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ABSTRACT

Multi-access networks exhibit severe unfairness in through-
put. Recent studies show that this unfairness is due to local
differences in the neighborhood structure: Nodes with less
neighbors receive better access. We study the unfairness in
tandem networks, and adapt the multi-access protocol to
remove the unfairness completely, by choosing the activity
rates of nodes appropriately as a function of the number of
neighbors.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: Queueing theory; C.2.1
[Computer-communication networks]: Network archi-
tecture and design—wireless communication

General Terms

Performance, Theory

Keywords

Loss networks, Markov processes, multi-access, throughput,
wireless networks

1. INTRODUCTION
Multi-access protocols such as CSMA [10] and the IEEE

802.11 standard have gained much popularity for their abil-
ity to regulate the access of network nodes to a shared com-
munication channel in a simple and fully distributed fashion.
A major drawback of these protocols, however, is that they
can exhibit severe unfairness, in the sense that some of the
nodes get starved, while others get good access. One of the
main causes of this unfairness is that all nodes are treated
the same, irrespective of their position in the network. We
propose a way of compensating for the possible spatial dis-
advantages of nodes by enhancing the multi-access protocols
with local information.
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The phenomenon of unfairness is an active topic of re-
search. Wang and Kar [15] considered three nodes on a line
that only block their direct neighbors, and showed that the
middle node is starved when the activity rate of all three
nodes is increased. Such unfairness has been studied for
more general networks by Durvy et al. [3, 4] and Dente-
neer et al. [2]. We study the same model as in [2, 3, 4], a
one-dimensional network with n nodes in tandem, in which
active nodes block a certain subset of other nodes. Un-
blocked nodes become active, and active nodes deactivate,
after exponential times. Since under these exponential as-
sumptions the n-dimensional process that describes the ac-
tivity of nodes is a reversible continuous-time Markov pro-
cess, it is well known that the stationary distribution pos-
sesses an elegant product-form solution. That is why this
idealized tandem network in fact strikes the proper balance
between simplicity and tractability, while retaining the es-
sential features of competition and unfairness.

We confine ourselves to a network of n nodes in tandem,
in which an active node blocks the first β nodes on both
sides, and we say that nodes that might block each other
are neighbors. Results from [2, 3, 4] suggest that the unfair-
ness observed in this model is completely due to boundary
effects. In order to deal with the unfairness, we shall modify
the model in one important way: Instead of letting nodes
activate at the same rate, we allow for the possibility that
different nodes have different activity rates. By choosing the
activity rate λi of node i as a particular function of the num-
ber of its neighbors, we can guarantee that all nodes in the
network have the same long-term throughput, eliminating
the unfairness completely. Our main contribution is that we
prove that this fair choice of activity rates λi = λ∗

i takes on
the extremely simple form

λ∗
i = σ(1 + σ)γ(i)−γ(1) (1)

with γ(i) the number of neighbors of node i, and σ any pos-
itive constant. We note that these simple node-dependent
activity rates are still in line with the distributed nature of
the multi-access protocol, because λ∗

i only requires the num-
ber of neighbors, which can be obtained locally by sensing
the direct environment. By choosing the activity rates ac-
cording to (1) we essentially impose long-term fairness. The
first result in this direction is due to Kelly [8], who consid-
ered a tree (of which the tandem network is a special case)
with nearest-neighbor blocking (β = 1).

If we choose the activity rates as in (1) and let σ → ∞,
the throughput approaches 1/(β + 1), the highest possible
throughput. Recently, Jiang and Walrand [7], Rajagopalan
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and Shah [13] and Liu et al. [11] all proposed protocols for
determining the activity rates that can attain this maximal
throughput in general networks. To this end, they intro-
duce adaptive mechanisms that converge over time to the
throughput-optimal activity rates. The main difference be-
tween our approach and the results from [7, 11, 13] lies
in the fact that we obtain an explicit expression for the
throughput-optimal and fair activity rates, rather than re-
lying on an algorithm to find these. In fact, our explicit
solution can be used as a benchmark for validating, in this
particular case, the algorithms that occur in [7, 11, 13]. In
addition to giving insight into the operation of the network,
these explicit rates also provide immediate optimal perfor-
mance of the network, rather than first going through a tran-
sient stage during which nodes have to learn the right ac-
tivity rates. Although the results discussed in our paper are
only valid for tandem networks, it seems that we can extend
the Markov random field approach from [8] to larger block-
ing distances and more involved topologies, like trees and
grids.

