 is a n − 1 profile for peers j ∈ N\i as

well as Ai ∈ Nκ
0 is a strategy for peer i, then (A−i, Ai)

is an equilibrium. In particular, A = (A1, . . . , An) is a
strong equilibrium if for no coalition ∅ 6= S ⊆ N is there
a choice of Bi ∈ Nκ

0 for coalition members i ∈ S such that
πi(BS , AS) > πi(A) for all coalition members i ∈ S, where
(BS , AS) denotes the profile in which each i ∈ S chooses
Bi and each j ∈ Sc = N\S chooses Aj . In words, no non-
empty coalition can deviate from strong equilibrium profiles
and thereby strictly increase the payoffs of all its members.

When considering the implications of strong equilibrium
for S = N , one gets rather similar conditions as those identi-
fying Pareto-optimal profiles. In fact, as strategies are time-
sequences of singletons, the model provided thus far yields
a symmetric monotone congestion game with no bad config-
uration, where therefore the set of strong equilibria is non-
empty, coincides with the set of equilibria and, generically,
is (weakly) included in the set of Pareto-optimal profiles [7].

Given payoff functions πi : Nκn
0 → R+ for peers i ∈ N ,

any function P : Nκn
0 → R is a potential if for all i ∈ N , all

n − 1-profiles A−i ∈ N
κ(n−1)
0 and all pairs Ai, Bi ∈ Nκ

0

[P (A−i
, A

i) − P (A−i
, B

i)][πi(A−i
, A

i) − π
i(A−i

, B
i)] ≥ 0.

A potential is exact when the two differences within square
parentheses are equal. In words, a potential takes values on
strategy profiles, and for any such a profile and unilateral
deviation from it, the deviating player’s payoff and the po-
tential itself change in the same direction. Exactness means
that these changes are equal.
Claim: with payoffs (1), an exact potential is (for A ∈ Nκn

0 )

P (A) =
X

C∈N

X

j∈N0

X

1≤k≤σ
j
C

(A)

uCj (k). (2)

Proof: fix i ∈ N and Ai, Bi ∈ Nκ
0 as well as a n− 1-profile

A−i ∈ N
κ(n−1)
0 of strategies for peers j ∈ N\i. Consider

congestion matrices σ(A) and σ(B) associated, respectively,
with A = (A−i, Ai) and B = (A−i, Bi). Their elements

σ
j
C(A) and σ

j
C(B) (j ∈ N0) differ only if Cj 6⊆ Ci and

either Ai(C) = j 6= Bi(C) or Ai(C) 6= j = Bi(C). In

the former case σ
j
C(A) = σ

j
C(B) + 1, while in the latter

σ
j
C(A) = σ

j
C(B) − 1. Then, P (A) − P (B) =

X

C∈N

0

B

B

B

B

@

X

j∈N0:Cj 6⊆Ci

Ai(C)=j 6=Bi(C)

uCj
(σj

C
(A))−

X

j∈N0:Cj 6⊆Ci

Ai(C) 6=j=Bi(C)

uCj
(σj

C
(B))

1

C

C

C

C

A

= πi(A) − πi(B). •
For monotone congestion games with no bad configura-

tion, (2) is a strong potential, any of whose maximizers is a
strong equilibrium [7, theorem 5.2].

5. ON MINIMAL STREAMING LENGTH
One indicator of streaming efficiency is simply the number

of rounds needed to spread the whole content CON over the
whole peer set N . Assume the number of peers is a power of
2, that is, n = 2m for some natural m. Under our assump-
tions Ru1-3, any content unit can spread over the whole pop-
ulation no faster than through m + 1 (consecutive) rounds.
For example, in round 0 the very first content unit c0 will go
from the source to some peer i01. In round 1 it will go from
i01 to some other peer i02 ∈ N\i01. In round 2 it will go from
i01, i

0
2 to two distinct other peers i03, i

0
4 ∈ N\{i01, i

0
2}, and so

on, doubling the forwards in each round, until in round m

(which is the m + 1-th round that this unit c0 circulates)
exactly half of the population sends the content unit to the
other half through one-to-one matching. A crucial fact from
now on is that all the T + 1 content units, for any T , can
spread over the whole peer set in exactly m + 1 rounds.
This can be observed in terms of the different possibilities
for building the whole streaming tree (see above). In partic-
ular, if a generic content unit ct reaches everybody in m +1
rounds, then the number of peers who send (and therefore
also the number of those who receive) this content unit ct

in round t + k is 2k−1 for k = 1, . . . , m.
If all content units must reach everybody in m+1 rounds,

then whenever a peer receives a unit ct in round t + k it
must forward ct for the remaining rounds t + k + k′, where
k′ = 1, . . . , m − k. Hence, this peer for these latter rounds
cannot receive units to be further forwarded. That is to say,
in any round t + k + k′, with k′ = 1, . . . , m − k, if this peer

receives some unit, then such a unit must be ct+k+k′−m,
in which case this round t + k + k′ is precisely the m + 1-

th (i.e. last) one in which this unit ct+k+k′−m circulates. In
other words, the peer must be among those 2m−1 who are the
last ones to receive that unit. This not only is feasible, but
can be obtained through many different streaming trees2.
Definition: profile A ∈ Nκn

