
Analytical modeling of swarm intelligence in wireless
sensor networks through Markovian Agents

Dario Bruneo
Dipartimento di Matematica

Università di Messina
Messina, Italy

dbruneo@unime.it

Marco Scarpa
Dipartimento di Matematica

Università di Messina
Messina, Italy

mscarpa@unime.it

Andrea Bobbio
Dipartimento di Informatica

Università del
Piemonte Orientale
Alessandria, Italy

bobbio@mfn.unipmn.it

Davide Cerotti
Dipartimento di Informatica

Università di Torino
Torino, Italy

cerotti@di.unito.it

Marco Gribaudo
Dipartimento di Informatica

Università di Torino
Torino, Italy

marcog@di.unito.it

ABSTRACT
Wireless Sensor Networks (WSN) consist of a large number
of tiny sensor nodes that are usually randomly distributed
over a geographical region. In order to reduce power con-
sumption, battery operated sensors undergo cycles of sleep-
ing - active periods; furthermore, sensors may be located in
hostile environments increasing their attitude to failure. As
a result, the topology of the WSN may be varying in time in
an unpredictable manner. For this reason multi-hop rout-
ing algorithms to carry messages from a sensor node to a
sink should be rapidly adaptable to the changing topology.
Swarm intelligence has been proposed for this purpose, since
it allows to emerge a single global behavior from the interac-
tion of many simple local agents. Swarm intelligent routing
has been traditionally studied by resorting to simulation.
The present paper is aimed to show that the recently pro-
posed modeling technique, known as Markovian Agents, is
suited to implement swarm intelligent algorithms for large
networks of interacting sensors. Various experimental re-
sults and quantitative performance indices are evaluated to
support the previous claim.

Keywords
Wireless Sensor Networks, Markovian Agents, Swarm intel-
ligence, Gradient-based routing, Performance evaluation.

1. INTRODUCTION
Wireless Sensor Networks (WSN) are application-specific

networks composed by a multitude of tiny sensor nodes with
limited computation, communication, and power capabili-
ties. Sensor nodes collect measures of physical parameters
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and transmit them to a sink node. Sensors may be scat-
tered randomly over a geographical region and in order to
save battery energy they may undergo cycles of sleeping - ac-
tive periods [3]. Furthermore, nodes deployed in real fields
might get damaged, or just fail at any time. As a result,
the topology of the network may be varying in time in an
unpredictable manner. For this reason routing algorithms to
carry messages from a sensor node to a sink in a multi-hop
fashion should rapidly adapt to the changing topology. A
survey of routing algorithms is in [2].

Swarm intelligence (SI) techniques [9] are population-based
stochastic methods in which the collective behavior of rel-
atively simple individuals arises from their local interac-
tions to produce global patterns. Through the adoption
of the swarm intelligence concept, it is possible to design
distributed, self-organizing, and fault tolerant routing pro-
tocols able to self-adapt to the environmental changes. The
main properties of swarm intelligence are that: i) Single
nodes are assumed to be simple with low computational in-
telligence and communication capabilities; ii) Nodes com-
municate indirectly, i.e., messages are not directed to any
particular node; iii) The range of the messages may be very
short, nevertheless a robust global behavior emerges from
the interaction of the nodes; iv) The global behavior adapts
to the environmental changes.

SI in WSN is inspired from the observation on how ant
colonies forage for food. Ants tend to move along paths
of high pheromone intensity and release pheromone during
their passage thus reinforcing the pheromone trail. However,
pheromone evaporates allowing the system to forget old in-
formation and randomly search for new solutions. In this
way, large groups of simple agents, interacting only locally
with neighboring agents, work together to coordinate their
actions toward fulfilling a common goal. In such systems,
modeling the state of the entire system as a cross-product
of the states of individual nodes results in the well-known
state explosion problem. In fact, the usual way to study
these systems is through simulation [12, 16]. An attempt to
tackle the problem analytically is in [14], but the analysis is
limited to the asymptotic behavior of a two-nodes two-links
system.

This paper describes how the performance analysis of large

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7672 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7672 

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personalor classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post onservers or to redistribute to lists, requires prior specific permission and/or a fee.VALUETOOLS 2009, October 20-22, Pisa, ItalyCopyright © 2009 ICST 978-963-9799-70-7DOI 10.4108/ICST.VALUETOOLS2009.7672



SI systems composed by interacting agents can be modeled
and investigated by resorting to a recently defined new entity
called Markovian Agent (MA) [5, 6]. An MA is a discrete-
state continuous-time Markov chain (CTMC) governed by
a local transition rate matrix but able to send messages to
other agents, and whose behavior can be modified by the
messages received from other agents. Furthermore, agents
are located in a geographical space, and their interaction de-
pends on the relative positions and is governed by a suitable
perception function.