The remainder of this paper is structured as follows. In
Section 2 we introduce the model in more detail. In Section 3
we investigate some of the key features of the unfairness that
arises when all nodes have equal activity rates. Section 4
contains the proof of the fact that the activity rates in (1)
yield equal throughputs. Section 5 presents some conclu-
sions and further research directions.

2. MODEL DESCRIPTION
We consider a linear array of n nodes, and assume a β-

hop blocking model, in which a transmitting node blocks
the first β nodes on both sides. When node i is blocked,
it remains silent until all nodes within distance β are inac-
tive, at which point it tries to activate after an exponentially
distributed time with mean 1/λi, but only if node i is still
unblocked when the exponential timer runs out. Without
loss of generality, we assume transmissions last for an ex-
ponentially distributed time with unit mean. Under these
assumptions, the n-dimensional process that describes the
activity of nodes is a continuous-time Markov process.

Each state of the Markov process is described as

ω = (ω1, . . . , ωn) ∈ {0, 1}n,

where ωi = 1 when node i is active. Let Ω ⊆ {0, 1}n be the
set of all feasible states. Call ω ∈ Ω feasible if no two 1’s in ω
are β positions or less apart, i.e., ωiωk = 0 if 1 ≤ |i−k| ≤ β.

The Markov process that describes the activity of nodes is
then fully specified by the state space Ω and the transition
rates

r(ω, ω′) =







λi if ω′ = ω + ei,
1 if ω′ = ω − ei,
0 otherwise.

(2)

Here ei denotes a vector with all zeros except for a 1 at
position i.

Alternatively, we can express the set of feasible states as
all states that satisfy a certain system of linear equations.
Let A be an (n − β) × n matrix where each row contains
β + 1 consecutive 1’s, in the following way:

A =















1 1 . . . 1 0 . . . 0 0
0 1 1 . . . 1 0 . . . 0

. . .
. . .

...
0 . . . 0 1 1 . . . 1 0
0 0 . . . 0 1 1 . . . 1















. (3)

Now we can write the state space as Ω = {ω ∈ {0, 1}n |
Aω ≤ C}, where C is a vector of size n containing all 1’s.
This characterization has a natural interpretation as a set
of capacity constraints. Indeed, we allocate to each node v
unit capacity, and say that whenever v, or any node within
distance β from v is active, this capacity is used. Nodes can
activate only when enough capacity is available. The i-th
row of A thus represents the capacity required for activity
of node i. The constraints that arise from the final β nodes
are redundant, and ignoring these leads to the matrix A
in (3).

From this description, it is clear that our model belongs
to the general class of loss networks; see Kelly [9]. Loss
networks are known to possess product-form solutions. For
our Markov process, this product-form solution is given by
the measure π on Ω for which

π(ω) =

{

Z−1∏n
i=1 λωi

i if ω is feasible,
0 otherwise,

(4)

and where Z is the normalization constant that makes π a
probability measure. This result is well-known in this con-
text, see e.g. [1, 2, 3, 15].

Denote the total number of feasible states by K, let Ω =
{Ω1, . . . , ΩK}, and introduce the n×K incidence matrix X
such that Xik = 1 when the ith element in the state Ωk

equals 1.
Our main concern is with the long-term behavior of nodes,

characterized by their throughputs. A common throughput-
degrading phenomenon in wireless networks is collisions, that
may occur when multiple nearby nodes transmit simulta-
neously, causing these transmissions to fail. However, we
assume that the blocking range β is sufficiently large to
prevent any collisions, so that all activity of a node con-
tributes to its throughput. We study the throughput vector
θ = (θ1, . . . , θn), where θi represents the fraction of time
node i is active, i.e.,

θ = X · Π. (5)

with Π = (π(Ω1), . . . , π(ΩK)). Although a model without
collisions might seem limited, numerous simulation studies
show that choosing the blocking range just large enough to
preclude collisions gives very good performance, see e.g. [6,
14, 16, 17]. In fact, in an upcoming paper we show that this
choice is throughput-optimal for settings with large activity
rates.

By exploiting the structure of the network, we can con-
struct alternative expressions for the throughput in (5). Specif-
ically, we shall make use of the observation that if node i
is active, nodes to the left of i behave independently from
nodes to the right of i. This leads to the following theorem.