0 is deterministic if
(I) for all i ∈ N both the following hold:
(a)

˛
˛
˘
C ∈ N : Ai(C) = j, Cj 6⊆ Ci

¯˛
˛ = T + 1,

(b) Ai(C) = j, Cj 6⊆ Ci ⇒ |Cj\Ci| = 1 for all C ∈ N .
Hence, each peer makes exactly T + 1 valid requests to

receive (which under Ru1-3 clearly is the minimum number
of valid such requests needed to receive all the T +1 content
units c0, c1, . . . cT ), and therefore receives some (distinct)
content unit every time a valid request is made. Also, the
T + 1 valid requests made by any peer i are all addressed,
each at a different game tree node, to someone who at that
node has precisely one additional content unit.

The name deterministic is due to the assumption that
transitions from one game tree t-node Ct ∈ N t, t ≥ 0 to
t + 1-nodes Ct+1 ∈ N t+1 are stochastic: a generic strat-
egy profile A does not yield a unique game course, but a
probability distribution over game courses. Whatever its

2Although in all of them the sub-streaming tree for each unit must
result from a suitable permutation of vertexes/peers, thereby al-
ways reproducing the same essential condition that for each unit
ct the number of senders doubles after each round t + h for
h = 1, . . . , m, vanishing afterward.



form, an underlying probabilistic model essentially decides
who gets what when multiple peers i1, . . . , ik ask to receive
from a common j ∈ N0 such that Ct

j 6⊆ Ct
ik′

, 1 ≤ k′ ≤ k.

As peers (and the source) can forward at most one unit
per round, such a model has to select precisely one peer

ik′ ∈ {i1, . . . , ik} and one unit ct′ ∈ Ct
j\C

t
ik′

to be received
by the former. Deterministic profiles actually allow to ig-
nore the underlying probabilistic model (which is intended
to be complex and mostly unknown), because the transition
from any node to successive ones becomes deterministic.

Deterministic profiles put probability 1 on one game course
and probability 0 on all other courses. Accordingly, consider
the unique content distribution over peers (or game tree
node) reached at t by deterministic profile A ∈ Nκn

0 . In par-
ticular, denote it by Ct(A) = {Ct

0(A), Ct
1(A), . . . , Ct

n(A)}.
Definition: a deterministic profile A ∈ Nκn

0 is fastest stream-
ing if for all 0 < k ≤ t ≤ T∗

(II)
˛
˛
˘
i ∈ N : Ct

i (A) ∋ ct−k
¯˛
˛ = min{2m, 2k−1}.

These profiles spread each content unit ct over 20 = 1 peer
in round t, over (new) 20 = 1 peer in round t+1, over (new)
21 = 2 peers in round t + 2, and so on, until (new and final)
2m−1 peers receive unit ct in round t+m, which is the m+1-
th (i.e. final) round where this unit circulates. Let A∗ be the
set of fastest streaming profiles. As

P

0≤h<k 2h = 2k − 1,
summing newly reached peers across these m + 1 rounds
yields that each unit ct reaches the whole population in m+1
rounds. That is, the whole peer set is covered at the end of
round t+m, as 20 +20 +21 + · · ·+2m−1 = 20 +2m−1 = 2m.
In addition, in these profiles A ∈ A∗ peers i ∈ N receive each
and every time t they ask something from someone (i.e. some
j = Ai(Ct) with Ct

j 6⊆ Ct
i ). Given Ru1-3, these conditions

just listed are rather demanding, and one may well wonder
whether A∗ 6= ∅ at all. Accordingly, |A∗| is now determined.

Consider a generic t such that m ≤ t ≤ T . For any
A ∈ A∗, in round t there are exactly m + 1 content units
ct, ct−1, . . . , ct−m being distributed across the whole popu-
lation, out of which precisely m (i.e. ct−1, ct−2, . . . , ct−m)
are sent by some peers to some other peers, while one unit
(i.e. ct) is sent from the source to some suitably chosen peer.
Hence, in this round t each peer is a receiver (of some unit
ct−k, 0 ≤ k ≤ m). Conversely, only 2m − 1 peers also send
(units ct−k, 1 ≤ k ≤ m), as the source forwards ct.

Conditions (I) and (II) may be turned into a useful re-
cursive method for establishing, for any course of the game
reached up to any time t ≥ 0 (and thus applying since the
very beginning), how to proceed in round t in order to have a
A-induced streaming for some A ∈ A∗. In fact, all schedul-
ing priorities can be captured by the following main con-
straint: for any t ≥ 0, if in the previous round a peer has
received and/or forwarded some unit that will have to be
forwarded in round t + 1 as well, then in this round t this
peer cannot receive any unit that will also have to be for-
warded in round t + 1. Let Sk

t be the subset of peers who
send unit ct−k in round t (1 ≤ k ≤ m), and Rk

t be the subset
of peers who receive unit ct−k in round t (0 ≤ k ≤ m).
Recurrence:
Re1 - if i ∈ Sk

t−1 or i ∈ Rk
t−1 for some k ≤ m − 2

Re2 - or t ≥ m and i 6∈ Sk
t−1 for all k ≥ 1,

Re3 - then i 6∈ Rk
t for all k ≤ m − 1.