This paper is aimed to show that a large system of inter-
acting MAs can be analytically solved to generate a phero-
mone gradient around the sink(s) that can be successively
used to create the routing table along the steepest gradient
in order to minimize the number of hops from each node to
the sink(s). In particular, we provide a stochastic model to
analyze a swarm-based routing protocol that gets inspira-
tion from the one presented in [12]. According to it, phero-
mone information is stored at each node, and the algorithm
starts with the sink agent(s) emitting a message with the
highest pheromone level; node agents that receive the phe-
romone message update their pheromone level and transmit
it to the neighbors; at the same time nodes are subject to
an evaporation process that reduces their stored pheromone
intensity. In analogy with the biological systems, here data
packets move around the network carrying the pheromone
(like ants) and leaving it on the way. We assume in this pa-
per that sensors are spread over a regular mesh, with at most
one sensor in each cell. Even if the transmission range limits
the activity of the pheromone messages to the first neigh-
boring cells, the pheromone gradient rapidly forms over the
entire region.

An analytical model for the system is presented and the
numerical analysis is provided. Several examples illustrate
how the proposed solution reacts to characteristic parame-
ters (like emission and evaporation rates) and to different
topological configurations. A detailed study is presented
to show that increasing the range of activity of the phero-
mone messages the time to reach a stabilized gradient de-
creases but, at the same time, the energy consumption in-
creases. Finally, a scenario composed of thousand of nodes
has been studied demonstrating how the proposed analytical
technique is suitable in the performance evaluation of very
large networking systems.

This paper is organized as follows: In Section 2, we briefly
revise routing protocols in WSN describing the swarm-based
algorithm we want to model. In Section 3, we introduce the
Markovian Agents and we present the proposed SI model.
In Section 4, we describe the adopted performance indices
and we show the results of several experiments. Finally, in
Section 5 we provide concluding remarks and future works.

2. GRADIENT-BASED ROUTING PROTO-
COLS IN WSN

WSN’s specific characteristics make routing different from
traditional wireless ad-hoc networks [17]. The modest pro-
cessing power, the absence of global information, the high
directionality of the flow (from multiple nodes to few sinks),
the data redundancy, give rise to the definition of several
routing algorithms [2]. Different routing metrics can be ex-
ploited with respect to different goals: hop count, energy
consumption, Quality of Service, throughput, network life-

time [15, 11, 1]. However, the main philosophy is that what
is important is the information that nodes contain, not the
nodes themselves. Such assumption leads routing in WSN to
become data-centric as opposed to node-centric [17]. In this
context, gradient-based routings allow to establish routes to
the sinks following such paths that respect criteria related to
data typologies, network topology, and to nodes’ status. In
Directed Diffusion [10], sinks generate information requests
and diffuse them through the network. During the diffusion
phase, nodes build gradients associated with each interest
request that are used to direct the information flow back to
the sink. GBR [15] extends the Directed Diffusion allowing
nodes to keep the number of hops to the sink (height of a
node) thus realizing a gradient of heights. Packets are then
forwarded through the link with the shortest gradient. In
order to take into account energy consumption aspects, the
height of each node can be also correlated to the battery
level.

From an autonomic perspective, the need to set-up flex-
ible, adaptive, and scalable networks calls for routing algo-
rithms easy to manage and able to react to the environ-
mental changes. In the last years, SI has been applied to
autonomic networking systems [4, 8] demonstrating its fea-
sibility and efficiency in adapting to highly dynamic dis-
tributed systems. In analogy to the biological process of
pheromone emission, in [12] each node sends a signalling
routing packet containing its pheromone level and updates
such value based on the level of its neighbors, thus creating
a pheromone gradient toward the sink. The routing task is
driven by the pheromone level of the network: data packets
are forwarded toward the highest pheromone density zone
and reach the sink following the pheromone gradient. Any
change on the network condition will be reflected by an up-
date of the pheromone level of the involved nodes; changes
on the pheromone gradient will automatically drive the rout-
ing decisions toward the new optimal solution. In this way,
the network can self-organize its topology and adapt itself to
environmental changes. Differently from Directed Diffusion
and GBR, when a link failure occurs, the network reorgani-
zation task has not to be accomplished by the sink but only
by those nodes near to the broken link, thus resulting in a
robust and self-organized architecture.

In the following, we will describe a swarm-based algorithm
that gets inspiration from the one presented in [12]. Since
our purpose is to study the gradient construction process,
we will focus on the signalling component of the routing pro-
tocol avoiding details about data forwarding. Routing paths
toward the sink are established through the exchange of phe-
romone packets containing the pheromone level p of each
node. We assume to have P discrete different pheromone
levels, ranging from 0 to P − 1. The gradient construction
is triggered by sinks that, during the data collection period,
maintain the highest level of pheromone (P − 1). The gra-
dient construction protocol is described by the Algorithms
1 and 2, differentiated with respect to the node type: sink
or sensor.

Sink nodes, once activated, set their internal pheromone
level p to the highest value, (Algorithm 1: line 1). Then,
they periodically send to their neighbors a pheromone packet
containing p (Algorithm 1: lines 5-7). The time period is
defined by the timer T1.