Theorem 1. Define the sequence (Zi) such that Zi = 1
for i ≤ 0, and

Zi = 1 + λ1 + · · · + λi, i = 1, 2, . . . , β + 1, (6)

Zi = Zi−1 + λiZi−β−1, i ≥ β + 2. (7)
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When the vector of activity rates λ = (λ1, . . . , λn) is sym-
metric we get

θi = λi
Zi−β−1Zn−i−β

Zn
, i = 1, . . . , n. (8)

Proof. If we condition on node i being active, we can
decompose the activity of the network into two parts, sepa-
rated by this active node (see Boorstyn and Kershenbaum [1],
Equation (15)),

θi = λi
Z1:i−β−1Zi+β+1:n

Z1:n
, (9)

where Zi:j is the normalization constant of a network con-
sisting only of nodes i, . . . , j. For simplicity we denote Zi :=
Z1:n, and from symmetry of λ we get

Zi:n = Z1:n−i+1. (10)

Substituting (10) into (9) gives us the expression for θi in (8).
By conditioning on the activity of node i, we immediately
get the recursive relation (7) for the Zi (see [12]).

3. UNFAIRNESS
We first venture deeper into the issue of unfairness. We

assume all nodes to have equal activity rates λi = σ and,
for ease of presentation, we restrict ourselves to β = 1. As
observed by Durvy et al. [3] and Denteneer et al. [2], the
throughput distribution is highly unfair in this setting. The
unfairness can be explained by the node-in-the-middle phe-
nomenon discussed for example in Wang and Kar [15] and
Garetto et al. [5]. They consider the case n = 3, β = 1, and
explain that the middle node is in an unfavorable position
as it has to wait for both outer nodes to deactivate, whereas
these boundary nodes each only have a single neighboring
node.
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Figure 1: The per-node throughput for β = 1 and

various values of n and σ

Figures 1(a)-1(d) show the per-node throughput for vari-
ous values of n and σ. All figures display a similar pattern,

with the outer nodes having the highest throughput. More-
over, the throughput is symmetric in all figures, and exhibits
some form of oscillatory behavior. These observations are
formalized in the following result.

Proposition 1. For λi = σ > 0, i = 1, . . . , n and β = 1,
the throughput has the following properties:
(i) Symmetric: θi = θn−i+1, i = 1, 2, . . . , n.
(ii) Alternating and converging: (−1)i(θi+1 − θi) is positive
and decreasing for i = 1, 2, . . . , bn/2c.

The proof of Proposition 1 is presented in Appendix A.
In Figure 1 we see that for nearest-neighbor blocking,

the largest difference in throughput is between θ1 and θ2:
The boundary node has a far better position than its di-
rect neighbor. Indeed, as proved in Proposition 1(ii), this is
the most unfair situation, and it persists even in larger net-
works where the node-in-the-middle problem is mitigated by
the activity of the remaining nodes. In fact, as the number
of nodes becomes large, we have the following result.

Proposition 2. As n → ∞,

θ1

θ2
∼ 1 +

√
1 + 4σ

2
. (11)

Proof. We have that θ1 ∝ Zn−2 and θ2 ∝ Zn−3, where
Z0 = 1, Z1 = 1 + σ, Zi+1 = Zi + σZi−1. It immediately
follows that (see [12])

∑

i

Zix
i =

1 + σx

1 − x − σx2
,

and so

Zi ∼
1√

1 + 4σ

(

1 +
√

1 + 4σ

2

)i+2

,

which gives the result.

We note that for β = 1, alternative descriptions of Zi exist
of the forms

Zi = (−σ)
1
2
(i+1)Ui+1(

√

−1/4σ)

where Un(x) is the nth Chebyshev polynomial of the second
kind, and

Zi =

b i+1

2
c

∑

j=0

(

i + 1 − j

j

)

σj .

The latter expression can be interpreted as the summation
over all possible combinations of nodes that can be active
simultaneously.

Figure 1 shows another interesting characteristic of this
network. Increasing σ leads in many cases to a higher through-
put for each of the nodes. Hence, in such situations, one may
want to increase σ further. However, we also observe that
there exists a critical value σ∗, such that at least one of
the throughputs θi decreases as σ increases beyond σ∗. The
characterization of this critical value is a possible topic for
future research.