Consider that any unit ct′ has to be (still) forwarded in
round t+1 (i.e. over t+1 → t+2) when t′ +m ≥ t+1. Now
focus on a generic unit ct−1−k that a peer is either sending

or else forwarding in round t − 1. Letting t′ = t − 1 − k we
have that this unit will have to be forwarded in round t + 1
if t − 1 − k + m ≥ t + 1, that is, if k ≤ m − 2. If this is the
case, then the peer cannot now (i.e. in round t) receive any
unit ct−k such that t− k + m ≥ t + 1 or k ≤ m− 1. On the
other hand, Re2 entails precisely that when we reach any
round m ≤ t ≤ T + m all peers who still have not received
unit ct−m are matched with the other half of the population,
so to ultimately receive such a unit, that will no longer be
distributed throughout the whole streaming.

We now proceed to counting all streaming trees that sat-
isfy this recurrence Re1-3. Recall that for naturals a ≥ b

product [a]b = a(a − 1)(a − 2) · · · (a − b + 1) is the falling
factorial. Our enumerative concern is with situations where
T > m, and the whole streaming evolves in three phases:
Ph1: comprehends all initial rounds t = 0, 1, . . . , T1 where
at least one peer does not receive any content unit,
Ph2: comprehends all rounds t = T1 +1, T1 +2, . . . , T1 +T2

where each peer receives a unit,
Ph3: comprehends all rounds t > T1 + T2 where some peer
does not receive any unit but some other peer receives one.
Claim: the number of fastest streaming profiles is |A∗| =
 

m−1Y

t=0

[2m − 2t + 1]2t

!

Φ(T, m)

 
mY

t=1

[2m−1]2m−1−2t−1

!

where Φ(T, m) = (2m−1!)2T+2−m.
Proof: the needed counting procedure (detailed in [17]) may
be sketched as follows. There are three phases, out of which
the first and final ones display an excess demand of content
units, while demand equals supply in the central phase.
Ph1: (II) entails that in rounds t = 0, 1, 2, . . . , m − 1 all
needed receivers must be chosen among those who still have
not received anything, yielding 2t new peers involved in the
streaming at each t. As

P

0≤h<k
2h = 2k − 1, at time m

(i.e. at the end of round m−1 and at the beginning of round
m) all peers apart from one (i.e. 2m − 1) have received pre-
cisely one unit. The number of distinct ways to achieve this,
or number of alternative streaming tree evolutions induced
by profiles A ∈ A∗ in rounds 0 to m − 1 inclusive, is

m−1Y

t=0

 

2m − 2t + 1

2t

!

2t! =

m−1Y

t=0

[2m − 2t + 1]2t .

Ph2: in the starting round m, a unique peer i∗ ∈ N re-
ceived nothing in previous (initial) rounds. By rules Ru1-3
above, from now on until the end, in any round t peer i∗

must be in the half of the population who receives from the
other half precisely the unit ct−m−1 whose distribution ter-
minates in that round, thereby never forwarding any unit.
Also, in all successive rounds t = m, m + 1, . . . , T the set of
senders contains the source together with 2m − 1 = |N\i∗|
peers, and these latter are partitioned into m blocks with
cardinalities 20, 21, . . . , 2m−1 whose members send respec-
tively units ct−1, ct−2, . . . , ct−m−1. Counting the number of
distinct ways to match demand and supply in these central
rounds t = m, m + 1, . . . , T (where they both involve 2m−1

participants, but twice) gives
`
2m−1!

´2(T+1−m)
different evo-

lutions available between round m and round T inclusive.
Ph3: in the first of final rounds t = T +1, T +2, . . . , T +m,
a unique peer i∗T+1 6= i∗ does not receive any unit. Hence,
at time T + 2 (i.e. at the end of round T + 1) an additional
peer i∗T+1, like i∗, still misses units cT+2−m, cT+3−m, . . . , cT .



In view of Re2, in round T + 2 this peer i∗T+1, as a receiver,

matches some cT+2−m-sender. Till the end of the streaming
this peer will never be among those who receive units to be
further forwarded. The number of peers such as i∗T+1 (or

i∗) increases by 2t−T−1 in each remaining round t until the
end. In fact, in the last round T + m, half of the peer send
(without receiving anything) what the other half receives.
Repeating the same argument used above for phase Ph1, but
in an opposite manner, between rounds T + 1 and T + m

inclusive the streaming tree may be checked to evolve in

mY

t=1

2m−1!

 

2m−1

2m−1 − 2t−1

!

(2m−1 − 2t−1)! =

= (2m−1!)m
mQ

t=1

[2m−1]2m−1−2t−1 different possible ways. •

Hence, many different streaming tree evolutions allow to
spread the whole content over the whole peer population
in a way such that each unit ct reaches new 2k−1 peers
in each round t + k for k = 1, . . . , m. Also note that all
of them satisfy condition (I.a), as at any node C and for
any two peers i, j ∈ N we have |Ci\Cj | ∈ {0, 1}. Still,
with payoffs given by (1) above, fastest streaming is not
sustainable at equilibrium, because condition (I.b) is too
demanding: selfish (and myopic) peers try to receive some
unit in any round until they get the whole content.