The pheromone level of a sensor node is initially set to
the lowest value (Algorithm 2: line 1) and then it is up-
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dated following an excitation - evaporation process. Sensor
nodes periodically send a pheromone packet containing their
internal pheromone level. This activity is scheduled at fixed
interval times by appropriately setting the timer T1 (Algo-
rithm 2: line 2) and then, when the timer expires, a packet
is sent to all the neighbors (Algorithm 2: line 12-14).

Excitation is triggered by the reception of the pheromone
level from a neighbor (Algorithm 2: lines 6-10). As a conse-
quence, the node updates its own level when a greater value
is received; the new value is computed as a function of the
current and the received pheromone level update(p, pn). In
the Algorithm 2, we use update(p, pn) = round((p + pn)/2)
(line 9).

The evaporation mechanism is triggered at the expiration
of the timer T2 (Algorithm 2: lines 15), and it simply de-
creases the value of p (Algorithm 2: lines 15-16), assuring it
maintains a value greater or equal to 0.

Algorithm 1 Sink nodes

1: p ← P − 1
2: setT imer(T1)
3: loop
4: e ← waitForEvent()
5: if e = TIMER EXPIRED then
6: send(p)
7: end if
8: end loop

Algorithm 2 Sensor nodes

1: p ← 0
2: setT imer(T1)
3: setT imer(T2)
4: loop
5: e ← waitForEvent()
6: if e = DATA RECEIV ED then
7: pn ← getDataReceived()
8: if pn > p then
9: p ← update(p, pn)

10: end if
11: else if e = TIMER EXPIRED then
12: t ← getT imer()
13: if t = T1 then
14: send(p)
15: else {t = T2}
16: p ← max(0, p − 1)
17: end if
18: end if
19: end loop

3. THE MARKOVIAN AGENT MODEL
Markovian Agents Models (MAMs) [5] represent systems

as a collection of agents spread over a geographical space.
Each agent is described by a finite state machine where two
types of transitions can happen: local transitions and in-
duced transitions. A local transition occurs whenever an
agent changes its state due to information perceived on its
environment, whereas induced transitions occur as a con-
sequence of the interactions with other agents. Interactions
are possible through message exchanging: when a local tran-
sition occurs, the agent can send a message and the receiving

agent can ignore or accept it. In the second case, the accept-
ing agent changes its state performing an induced transition.

MAs are spread over a finite geographical area V that can
be either continuous or discrete. In case of a continuous
space we have that V ⊂ IRd, where d is an integer number
representing the dimension of the space. We denote by ρ(v) :
V → IR+ the spatial density function of the agents. In
particular, it is defined such that for every d-dimensional
volume A in V (with A ⊆ V) the number of agents in A is
distributed according to a Poisson distribution with meanR

A
ρ(v)dv. In this paper we will focus on the 2-dimensional

case, and consider d = 2.
Message exchanging is governed by a function that takes

into account the agent distribution over the space, the mes-
sage routing policy, and the transmittance properties of the
medium. This function is called the perception function and
it is denoted by u(·). The definition of the perception func-
tion is quite general, and allows to model several message
routing strategies and MA interdependencies. In particular,
the receiving agent can be aware of the state in which the
agent that issued the message was, and use this information
to take an appropriate action.

In order to model an heterogeneous system such as a WSN
with several sensor and sink nodes, we need to extend the
MAM adding the capability to represent different types of
exchanged messages (as in [6]) and to consider several classes
of agents. Formally a Multiple Agent Class, Multiple Mes-
sage Type Markovian Agents Model (M3AM) is defined by
the tuple:

M3AM = {C,M,V,U ,R} (1)

where:
C = {1 . . . C} is a set of classes of agents. We denote with

MAc an agent of class c ∈ C.
M = {1 . . . M} is a set of types of messages. Each agent

(independently of its class) can send or receive messages of
type m ∈ M.

V is the finite space over which Markovian Agents are
spread.

U = {u1(·) . . . uM (·)} is a set of M perception functions
(one for each message type), and R = {ρ1(·) . . . ρC(·)} is a
set of C agent density functions (one for each agent class).

Each agent MAc of class c is characterized by nc states,
and it is defined by the tuple:

MAc = {Qc,Λc, Gc(m),Ac(m), πc
0} (2)

Where:
Qc = |qc

ij | is the nc × nc infinitesimal generator matrix
of the continuous time Markov chain that describes the be-
havior of the agent. Its entry qc

ij , with i �= j, represents the
transition rate from state i to state j of an agent of class c.
We define qc

ii = −Pnc

j �=i
qc

ij .

Λc = |λc
i |, is a vector of size nc whose components rep-

resent the rate of self-jumps for an agent of class c, that is
the rate at which the corresponding Markov chain reenters
the same state. Self-jumps are required to allow an agent to
send messages without changing the state.