Results similar to those presented in this section can be
obtained for β ≥ 2. As an example, Figures 2(a)-2(b) show
the per-node throughput for n = 9 and β = 2, 3. Both
figures exhibit similar oscillatory behavior as observed for
β = 1, although the oscillation period increases with β.
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Figure 2: The per-node throughput for n = 9 and

various values of β and σ

4. FAIRNESS
In this section we present a way to completely remove

the unfairness observed in Section 3. In order to do so, we
choose node-dependent activity rates λi such that all nodes
have equal throughput. Hence, we aim for strict fairness
of the form θ1 = θ2 = · · · = θn. From (4) and (5) we
see that in order to meet this objective we have to solve a
system of n nonlinear equations. It appears that in general
this system cannot be solved directly. We therefore choose
a more indirect approach, for which we first consider two
special cases that considerably reduce the complexity of the
problem. The first case is where β = n − 2, so that all but
the two outer nodes will block the entire network.

Proposition 3. For tandem networks with 3 or more
nodes, and β = n−2, setting λ1 = λn = σ and λi = σ(1+σ)
for all other nodes yields equal throughputs

θi =
σ

1 + (n − 1)σ
, ∀i. (12)

Proof. The expression for the throughput in (5) can be
written as

θ1 = Z−1λ1(1 + λn), (13)

θi = Z−1λi, i = 2, 3, . . . , n − 1, (14)

θn = Z−1λn(1 + λ1). (15)

The inherent symmetry of the model allows us to set λ1 =
λn. Moreover, for the throughput of the other nodes to
be equal, we require λ2 = · · · = λn−1 = λ1(1 + λ1). If
we set λ1 = σ, and substitute this into (13)-(15), we get a
throughput of

θi = Z−1σ(1 + σ). (16)

The normalization constant Z can be determined by sum-
ming over all feasible states:

Z = 1 +
n
∑

i=1

λi + λ1λn

= 1 + (n − 2)σ(1 + σ) + 2σ + σ2

= (1 + σ)(1 + (n − 1)σ). (17)

Substituting (17) into (16) yields (12).

The instance n = 5, β = 3 of Proposition 3 was considered
in [2].

The second special case corresponds to the situation where
the number of nodes n equals 2(β+1), so that a node blocks
at least half of the network.

Proposition 4. For tandem networks with n = 2m nodes,
m ∈ N, and β = m − 1, setting λi = σ(1 + σ)i−1 for
i = 1, . . . , m yields equal throughputs

θi =
σ

1 + mσ
, ∀i. (18)

Proof. To achieve equal throughputs, we see from (4)
and (5) that for the case at hand we should solve the system
of equations

λ1 + λ1(λm+1 + · · · + λn) = λ2 + λ2(λm+2 + · · · + λn)

= λ3 + λ3(λm+3 + · · · + λn)

...

= λm + λmλn. (19)

Indeed, the throughput of node i can be written as a sum
over all states in which node i is active. Using symme-
try, (19) can be written as

λ1 + λ1(λ1 + · · · + λm) = λ2 + λ2(λ1 + · · · + λm−1)

= λ3 + λ3(λ1 + · · · + λm−2)

...

= λm + λmλ1. (20)

Let λ1 = σ > 0. The solution to (20) reads

λi = σ(1 + σ)i−1, i = 1, . . . , m,

and this yields

θi = Z−1σ(1 + σ)m. (21)

We can obtain Z by summing over all possible states:

Z = 1 +
n
∑

i=1

λi +
m
∑

i=1

λi

n
∑

j=i+m

λj

= 1 +
m
∑

i=1

λi +
m
∑

i=1

λi(1 + λ1 + · · · + λm−i−1)

= 1 + ((1 + σ)m − 1) + mσ(1 + σ)m

= (1 + mσ)(1 + σ)m. (22)

Substituting (22) into (21) gives (18).

It is clear that the complexity of the system of equations
governed by (5) reduces considerably for the choices of β
discussed in Propositions 3 and 4. For general β, however,
this system remains rather complicated, and the approach
taken in the proofs of Propositions 3 and 4 no longer seems
to work. This is mainly due to the fact that the equations
are nonlinear.