6. WORST-CASE EQUILIBRIUM
Given the P2P setting, where peers always satisfy pre-

cisely one (randomly selected) valid request among those re-
ceived, in each round the number of distributed units equals
the number of those who are asked to forward through some
valid request. At equilibrium such a number equals the num-
ber of those who (at the beginning of the round) have some
units that someone else is missing.
Claim: the upper bound for equilibrium streaming length
is T∗ = T + 2m + 1.
Proof: let N t

0 ⊆ N0, t ≥ 0 be the set containing all those
who at t have some content that someone else still misses:
N t

0 = {j ∈ N0 : Ct
j 6⊆ Ct

i for some i ∈ N}. Also let
N t ⊆ N, t ≥ 0 contain all those who at t still miss some
unit: N t = {i ∈ N : Ct

i 6⊇ Ct
j for some j ∈ N0}. Note

that N = N t, 0 ≤ t ≤ T , because at t no peer has unit ct

yet, but the source 0 ∈ N0 does. Recall that players always
prefer to make a valid request through a link where conges-
tion is 1 rather than through one where congestion is > 1
(i.e. independently from what non-empty additional content
is reachable through the links). On the other hand, at equi-
librium each peer makes a valid request in each round as long
as the whole content CON is not fully received. Hence,

|{j ∈ N
t
0 : σ

j

Ct(A) > 0}| = min{|N t
0|, |N

t|} (3)

for any node Ct that may be reached at any time 0 ≤ t ≤ T∗

along some game course. In any round t the number of for-
warded (and received) units equals the minimum between
the number of those who at t have a unit that at least one
peer is still missing and the number of those who at t still
miss some unit. Accordingly, streaming length is maximized
when |N t

0| is kept to its minimum at each t. Any of the
units minimally takes m + 1 rounds to be distributed over
the whole population. While the source puts units in circu-
lation, the number of those who have one unit that someone
else misses minimally increases by 1 in each round, till either

all peers have a unit that someone else is missing, or else the
content production ends, whatever first: |N t

0| ≥ |N t−1
0 | + 1

for 0 < t < min{2m − 1, T}, with N0
0 = {0}. Maximum du-

ration occurs when this last inequality is an equality, requir-
ing in turn that each unit, up to round t = min{2m − 1, T}
inclusive, is streamed along a same chain: each unit is re-
ceived by peers in a fixed order, such as the natural one
1 < 2 < · · · < n. If T ≤ 2m −1, then such a linearly ordered
streaming induces, at the end of round T , the game tree
node CT+1 = (CT+1

1 , . . . , CT+1
n ) where CT+1

1 = CON and
CT+1

i = CT+1
i−1 \cT−i+1 for i = 2, . . . , n. That is, maintain-

ing the example given by the natural order for the sake of
simplicity, at T + 1 peer 1 has the whole content CON ,
while each peer i = 2, . . . , n misses the last i − 1 units
cT , cT−1, . . . , cT−i+1. Now consider the whole streaming
tree: it must (eventually) consist of (T+1)n (directed) edges,
out of which T + 1 have the source as one end-vertex, while
(T + 1)(n − 1) are P2P links. At game tree node CT+1 the
source has exhausted its role, and

P

2≤i≤n
(i−1) =

`
n

2

´
P2P

links are still missing. In particular, peer n, at time T + 1,
still misses units CT , CT−1, . . . , CT−n+1. Accordingly, this
peer needs further rounds T +1, T +2, . . . , T +n for getting
the whole content, because in each round only one unit can
be received. Then, given that the number of rounds has to
include the very first round 0, the whole streaming length is
T + n + 1 = T + 2m + 1. The case T > 2m − 1 is handled in
the same fashion (see [17] for details). •

Although worst-case equilibrium streaming length is linear
in both the whole number T + 1 of produced units and the
whole number n = 2m of peers, it can be rather greater
than the socially optimal streaming length. This gap may
be closed by means of a dynamic mechanism for constraining
per-node strategies.

7. STRATEGY RESTRICTION
In the (traditional) static scenario, the issue of strategy

restriction arises most interestingly when players can choose
more facilities [7], and is sometimes approached by introduc-
ing mediators in the routing system [18]. Still, in our setting
it remains worth being addressed even when strategies are
time-sequences of singletons. In particular, the focus is on
simple rules of the form: certain peers i ∈ N at certain nodes
C ∈ N cannot ask to receive from certain j ∈ N0. Hence,
restrictions apply to per-node strategies, which in any case
(already) are singletons.

As explained above, the proposed model provides a sym-
metric monotone congestion game with no bad configura-
tion, where equilibria are strong and Pareto-optimal. Adding
per-node strategy restrictions has to deal with symmetry [7].
Here such restrictions result anyhow: peers’ per-node pay-
offs depend only on valid requests, hence at any C ∈ N and
for any i, i′ ∈ N, j, j′ ∈ N0, it shall be Cj 6⊆ Ci ⊇ Cj′ and
Cj′ 6⊆ Ci′ ⊇ Cj . That is, i can make a valid request to j but
not to j′, and the converse for i′.