Gc(m) = |gc
ij(m)| is a nc × nc matrix, that describes the

probability that an agent of class c that jumps from state
i to state j generates a message of type m. The elements
of Gc(m) must respect the restriction

PM

m=1 gc
ij(m) ≤ 1,

∀c, i, j to ensure that during a transition an agent can gen-
erate at most one message.
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Ac(m) = |ac
ij(m)| is a nc × nc matrix, that describes the

acceptance probability of messages of type m for an agent
of class c. A message is dropped with probability ac

ii(m),
and it is accepted with probability 1 − ac

ii(m). In the latter
case, the agent immediately jumps to state j (j �= i) with
probability ac

ij(m), and
P

j �=i
ac

ij(m) = 1 − ac
ii(m), ∀c, i, m.

This implies that rows of matrix A sum to 1.
π

c
0, is a probability vector of size nc which represents the

initial state distribution of an agent of class c.
The perception function: um : V × C × IN×V × C × IN →

IR+ is defined such that the values of um(v, c, i,v′, c′, i′)
represent the probability that an agent of class c, in position
v, and in state i, perceives a message m generated by an
agent of class c′ in position v′ in state i′. As pointed out,
this general definition of u(·) allows to model several message
routing strategies and MA interdependencies.

3.1 Analysis
A M3AM model can be analyzed solving a set of coupled

ordinary differential equations. Let us call ρc
i (t,v) the den-

sity of agents of class c, in state i, and located in position v
at time t. We have that

Pnc

i=1 ρc
i (t,v) = ρc(v), ∀t (that is,

we consider that the total density of agents in a position v
remains constant over the time). We collect the state densi-
ties into a vector ρ

c(t,v) = |ρc
i (t,v)|. We will be interested

in computing the transient evolution of ρ
c(t,v).

We start by defining βc
i (m) as the total rate at which

messages of type m are generated by an agent of class c in
state i:

βc
i (m) =

X

j �=i

qc
ij gc

ij(m) + λc
i gc

ii(m) (3)

This rate can be used to compute γc
ii(t,v, m), the total rate

of messages of type m received by an agent of class c in state
i at position v at time t:

γc
ii(t, v, m) =

Z

V

C
X

c′=1

n
c
′

X

i′=1

ρc′

i′ (t, v
′)um(v, c, i, v′, c′, i′)βc′

i′ (m)dv′

(4)

We can collect them into a diagonal matrix Γc(t,v, m) =
diag(γc

ii(t,v, m)). This matrix can be used to compute Kc(t,v),
the infinitesimal generator of an agent of class c in position
v at time t:

Kc(t,v) = Qc +
X

m

Γc(t,v, m) [Ac(m) − I] (5)

The evolution of the entire model, can be studied by solving
∀v, c the following ordinary differential equations:

8
><
>:

ρ
c(0,v) = ρc(v)πc

0

dρ
c(t,v)

dt
= ρ

c(t,v)Kc(t,v)

(6)

From the density of agents in each state, we can compute
the probability of finding an agent of class c at time t in
state i as:

πc
i (t,v) =

ρc
i (t,v)

ρc(v)
(7)

and we collect all the terms in a vector π
c(t,v) = |πc

i (t,v)|.
Equation (6) can be solved using conventional discretiza-

tion techniques. In this paper we used an implicit method.

3.2 Model description
We model the protocol described in Section 2 with two

Markovian Agent classes: one addressed as sink (Figure
1(a)) representing sink nodes, and the other called node (Fig-
ure 1(b)) representing sensor nodes. Each state of an agent
is drawn with a circle. Each local transition is represented
by a solid arrow and it is labelled with the corresponding
transition rate. A dashed arrow starting from a solid arc de-
notes the generation of a message during the corresponding
transition. The label of the dashed arrow specifies the type
of message generated. Induced transitions are represented
with dashed arcs. Each induced transition arc is labelled
with a message type. The transition occurs only if the agent
receives a message of the specified type.

We consider a model composed of N sensors, distributed
over a rectangular grid of nh × nw square cells, with N ≤
nh ·nw and at most one sensor per cell. We call ds the length
of the cell side: all the sensors are spaced at a distance
of ds. We discretize the space V of the Markovian Agent
Model exactly as the nh × nw sensor grid. The pheromone
intensity is discretized into P levels (ranging from 0 to P−1)
that identify also the maximum number of message types
(M = P ). We use a different message type for each possible
pheromone level, and define M = {0, 1, . . . , P − 1}.