Hence, instead of solving the system of equations in a di-
rect fashion, we now take a different approach. First observe
that the fair activity rates in Propositions 3 and 4 only de-
pend on the number of neighbors (nodes within distance β)
that each node has. Denote by γ(i) the number of neigh-
bors of node i, let σ > 0, and define activity rates λ∗

i as
in (1). We see that this choice is consistent with the fair
activity rates in Propositions 3 and 4. We now show that λ∗

i

indeed achieves fairness for all β. To this end, we first show
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that when the activity rates are chosen according to (1), the
recursive relation (6)-(7) for the normalization constant Zi

has a closed-form solution.

Lemma 1. Let σ > 0 and choose λ∗ = (λ∗
1, . . . , λ

∗
n) as

in (1). Then

Zi = (1 + σ)i, i = 1, 2, . . . , n − β. (23)

Proof. This can be verified by substituting the solu-
tion (23) into the relations (6) and (7). For i ≤ β + 1, (6)
gives

Zi = 1 + σ + σ(1 + σ) + · · · + σ(1 + σ)i−1 = (1 + σ)i.

For (7) we see that

Zi = (1 + σ)i−1 + σ(1 + σ)β(1 + σ)i−β−1 = (1 + σ)i,

covering the case i ≥ β + 2.

With Lemma 1 we are now in the position to prove our
main result.

Theorem 2. Let σ > 0 and choose λ∗ as in (1). Then

θi(λ
∗) =

σ

1 + (1 + β)σ
. (24)

Proof. To prove this result we substitute the normal-
ization constants from Lemma 1 into the expression for the
throughput in (8). We distinguish between different values
of i.

For i ≥ β + 1 and i ≤ n − β we see that λ∗
i = σ(1 + σ)β

and

Zi−β−1 = (1 + σ)i−β−1,

Zn−i−β = (1 + σ)n−i−β . (25)

Similarly for i ≥ β + 1 and i ≥ n − β + 1 we have λ∗
i =

σ(1 + σ)n−i and

Zi−β−1 = (1 + σ)i−β−1,

Zn−i−β = 1. (26)

For i ≤ β and i ≤ n − β we have λ∗
i = σ(1 + σ)i−1, and

Zi−β−1 = 1,

Zn−i−β = (1 + σ)n−i−β , (27)

and finally for i ≤ β and i ≥ n − β + 1 we have λ∗
i =

σ(1 + σ)n−β−1 and

Zi−β−1 = 1,

Zn−i−β = 1. (28)

Substituting (25)-(28) into (8) yields

θi = Z−1
n σ(1 + σ)n−β−1. (29)

We next consider the normalization constant. Choose m
such that n = β + m. Then

Zn = Zn−1 + λ∗
nZn−β−1

= Zn−2 + λ∗
n−1Zn−β−2 + λ∗

nZn−β−1

...

= Zn−β +

β
∑

i=1

λ∗
n+1−iZn−β−i. (30)

Substituting (23) into (30) yields

Zn = (1 + σ)n−β +

min{m,β}
∑

i=1

σ(1 + σ)i−1(1 + σ)n−β−i

+

β
∑

i=m+1

σ(1 + σ)n−β−i

= (1 + σ)n−β−1(1 + (β + 1)σ). (31)

Combining (31) and (29) then gives the result.

Theorem 2 suggests a combination of efficiency and fair-
ness that is remarkable for this type of multi-access protocol.
By varying σ, this protocol can achieve any fair per-node
throughput up to 1/(1 + β), which is the highest possible
throughput.

5. CONCLUSIONS AND OUTLOOK
In this paper we studied the unfairness in tandem multi-

access networks. Under the assumption that all nodes have
the same activity rates, we obtained some structural prop-
erties of the network. We then proposed node-dependent
activity rates as a function of the number of neighbors, and
showed that these rates provide equal throughput for all
nodes.

The fair activity rates found in (1) increase with the num-
ber of neighbors. Intuitively, this structure can be explained
by the observation that, as the number of neighbors in-
creases, a node requires a higher activity rate to retain its
throughput. Consequently, the rule in (1), which is exact in
tandem networks, might serve as a heuristic in more com-
plex networks. The performance of such a heuristic can be
easily tested, and is an interesting topic for further research.

Finding activity rates that provide strict fairness for net-
works beyond the tandem network is challenging. Kelly [8]
obtained results for trees with nearest-neighbor blocking,
and finds that rates such as in (1), where nodes on the leafs
of the tree have lower rates than those in the center, provide
strict fairness. For such trees, it seems possible to extend
Kelly’s result to the β-hop blocking situation.