It is possible that at an equilibrium strategy profile A each
content unit ct, 0 ≤ t ≤ T reaches 2k−1 new peers in each
round t + k, k = 1, . . . , m, and thus the whole population
in m + 1 rounds, which is optimal in terms of streaming
length. Yet, such a profile A cannot be deterministic, as any
equilibrium profile A must result in a congestion σ

j
C(A) > 1

for some (j, C)-entries of the associated matrix σ(A). In
fact, each (greedy) peer i ∈ N makes a valid request to
receive from each node {C0, C1, . . . , Cn} = C ∈ N such



that Ci 6= CON . That is, equilibrium profiles A surely
yield some congestion, and provide a streaming length which
ranges from the optimal (i.e. minimum) one T + m + 1 to
the worst-case one T + 2m + 1. Then, for a social planner
there are two priorities when designing restrictions: i) at
equilibrium (with restrictions) streaming length should be
T + m + 1, the same as with fastest streaming profiles; ii)
congestion should be minimized.

A key fact is that those restrictions yielding minimal stre-
aming length, i.e. i), also minimize congestion, i.e. ii). In-
deed, in fastest streaming profiles there is a whole central
phase Ph2 where streaming occurs through one-to-one match-
ing involving all peers both as senders and as receivers (apart
from one peer, who never forwards, and the source, who
never receives). Therefore, any equilibrium satisfying i) also
fulfills this latter requirement, which quantitatively trans-
lates into null congestion over phase Ph2.

Consider a strategy restriction mechanism which specifies
from what j ∈ N0 each peer i ∈ N can ask for content at
each node C = Ct = (Ct

1, . . . , C
t
n) the game may reach up

to any time t. In other terms, the mechanism specifies for
any node C = (C0, C1, . . . , Cn) and for any i ∈ N, j ∈ N0

such that Cj 6⊆ Ci, whether it may be j = Ai(C) or not. In
view of the above recurrence Re1-3, consider the following
per-node restriction mechanism: for all i ∈ N and Ct ∈ N
Rm1: if Ct

i ∋ ct−k for some k ≤ m− 1, then Ai(Ct) 6= j for

all j ∈ N0 such that Ct
j ∋ ct−k′

for some k′ < m;

Rm2: if Ct
i 6∋ ct−m, then Ai(Ct) = j for some j ∈ N0 such

that Ct
j ∋ ct−m.

In this way, for any reachable game tree node Ct, strate-
gies for round t are constrained precisely in the manner es-
tablished by above constraint Re1-3 applying to streaming
tree evolution. If, given previous history, a peer in t has
some content unit ct−k that must be forwarded in round
t + 1 (i.e. such that t − k + m ≥ t + 1), then in this round
t the peer cannot ask to receive from those j ∈ N0 who in t

have units ct−k′

to be also forwarded in round t+1 (i.e. such
that t − k′ + m > t). Still, note that while Re1-3 are stated
from the perspective of an overall coordinator (i.e. specifying
forwarders and receivers), this Rm1-2 is more broadly stated
in terms of contents. Then, the demand for new units gets
synchronized (i.e. timely coordinated), and can thereby be
driven by selfish behavior.

Any profile A ∈ Nκn
0 yields a probability distribution pA

Ct

over N t+1 for each game tree node Ct that may be reached
at any time 0 ≤ t ≤ T∗. That is, pA

Ct(C
t+1) is the probabil-

ity of reaching node Ct+1 from node Ct when chosen strate-
gies are Ai(Ct), i ∈ N . Thus

P

Ct+1∈N t+1 pA
Ct(C

t+1) = 1

for all t ≥ 0, Ct ∈ N t and A ∈ Nκn
0 . For given under-

lying probabilistic model (anyhow handling multiple valid
requests whenever there are, see above), any strategy pro-
file A ∈ Nκn

0 puts a probability pA on each game course
{C0, C1, . . . , CT∗} (or sequence of content distributions) ob-
tained as the following product of conditional probabilities

p
A({C0

, C
1
, . . . , C

T∗}) =

T∗−1Y

t=0

p
A
Ct(C

t+1), (4)

where any t-th round3 starts at t and ends at t+1. Let CA de-
note the set of all game courses that may prevail with strictly

3If T∗ is the maximum conceivable streaming length, in rounds
and starting with 0, then a game course ends at time T∗, when
round T∗ − 1 ends, although the whole content shall generically

positive probability through profile A. In other terms, CA

contains all T∗ +1-sequences {C0, . . . , CT∗} or game courses
on which A puts strictly positive probability, that is, such
that pA({C0, . . . , CT∗}) > 0 as defined by (4).
Claim: if A ∈ Nκn

0 is an equilibrium under Rm, then for
any {C0, . . . , CT∗} ∈ CA both the following hold:
(a) |{i ∈ N : ct ∈ Ct+k

i }| = 2k−1 for k = 1, . . . , m + 1 and all
0 ≤ t ≤ T ,

(b)
X

j∈N0

max{0, σ
j

Ct (A)−1} =

8

<

:

2m − 2t+1 + 1 for 0 ≤ t < m
0 for m ≤ t ≤ T, t = T + m

2t−T−1 for T < t < T + m

Proof: without restrictions, at any equilibrium, peers
make a valid request to receive content in each round as
long as they miss at least one unit. With restrictions, un-
til the whole CON is not received, peers make a valid re-
quest whenever restrictions allow them to. Therefore, the
demand for content units (to be further forwarded) is al-
ways provided by peers’ utility maximization at any node
Ct ∈ {C0, . . . , CT∗} ∈ CA. Under constraint Rm1-2, con-
tent demand at each node is convoyed towards valid re-
quests which, whenever satisfied, allow for minimal stream-
ing length. On the supply side, peers (and the source) always
satisfy precisely one (random) valid request among those re-
ceived, and thus equilibrium conditions under Rm1-2 yields
that any resulting game course distributes each content unit
ct, 0 ≤ t ≤ T as desired.

Concerning (b), σ
j
C(A)−1 is the number of excess valid re-

quests for any pair (j, C), that is, the number of non-satisfied
valid requests that j ∈ N0 receives at node C. Accordingly,
P

j∈N0
max{0, σ

j

Ct(A) − 1} measures the whole (i.e. aggre-

gate) number of excess valid requests at any reached node
Ct. Given (a), any game course in CA provides a streaming
with minimal duration, and thus evolves through the same
phases Ph1-3 as fastest streaming, but non-deterministically.
In other words, there is congestion, but only in the initial
and final phases (Ph1,3), and in order to measure it, we
have to check how many times the above reasoning on fastest
streaming profiles uses one-to-one matchings between sets of
different cardinalities. More specifically, if cardinality is the
same, then the problem of finding some one-to-one matching
is solved by equilibrium condition (3) above 4. Conversely, if
cardinality is different, then some of those in excess shall be
left out. The number of these latter, at node Ct, is precisely
P

j∈N0
max{0, σ

j

Ct(A) − 1}. In fact, in any initial round
t = 0, 1, . . . , m − 1 if a peer receives a unit then this peer
will make no valid requests until round t = m (i.e. the initial
of Ph2) 5. Summing up, in initial rounds t = 0, 1, . . . , m−1,
the numbers of (restricted) excess valid requests respectively
are 2m − 20, 2m − 20 − 21, . . . , 1, that is, 2m − 2t+1 + 1.
Similarly, in rounds t = T + 1, T + 2, . . . , T + m − 1 the
numbers of (restricted) excess valid requests respectively are
20, 21, . . . , 2m−2, that is, 2t−T−1. Finally, in round T + m

clearly there are no excess valid requests. •
Restriction mechanism Rm1-2 above is useful for exploit-

ing selfish behavior toward socially desirable outcomes. In
particular, the mechanism is simple and, most importantly,

be completely distributed much in advance.
4When a set of senders and a set of receivers, both of same car-
dinality, have to match, at equilibrium receivers make their valid
request each to a different sender.
5Otherwise, if a valid valid request was made and satisfied, then
this peer would have two units to forward.



specifies conditions only in terms of the generic node Ct

that may be reached at some time t during game course.
The pattern through which the system reaches this node is
irrelevant; all that matters for strategy restriction is con-
tent distribution over peers, which is precisely captured by
the node itself. Any outcome or game course constrained
through the mechanism provides minimal streaming length
and (consequently, given Ph2) also minimizes congestion.

8. STRATEGY RESTRICTIONS AT WORK
We now detail an algorithm, hereinafter referred as Con-

GaS (Congestion Games for Streaming) for achieving mini-
mal streaming length, when the number of peers is a power of
two. If peers must be able to coordinate themselves towards
fastest streaming, then they must be constantly endowed
with perfect information. That is, they must be capable to
“see”, during each round, who sends on-going content units
to who. Technically, peers share a seed to randomly gener-
ate same sequences of pseudo-random numbers. Such shared
seed serves as the needed coordination mean among nodes
(i.e. it is employed to randomly select those peers that re-
ceive any given content unit).

ConGaS is described in the Algorithm that follows. Dur-
ing the initialization, the broadcaster (i.e. node 0) sends to
all peers a generated seed value. The distribution loop con-
sists of an iterative behavior: each iteration t corresponds
to the production, at the broadcaster, of a novel content
unit ct to be distributed. Meanwhile, on-going content units
c(t − k), k = 1 , . . . ,m not yet been delivered to all peers are
disseminated according to on our method (lines 3-7 of the
distribution loop). The manageDistribution() procedure,
executed by all nodes, defines who sends what content unit
to who. Differences in peers’ actions are simply determined
accordingly to their ids.