The sink class has a very simple behavior, characterized
by a single state. At a constant rate λ, sink nodes emit
a message representing the maximum pheromone intensity,
that is message P − 1. Rate λ = 1

T1
reflects the duration of

timer T1 of the algorithms presented in Section 2.
Agents belonging to the node class, use their state space

to represent their current pheromone level. They are thus
characterized by P states, each corresponding to a different
pheromone level 0, . . . , P − 1. All the nodes starts in state
0. In each state a self-loop of rate λ = 1

T1
models the firing

of timer T1, and the transmission of the pheromone level to
the neighboring nodes. The pheromone level decreases at
rate µ = 1

T2
, which models the firing of timer T2. In Figure

1(b), this is represented by the solid arc that connects each
state with the previous one. The key part of the algorithm
is implemented in the arcs that model the reception of the
messages, and the corresponding definition of the acceptance
matrix Anode(m). In particular, when a node in state i
receives a message of type m, it immediately jumps to state
j if m ∈ M(i, j), with:

M(i, j) = {m ∈ [0 · · ·P − 1] : round((m + i)/2) = j}
∀i, j ∈ [0 · · ·P − 1] : i > j.

(8)

that is, an agent jumps to a state that represents the phe-
romone level that is the mean between the current level and
the one encoded in the message. In the acceptance matrix
we then have that anode

ij (k) = 1, ∀k ∈ M(i, j) and that

anode
ij (h) = 0, ∀h �∈ M(i, j).
Each sensor is characterized by a transmission range tr.

The definition of function u(·) is such that it allows only
the nodes in transmission range to receive the pheromone
update message. In particular we have that ∀m, c, i, v:

um(v, c, i,v′, c′, i′) =


0 dist(v,v′) > tr

1 dist(v,v′) ≤ tr
(9)

where dist(v,v′) represents the distance between two sen-
sors in position v and v′. The definition of the perception
function in equation (9) models a broadcast of a message in
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(b) Agent class = “node”.

Figure 1: Markovian agent models.

a radius of tr around the transmitting sensor. We can use
the definition of the perception function to determine the
mean number of neighbor nodes η(v) of a node in position
v as:

η(v) =
X

v′∈V

X

c′∈C

“
ρc′(v′)um(v, c, i, v′, c′, i′) − ρc′(v)

”
d2

s

(10)
Note that since the perception function u(·) depends only
on v and v′, the choice of c, i and i′ in equation (10) can
be arbitrary. Remember also that the space has been dis-
cretized in such a way to have at most one sensor in each
cell of the grid. This allows us to “count” the sensors by sim-
ply summing ρc(v)d2

s. We can define the maximum mean
number of neighbors η̄ as:

η̄ = max
v∈V

η(v) (11)

Note that η̄ is a global property of the network that is a func-
tion of the transmission range tr and of the sensor distance
(i.e., the length of the cell side ds).

4. PERFORMANCE EVALUATION
In this section we show how the proposed model is able to

represent the algorithm for the gradient creation, and how
it can be used to evaluate appropriate measures that can be
exploited to set up the algorithm parameters in a real WSN.

4.1 Measures of interest
As explained in Section 3, each MA represents a sensor

node and it is able to sense other nodes when their radio
signals have an adequate power. This physical property is
modeled through the perception function u(). In the follow-
ing, we will refer to sensed nodes from position v as neigh-
bors, and we define N (v) ⊆ V as the set of their positions.

The algorithm behavior depends on both the pheromone
emission rate λ and the pheromone evaporation rate µ; the
excitation - evaporation process strictly depends on the num-
ber of agents sensed in a given position because the number
of perceived messages increase with them, strengthening the
level of pheromone into a node. To take into account this
physical phenomenon, we refers to the following quantity

r =
λ · η
µ

(12)

that gives the relative speed of global emission and evapo-
ration processes.

We estimate the pheromone level p of an agent of class
node in position v at time t as its expected state

φ(t,v) =
P−1X

i=0

i · πnode
i (t,v) (13)

where πnode
i (t,v) are computed by solving equations (6) and

(7). The value of φ(t,v) over V represents the distribution
of pheromone on the considered area of interest.

Since we want to evaluate whether the swarm-based al-
gorithm correctly operates in creating a “well formed” phe-
romone distribution over V, we need to define an estimator
of the gradient quality. Our estimator is based on the fact
that a gradient-based routing algorithm forwards the packets
of node in position v toward the neighbor with the great-
est pheromone level, whether it exists, as far as the sink is
reached. We denote with 〈v, t〉 the agent in position v send-
ing a data packet to the sink at time t. To do that, it selects
the neighbor with the greatest pheromone level greater than
its own, whether it exists. If such node does not exist, data
is not sent. More formally, let l(v,v′, t) = φ(v′, t) − φ(v, t)
be the amount of pheromone 1 of agent 〈v′, t〉 with respect
to agent 〈v, t〉; we define

lm(v, t) =


max

v
′∈N (v) l(v,v′, t) φ(v′, t) > φ(v, t)

0 otherwise

as the increment of the pheromone level along a path toward
the sink when a packet is sent from the node in position v at
time t. The mean increased pheromone value when a node
sends a packet to the sink is the considered estimator, and
can be computed as:

lm(t) =
1

N

X

v∈V

lm(v, t), (14)

where N is the number of sensor nodes in the area of interest.
We use lm(t) as the index measuring the goodness of the
pheromone gradient distribution; a high value of lm(t) means
a high increase of the mean level of pheromone along the
path towards the sink owing the maximum level, and as a
consequence, low number of hops.