Finally, let us mention that regular networks like grids or
trees may not always be a good representation of topologies
encountered in practice, which in general are less structured.
The results obtained in this paper however rely heavily on
the diagonal structure of the capacity matrix A in (3), which
will no longer exist for more irregular networks. However,
also for more general networks, and hence more general ma-
trices A, the objective of equal througputs boils down to
solving the system of nonlinear equations that follows from
(5). In fact, (5) can be described in terms of the the mapping
(with λ = (λ1, . . . , λn) ∈ (0,∞)n)

λ 7→ θ(λ) = Z · X · Π =

(

∑

ω∈Ω
ωk 6=0

n
∏

i=1

λωi

i

)

k=1,...,n

with θ(λ) ∈ (0,∞)n. It can be shown that the mapping
θ is globally invertible on (0,∞)n. Thus, given a vector
c ∈ (0,∞)n, there is a unique λ = λ(c) ∈ (0,∞)n such that
θ(λ) = c. When c has identical entries, this corresponds
to all nodes having equal throughput. The full analysis of
this fixed-point equation is rather involved and will appear
elsewhere.
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APPENDIX

A. PROOF OF PROPOSITION 1
We first establish an auxiliary result. Define a(i, l, n) as

the number of states in which exactly l nodes are active,
including node i. For successive nodes, the following relation
holds.

Lemma 2. Let n ∈ N, i ≤
⌈

n
2

⌉

− 1. Then:

a(i, l, n) = a(i + 1, l, n), l ≤ i, (32)

a(i, l, n) > a(i + 1, l, n), i odd, i < l ≤ dn/2e , (33)

a(i, l, n) < a(i + 1, l, n), i even, i < l ≤ dn/2e . (34)

Proof. The proof is by induction on i. Conditioning on
activity of node 1 and node n yields the following relations:

a(i, l, n) = a(i − 2, l − 1, n − 2) + a(i − 1, l, n − 1), (35)

a(i, l, n) = a(i, l − 1, n − 2) + a(i, l, n − 1). (36)

The boundary conditions are readily found as

a(0, l, n) = 0 for all n and l;

a(1, l, n) = 1 for l > 0 and all n;

a(1, l, n) = 0 for l ≤ 0 and all n.

Hence, the initialization step of the induction is

a(0, l, n) < a(1, l, n), 0 < l < dn/2e ,

a(0, l, n) = a(1, l, n), l ≤ 0.

Consider odd i ≤ dn/2e − 2, let i + 1 < l < dn/2e, and
assume a(i, l, n) > a(i + 1, l, n). Using (35) and (36) we get

a(i + 1, l, n)

= a(i + 1, l − 1, n − 2) + a(i + 1, l, n − 1)

< a(i, l − 1, n − 2) + a(i + 1, l, n − 1) = a(i + 2, l, n).

This proves assertion (33). Assertions (32) and (34) can be
proved in a similar manner.

We now use Lemma 2 to prove Proposition 1.

Proof. (Proposition 1) (i) This can be shown by rewrit-
ing the throughput as follows:

θi = Z−1
∑

l

a(i, l, n)σl

= Z−1
∑

l

a(n − i + 1, l, n)σl = θn−i+1.

(ii) First, we show that (−1)i(θi+1 − θi) is positive. That is,

(−1)i(θi+1 − θi)

= (−1)iZ−1
∑

l

(a(i + 1, l, n) − a(i, l, n)) σl

= (−1)iZ−1

bn/2c
∑

l=i+1

(a(i + 1, l, n) − a(i, l, n)) σl > 0, (37)

where the inequality follows from Lemma 2. Using (37),

Proposition 1(ii) follows from

(−1)i(θi+1 − θi)

= (−1)i
(

θi+1 − Z−1
∑

l

a(i, l, n)σl
)

= (−1)i
(

θi+1 − Z−1
∑

l

(a(i, l − 1, n − 2)

+ a(i, l, n − 1))σl
)

> (−1)i
(

θi+1 − Z−1
∑

l

(a(i, l − 1, n − 2)

+ a(i + 1, l, n − 1))σl
)

= (−1)i
(

θi+1 − Z−1
∑

l

a(i + 2, l, n)σl
)

= (−1)i+1(θi+2 − θi+1).

This completes the proof.
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