At each iteration t, each peer is selected to receive a (sin-
gle, new) content unit. This is achieved by picking nodes
from an auxiliary list NextFree, which is initialized to N
(line 2), and then progressively emptied through different
calls of manageDistribution() (line 5). Specifically, given
a content unit ck being distributed (t − m ≤ k ≤ t), a bi-
jection between those who have the unit (senders Sk in the
code) and (some of) those who do not (receivers Rk in the
code) is provided. Thus, for any content unit, at each h-th
step of distribution, 2h nodes have the content unit and 2h

are selected to be the receivers. Once the distribution for
the on-going content units is specified, a new content unit is
produced at the broadcaster (lines 9-11) and manageDis-
tribution() is called for the novel content unit.

As for the functions, in manageDistribution() a new re-
ceiver recv is identified thought nextRecv(). Next, must-
Send() schedules the delivery of the content unit from sender
p to recv. Moreover, recv is added into S k (the list of ck

senders; line 4)6. Accordingly, recv is removed from the list
of receivers Rk (as well as from the list of those who may
be selected as receivers of ongoing content units; lines 5-6).
nextRecv() randomly selects receivers. In simple words, a
(novel) node is picked until someone is found in the inter-
section of NextFree and AvailRecvs (i.e. the set of those who
have not already been selected as receivers of the considered
unit). Finally, mustSend() makes thus far identified senders
actually send the on-going units, based on the nodes’ id.

6In this way, this peer is marked as the ck owner in the future.

Algorithm 1 ConGaS

Initialization

1: p = idNode()
2: if (p == 0 ) then

3: s ← generateSeed()
4: broadcast(s)
5: end if

Distribution Loop

1: for all t ∈ [0,T ] do

2: NextFree ← N = N0 \ {0}
3: for k = max(t −m, 0) to t do

4: for all p ∈ Sk do

5: manageDistribution(p, k)
6: end for

7: end for

8: p = idNode()
9: if (p == 0 ) then

10: ct = newChunk()
11: end if

12: manageDistribution(0, t)
13: end for

1: function manageDistribution(p, t)
2: recv ← nextRecv

`

Rt , s
´

3: mustSend
`

p, recv , ct
´

4: add
`

recv , S t
´

5: remove
`

recv , Rt
´

6: remove
`

recv , NextFree
´

1: function nextRecv(AvailRecvs, seed)
2: repeat

3: n ← randomPeer(seed)
4: until n ∈ NextFree ∩AvailRecvs
5: return n

9. CONGAS EVALUATION
In order to evaluate our streaming method, ConGaS, a

main issue is what benchmark should it be compared with.
In the literature, such an issue is known as the price of anar-
chy [3]. In simple terms, given that ConGaS actually selects
a subset of (Nash) equilibria, the aim is to compare the av-
erage outcome of such equilibria with respect to the average
over all equilibria. Technically, an outcome is a (expected)
utility value (i.e. a real quantity) for each player. The ap-
proach adopted here is more general: the focus is not on a
specific congestion game, but rather on a congestion game
form. Accordingly, results are valid for the whole class of
monotone games derived from the game form [7]. Thus,
the benefits of ConGaS over a generic equilibrium outcome
quantitatively vary as the utility specification varies, but
in any case the sooner peer receives content units, the bet-
ter. Basically, anarchy is implemented simply by ignoring re-
striction mechanism Rm1-2. More specifically, at any stage
t ≥ 0, each peer i ∈ N who still misses some unit randomly
selects some valid forwarder j ∈ N0, if any, and then receives
the oldest unit in Ct

j\C
t
i . Whenever the number of receivers

exceeds that of forwarders, the probability of being among
those who receive (and thus also that of being among those
who do not) is the same across all potential receivers.

In order to compare two equilibrium strategy profiles with-
out utility specification, we need to unify any such a profile
into an index measuring its goodness. We already paid much
attention to one such an index, that is, streaming length.



Figure 1: Average latency: varying number of both
peers and stream size.

Figure 2: Average latency: number of peers=28,
varying stream size.

Now, we turn to latency : the real quantity Λ such that,
by picking at random both a peer and a unit ct, the for-
mer receives the latter (on average) in round t + Λ. Note
that, in this reasoning the “bad” outcomes are nevertheless
equilibrium ones, and therefore anarchy is rather rational.
Put it differently, although ConGaS performs substantially
better than such a term of comparison (for any number of
content units and peers, see below), still one may like to
consider that such a term of comparison already performs
rather good as it corresponds to an equilibrium. In par-
ticular, such an “equilibrium anarchy” performs even much
better than typical gossiping protocols and other unstruc-
tured mechanisms.

Figure 1 shows the average latency, measured in rounds,
experienced by peers in receiving any content unit. In this
experiment, we vary both the number of peers (reported
here in log2 scale) and the number of content units or size
of the stream T + 1. As predicted by our analytical results,
ConGaS obtains very stable results in terms of latency when
such a size varies (Figure 1, black lines). In other words, the
length of the stream has no evident impact on performance.
Conversely, in the anarchical environment (Figure 1, light

Figure 3: Latency average standard deviation: num-
ber of peers=28, varying stream size.

gray points), the higher the number of content units, the
higher the experienced average latency. In addition, such
gap also grows with the number of peers.

Figure 2 shows the behavior of the two compared ap-
proaches with a fixed number 28 of peers and increasing the
size (of the streaming). Again, the average latency (over
all peers and content units) obtained by ConGaS is inde-
pendent of the size and optimal given the assumptions that
only one unit can be sent/received by each peer in every
round. Conversely, anarchy results deteriorate substantially
as the size increases.