Another practical performance index in a real WSN is the
time the pheromone gradient can be considered established.
As before, let us consider the agent 〈v, t〉; we say that it

1l(v, v′, t) could be a negative quantity, meaning that 〈v′, t〉
has a lower level than 〈v, t〉.
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(a) r=1.0.
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(b) r=1.5.
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(c) r=2.0.
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(d) r=2.5.

Figure 2: Pheromone gradient over V under different values of r.

is in a stable state when its level of pheromone φ(t,v) does
not vary any more; since φ(t,v) depends on π

node(t,v), we
estimate the stable state as the first time where

wwww
∂π

node(t,v)

∂t

wwww ≤ ε (15)

To numerically compute the relation (15), we evaluate the
discrete derivative

wwww
∆π

node(t,v)

∆t

wwww =

wwww
π

node(t,v) − π
node(t − ∆t,v)

∆t

wwww ,

(16)
where ∆t is the discretization step, and evaluating the set

Ts(v) =


t ∈ [0, +∞] :

wwww
∆π

node(t,v)

∆t

wwww ≤ ε

ff
(17)

that defines the time interval when 〈v, t〉 is in the stable
state.

The first time the node in position v will reach a stable
condition with respect to the pheromone level variation is
given by:

ts(v) = inf Ts(v) (18)

Since the overall network reaches the stability when all the
nodes are into a stable state, the time for stability will be:

et = max
v∈V

ts(v) (19)

4.2 Performed measures
The above mentioned performance indices have been com-

puted under different conditions in order to test the swarm
intelligent algorithm and to provide insights into the settings
of the algorithm parameters. First of all, we are interested
in the evaluation of the system dependency on r that rep-
resents the most critical parameter. The model was solved
using a grid of sizes nh = 20 and nw = 20, where sensors
are uniformly distributed with a spatial density equal to 1,
resulting in a grand total of N = 400 sensors. We also
placed a sink node in the center of the area (i.e., in posi-
tion v = (10, 10)) fixing λ = 4.0, P = 20, and η = 4. The
numerical solution is computed fixing ∆t = 0.001sec and
ε = 0.005.

The first system property we want to analyze is the quality
of the pheromone gradient. Figure 2 shows the pheromone
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Figure 3: Transient analysis of the gradient quality
estimator lm(t) under different values of r.

distribution over V with respect to r in the stable state, i.e.,
at time et. To improve the graph readability, each map is
plotted both in 3D and 2D views. It can be noticed that
the parameter r has a direct impact on the shape of the
pheromone gradient. In particular, if r is too small (r = 1.0)
or too high (r = 2.5), the quality of the gradient is poor. In
fact, high values of the evaporation rate (Figure 2(a)) do
not allow the pheromone diffusion thus reducing the area
covered by the sink. On the contrary, low values of the
evaporation rate (Figure 2(d)) give rise to a saturation of
the pheromone level in the network that makes the routing
strategy useless. Intermediate values, although giving rise to
different gradient shapes, generate well formed pheromone
gradients able to cover the whole area.

In order to provide a formal validation of the pheromone
gradient construction process, we compute the gradient qual-
ity estimator lm(t) for different values of r. Figure 3 shows
that, for low values of r, lm(t) exhibits a monotonic behav-
ior and the values reached at the stable state increase with
the increase of r (curve r = 1.0 and r = 1.5). Such trend
is inverted for high values of r, due to the saturation phe-
nomenon that can be observed as a rapid decrease of lm(t)
over time (curve r = 2.0 and r = 2.5) that produces decreas-
ing values of lm(t) at the stable state. In order to evaluate
the value r∗ of r that maximizes lm(t), in Figure 4(a), we
plot the value of the gradient quality estimator in the stable
condition (lm(et)), varying r from 1.0 to 2.2. As expected,
observing the curve η = 4, it is possible to identify a maxi-
mum value of lm(et), obtaining r∗ = 1.6. The corresponding

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7672 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7672 



 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1  1.2  1.4  1.6  1.8  2  2.2

G
ra

di
en

t q
ua

lit
y 

in
 th

e 
st

ab
le

 s
ta

te

r

–
d=4
–
d=8

(a)

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18  0

 2
 4

 6
 8

 10
 12

 14
 16

 18

 0

 5

 10

 15

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0  2  4  6  8  10  12  14  16  18

(b)

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18  0

 2
 4

 6
 8

 10
 12

 14
 16

 18

 0

 5

 10

 15

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0  2  4  6  8  10  12  14  16  18

(c)

Figure 4: (a) Gradient quality estimator in the stable condition (lm(et)) with respect to r varying η. (b)
Pheromone gradient over V when r = r∗ = 1.6 (η = 4). (c) Pheromone gradient over V when r = r∗ = 1.6 (η =
8).
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(a) t=0.1 sec.
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(b) t=2.0 sec.
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(c) t=4.0 sec.
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Figure 5: Growth of the pheromone gradient over V at different time intervals until the stable condition is
reached (r = r∗ = 1.6).

pheromone distribution over V is plotted in Figure 4(b). To
better analyze the transient evolution of the pheromone dis-
tribution over V, in Figure 5 we plot four graphs, taken at
different time intervals, that highlight the gradient growth
until the stable state is reached.

After computing the optimal value of r under the above
assumptions, we are interested in evaluating the influence
of network conditions on the protocol setting phase. In the
next experiment, we increased the transmission range, ob-
taining a maximum mean neighbor number η = 8 (instead of
η = 4), and we applied the same methodology to compute r∗.
In the following, we assume sensor and sink nodes to have
the same transmission range. Curve η = 8 in Figure 4(a)
shows that it is possible to identify a maximum value of lm(et)
even if the neighbor number has changed. The above graph
also demonstrates that the qualitative trend of lm(et) has not
significantly changed, giving also in this case a value of r∗

equal to 1.6. The different quantitative results obtained, can
be explained by pointing out that a greater value of η gives
rise to a decrease of the average hop number needed to reach
the sink; this results in greater values of the pheromone level
increment in one step and then in an increase of the value
of lm(et). In Figure 4(c), we plot the pheromone distribution
over V setting η = 8 and r = r∗ = 1, 6. Comparing Figures

4(b) and 4(c) we can observe that the produced gradients
are quite similar. Such result is obtained thanks to the bal-
ancing of the excitation - evaporation process expressed by
the parameter r that allows to easily adapt the swarm-based
protocol in environments where the node density is not uni-
form.

Once the parameter r has been set, the pheromone gra-
dient quality is not influenced by the pheromone emission
rate λ. However, changes of λ can have a strong influence
on other system properties, such as network timing. For this
reason, it is important to carefully estimates such dependen-
cies in order to properly set the value of λ. In Figure 6(a),
the time et to reach a stable state is plotted as a function
of the pheromone emission rate, fixing r = r∗ in both η =
4 and η = 8 conditions. It can be observed that increasing
either λ or η, shorter values of et are obtained. This trend
is due to an improvement on the information distribution in
the network that allows to propagate the pheromone signal
faster; it is correlated to the following causes: i) An increase
of λ results in an increase of the number of messages per
second received by each node, allowing them to reach their
stable pheromone level faster; ii) An increase of the neigh-
bor number increments the number of nodes that are able
to receive a message, thus producing a more pervasive infor-
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Figure 6: (a) Time to reach the stable condition (et) versus λ varying η, (b) corresponding average signalling
overhead per node (m), and (c) corresponding average energy consumption per node (e).

mation dissemination. However, as λ assumes high values,
the gap between the two curves is reduced, demonstrating
that when the number of messages exchanged per second is
high, the above mentioned second cause is mitigated.

An important aspect related to the time to reach the sta-
ble state is the average number m of signalling messages sent
by each node. We can define such parameter starting from
the pheromone emission rate as:

m = λ · et (20)

In Figure 6(b) the value of m is plotted as a function of the
pheromone emission rate and varying the neighbor number.
The graph shows that the average number of message needed
to reach the stable state increases with λ. Even in this case,
an increase of η from 4 to 8 gives rise to an improvement
of the performance index, denoted by lower values of m. In
fact, a greater value of η allows to reach a greater number
of nodes with the same number of sent messages, thus re-
ducing the global number of messages needed to reach the
stable state. However, since η is related to the transmission
range of each node we need to take into account also energy
consumptions aspects, in the computation of the cost needed
to reach the stable condition. As described in [7], the energy
cost per bit E(tr) required to exchange a message between
a node and its η neighbors can be computed as:

E(tr) = (1 + η)(E(ele) + E(proc)) + Cd · tα
r (21)

where E(ele) and E(proc) are the consumptions due to the
transceiver electronics and the processing functions, Cd is
a constant factor, tr is the transmission range needed to
cover the distance between the sender and the receivers, as
defined in Section 3.1, and α is the exponential power decay
factor. Assuming to have a regular grid where nodes are
uniformly distributed, it is possible to express the value of
η as a function of tr and ds. In fact, since ds is the distance
between any two adjacent nodes, the transmission range to
obtain a value of η = 4 will be tr4 ≥ ds, while to obtain a
value of η = 8 it will be tr8 ≥ ds ·

√
2. The average energy

cost per node needed to reach the stable state can then be
expressed as:

e = E(tr) ∗ m (22)

In accordance with [13], we use the following values for set-

ting the parameters in (21): E(ele) = E(proc) = 0.15mJ/bit,
Cd = 0.018mJ/(bit ·mα), and α = 2.5. Moreover, assuming
to have a square area of 380 × 380m2 we set ds = 20m,

tr4 = 24m, and tr8 = 32m. In Figure 6(c) we observe
that, as expected, the average energy consumption needed
to reach the stable state increases as λ increases. However,
a comparison between Figures 6(b) and 6(c) shows that,
notwithstanding the lower value of messages needed, when
η = 8 we obtain a greater energy cost than the case η = 4.
Using the proposed model, it is then possible to estimate the
cost associated to the time needed to reach the stable state
and, in order to respond to particular application-specific re-
quirements, a trade-off between et and e can be opportunely
found during the setting phase of the network. In the follow-
ing, when not explicitly expressed, we will refer to a value
of η equal to 4.