Another index we finally consider has to deal with fairness,
in that we compute the variance across peers of the average
latency (over all units) they experience during the whole
streaming. In fact, Figure 3 displays the (average) standard
deviation of latency, which is much more limited with Con-
GaS rather than in the anarchy equilibrium outcomes. We
claim this is an important result for the implementation of
viable live streaming systems, as it corresponds to a jitter
reduction, which is a main requirement in most multimedia
systems.

10. CONCLUDING REMARKS
A main novelty in this paper is the modeling of P2P

real-time streaming by means of multistage congestion game
forms: in each stage peers aim at receiving some additional
content unit, until all units got received. As each peer re-
ceives only one unit, at most, per stage, and also forwards
precisely one (at most and randomly selected) unit, our set-
ting is crucially constrained in terms of streaming length
(or duration), intended as the number of stages needed to
spread the whole content over the whole population. Con-
tent distribution over peers changes in time, and for any such
a distribution (or game tree node) prevailing at any stage,
the associated peers’ per stage payoffs depend on how many
requests to forward are addressed to each peer. The idea is
that an underlying and unknown probabilistic model handles
all those cases where two or more peers ask to receive from a
common other peer or from the source: however these cases
are handled, the greater the number of peers who all ask to
receive from a common other peer or from the source (i.e. the
higher congestion), the less likely it becomes, for each of
them, to be precisely the one who actually receives. For a



simple (monotone) payoff specification, an exact potential is
provided, any of whose maximizers is a pure-strategy equi-
librium. In particular, strategies become sequences of sin-
gletons: for a peer a strategy specifies, for any (per stage)
content distribution over the whole population, who to send
a request for additional content. With these singleton strate-
gies, the potential is strong: any of its maximizers is a strong
(and Pareto-optimal) equilibrium. Note, once again, that
assuming peers and the source to satisfy, at each stage, pre-
cisely one of the received requests to forward entails that
in our model free-riding is not a feasible strategy. As for
each content unit our model builds a new substreaming tree
specifying how the unit gets routed through the whole popu-
lation via P2P exchanges, any reputation-based mechanism
that makes free-riding a dominated strategy in tree-based
multicast systems is applicable.

Upon these premises, our analysis develops from a fun-
damental result: if the number n = 2m of peers is a power
of 2, then P2P content exchange can be scheduled so that
each unit reaches everybody in m + 1 (consecutive) stages,
with corresponding whole duration T + m + 1. Thus, for
any (monotone) payoff specification, this scheduling is so-
cially optimal, allowing to spread each unit in the minimum
conceivable number of stages. Given this finding, we first in-
vestigate worst-case equilibrium outcomes, and next provide
a strategy restriction mechanism which, for any (per stage)
content distribution over peers, restricts the set of feasible
forwarders. Although simple, this mechanism is very useful:
it impedes the satisfaction of all those requests submitted by
selfish peers at equilibrium which must be ignored to achieve
minimal duration. Hence, the streaming length at any (con-
strained) equilibrium is actually at its minimum T + m + 1,
as well as congestion is minimized.

Finally, equilibrium constrained outcomes are compared,
through simulations, with non-constrained ones. This quan-
tifies the price of anarchy, although this latter traditionally
refers (more strictly) to games rather than (more generally)
to game forms. Instead of plotting streaming length, our
figures report on average latency and standard deviation,
which seem suitable to evaluate both overall performance
and fairness in comparison with other P2P protocols.

We conclude by outlining our planned future develop-
ments: the model shall be extended so to allow for i) a
generic number of peers, and ii) a varying number of peers.
As for i), if the number n of peers is not a power of 2, then
one may distribute the content by partitioning the popula-
tion into blocks (each of which has cardinality equal to some
power of 2), with one distinct source serving each block sep-
arately. In other terms, blocks’ cardinalities would be n1 =
2⌊log(n)⌋, n2 = 2⌊log(n−n1)⌋, . . . , nk = 2⌊log(n−n1−···−nk−1)⌋.
In the worst case, the number n of peers is n = 20 + 21 +
· · · + 2h for some natural h, that is, n = 2h+1 − 1, which
would require the source to multiply by h+1 its activity for
serving h + 1 different blocks. Streaming length would be
T + ⌊log(n)⌋+1. If this was too demanding, another option
is for the source to serve only the block with cardinality n1.
In fact, for the functioning of this n1-cardinal block there is
a peer who is never required to forward, but receives each
unit with latency ⌊log(n)⌋. This peer may well act as the
source for the (next) block with cardinality n2, and so on, so
that latency adds through blocks of (decreasing) cardinali-
ties n1 ≤ n2 ≤ . . . ≤ nk. Turning to ii), allowing peers to
leave the system as well as new ones to join it, at any time,

clearly has great impact on ConGaS design. From a system
design perspective, this could be dealt with by keeping the
peer population constantly partitioned into groups. Then,
ConGaS would act on such groups, while an additional dis-
semination protocol would govern intra-group exchanges.
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