Next experiments aim at analyze the pheromone gradient
construction process by leaving the regular network topol-
ogy conditions assumed so far. First of all, we focus our
attention on the sink position. In Figure 7 we plot the
pheromone distribution over V in the stable state placing
the sink in a decentralized position (Figure 7(a)) and plac-
ing two sinks in the area (7(b)). Through such diagrams,
we can assess that the pheromone gradient is reached also
when no symmetries are present in the network and that
the proposed model is able to capture the behavior of the
protocol in generating a correct pheromone gradient also in
presence of different maximums. In order to test the model
in more complex scenarios, in Figure 7(c),we considered a
larger uniformly distributed grid of 1180×1180m2, that cor-
responds to nh = 60 and nw = 60, with a grand total of N
= 3600 sensors, with 16 sinks placed in random locations.
Figure 7(c) validates the gradient construction process. In
fact, using the same protocol configurations found for a sim-
ple scenario, the SI algorithm is able to create a well formed
pheromone gradient also in a completely different situation,
making such routing technique suitable in non predictable
scenarios. Such scenario also demonstrates the scalability of
the proposed analytical technique that can be easily adopted
in the analysis of very large networks.

The robustness of the algorithm when the neighbor num-
ber is not constant has been analyzed through the study
of the pheromone gradient in scenarios where some sensor
nodes are removed from the network, as shown in Figure
8. We analyzed two different situations. In the first one
(Figure 8(a)), contiguous areas of nodes are removed from
the network, reproducing scenarios where nodes fail due to
conditions strictly related to the geographic position. In the
second one (Figures 8(b) and 8(c)), a percentage of nodes
is randomly removed from the network, thus producing ir-
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Figure 7: Pheromone gradient over V in the stable condition when (a) the sink is decentralized, (b) two sinks
are present in the network, and (c) the network is composed by a grid of 3600 sensor nodes with 16 sinks.
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Figure 8: Pheromone gradient over V when some nodes are removed from the network. (a) Contiguous areas,
(b) 20% of nodes, and (c) 35% of nodes.

regular network topologies. Node failures can be observed
as white spots in the graphs. From the analysis of the left
plot, we observe that the SI behavior allows to create a use-
ful gradient by diffusing the pheromone level around the
areas where node failures occurred, without degrading its
performance. When the network topology becomes very ir-
regular, as shown in the center and right plots, the gradient
construction process still works forcing the obtained gradi-
ent to follow the network topology. However, increasing the
number of nodes removed from the network (Figure 8(c)),
the gradient quality rapidly decreases, as can be noticed
from the enlargement of the white areas in the graph. Such
phenomenon can be explained as follow. Figure 9 shows
the pheromone distribution over V in the above conditions
(20 % and 35% of nodes removed from the network) high-
lighting the positions of broken nodes (gray circles). When
nodes are removed from the network, other nodes happen
to be “isolated” due to the break of paths toward the sink.
Such nodes (highlighted in the graphs through “x” symbols)
increase when the topology becomes very irregular giving
rise to the enlargement of the areas not covered by the sink
and thus reducing the gradient quality. Notwithstanding
such side effect, the swarm-based protocol diffuses the phe-
romone level around the broken nodes allowing to carry out
routing decisions among those nodes still connected to the

sink.
To reduce the rise of disconnected areas, it is possible to

increase the transmission range of each node. In Figure 9(c),
we plot the pheromone distribution when exactly the same
nodes of Figure 9(b) are removed from the network but with
the maximum mean neighbor number η fixed to 8. It is pos-
sible to observe that the increased range of activity of each
node allows to reduce the presence of isolated nodes thus
increasing the pheromone gradient quality. In this way, we
are able to improve the network reliability to the detriment
of the power consumption and then of the network lifetime.

5. CONCLUSIONS
The analytical study of the gradient formation in large

WSN with up to many thousands of nodes has been carried
out resorting to systems of interacting Markovian Agents.
Swarm intelligence mechanisms in which the global behavior
is build up starting from very short range interactions (each
agent is able to interact only with its first neighbors) have
proved to be particularly suited to be analyzed with the MA
technique proposed in this paper. Various examples show
the adaptability of the algorithm to the changing conditions
of the WSN, in terms of parameter values and topology.
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Figure 9: Removed nodes (circles), isolated nodes (X), and the pheromone distribution over V in the stable
condition.
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