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ABSTRACT
The most fruitful use of a performance model is to study
deep properties of the system, and hypothetical situations
that might lead to improved configurations or designs. This
requires executing experiments on the model, which eval-
uate systematic changes. Parameter estimation methods
also exploit search in a parameter space to fit a model to
performance data. Estimation, sensitivity and optimization
experiments can require hundreds of evaluations, and the
efficiency of the analytic model solver may become an issue.
Analytic models usually provide fast solutions (compared
to simulations) but repetitive solutions for near-neighbour
models offer opportunities for further reducing the effort.
This work describes an experiment driver for a layered queue-
ing solver which provides a factor of two improvement. It
also raises the issue of domain-specific languages for model
experiments, versus general languages with suitable libraries.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Distribution func-
tions

General Terms
Performance

Keywords
Performance Analysis, modeling languages, sensitivity, ex-
periment control, efficient solution

1. INTRODUCTION
The ability to solve a single performance model is just a

building block for constructing studies of performance prob-
lems. A study will solve the model for variations in parame-
ter values (and perhaps also in model structure) correspond-
ing to different possible system designs or deployments, and
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will evolve depending on the results obtained. To define
the evolution of the model, an experiment system is used.
When there are many model-solutions to be obtained, the
efficiency of the experiment system is a critical factor in its
usability.

This paper considers efficient experimentation through in-
tegration of the experiment definition and the solver, for
analytic layered queueing (LQ) performance models of com-
puter software and systems. It considers the potential sources
of greater efficiency, language design issues to exploit these,
and describes the choices made in designing LQX (Layered
Queueing eXperimenter). LQX provides variables for model
parameters and general-purpose computation on these vari-
ables, combined with an API to the model to generate solu-
tions and extract results.

Important types of experiments on performance models
include:

1. Obtaining results for a predefined set of model param-
eter values, which may be:

• Traversal: varying one or two parameter values
across a given range, to explore the effect of changes.

• A full factorial experiment (see e.g. [11] for a dis-
cussion) has a list of values for each of several
parameters, and evaluates all combinations.

• a partial factorial experiment, in which certain
combinations are selected to evaluate single factor
and multi-factor effects, without the combinato-
rial explosion of the full-factorial design.

Traversal experiments on one or two parameters are
extremely common in all kinds of performance studies,
both with models and with measurements on running
systems. Figure 1 sketches an example.

2. Sensitivity: providing a matrix of estimated partial
derivatives of a set of performance measures with re-
spect to a set of parameters. Estimation requires a
base case plus one solution for a slightly perturbed
value of each parameter (a special case of a partial-
factorial experiment). This is used to linearize the re-
sponse of the performance model, either for gradient
optimization or for estimating parameters [25, 24].

3. Model Iteration: solving a model whose parameters de-
pend on previous solutions of the same model. An ex-
ample is a parameter whose value depends on the sys-
tem throughput, such as a collision rate or hit rate pa-
rameter. This is a common feature of extended queue-
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ing models. An example with a network collision rate
is shown in Section 5.4.

4. Optimization of model parameters by a direct search
technique requiring repeated model solutions. This re-
quires integration of the solver and the search tech-
nique, which may be feasible for relatively simple search
logic. A simulated annealing process in [12] generated
thousands of model solutions. This does not apply to
more elaborate optimization packages which have their
own architecture, as used, for example, in [15].

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  5  10  15  20  25  30

T
h
r
o
u
g
h
p
u
t

n

y=5
y=25
y=45
y=55

Figure 1: 2-parameter traversal, no of users on hor-
izontal axis, image reads varying across a set of
curves

There is a long history of experiment systems for per-
formance models. The IMSE Experimenter [7] is a com-
prehensive system which can invoke runs on a model using
either a planned pattern of parameter changes or a strat-
egy to compute new parameters from previous runs. The
Experimenter has a graphical interface in which each run
is a node with attributes, including parameter-setting op-
tions. QNAP2 [22] for queueing networks and SPNP [3, 8]
for Petri nets both combine model definition and model so-
lution in a single programming language, with a solution
section that can run multiple runs with parameter varia-
tions. In these systems the experimentation and solver are
partly integrated, in the sense that the model construction
is performed only once (as in LQNX) but the solver does not
exploit a previous solution. These tools support both ana-
lytic and simulation models; simulation-only systems often
have an experimental capability implicit in the simulation
control (e.g. CSIM [20]).

Recently Smith et. al. [21] have proposed a language called
Ex-SE for defining experiments at a level above the model-
solving tool, as part of their PMIF proposal for exchanging
queueing models between solvers. They describe the capa-
bilities of Ex-SE as including:

• Changes in parameter values from one execution of a
model to the next.

• Specification of control in performing model studies,
including iteration and alternation.

• Variables that are local to the experiment to be used
in computations and output.

• Model-results dependent execution.

• Use of previous output as input to subsequent runs.

• Specification of the output metrics to be returned.

• Solution type specifications.

All of these capabilities are also provided by LQNX, with
the addition of results analysis capability, and its primary
goal of solver/experimenter integration for efficiency.

Smith et. al. [21] also compare some prior experiment sys-
tems as to their model definition interface (GUI or Lan-
guage), experiment definition (GUI or Language, integrated
or separate) and additional features such as the ability to
feed back results to control experiments (as in IMSE or
SPEX [9]), and debugging capability.

Experimentation may also be combined with additional
facilities for building models from component submodels, a
feature which is not considered here since the opportunities
for efficient integration cannot be applied when the model
structure changes. In [1], candidate sets of component sub-
models are composed and evaluated to optimize component
selection in a flexible product line. In IMSE, submodels are
solved separately and coordinated by setting parameters of
one model from results of another, possibly iteratively. Mod-
els may be in any of three different formalisms. Möbius [4]
has a similar capability, but also submodels that share a
state space may be composed and invoke an integrated so-
lution technique.

As far as we know, the experiment control has never been
fully integrated with the solver to enhance solution effi-
ciency, as in LQNX. The present approach combines this
integration with control of parameters either according to
a programmed plan, or as functions of previous solutions,
governed by logic expressed in a general programming lan-
guage. The opportunities to enhance the solution efficiency
are three-fold:

• The initialization of the solver may be the bulk of its
execution time; this can be avoided for all subsequent
solutions if only a parameter value has changed.

• In an iterative approximate solver, for instance for any
extended queueing model or Markov model, the next
iteration can begin from the previous solution. For a
small parameter change, the previous solution may be
close to the next solution and give much faster conver-
gence of the iterations.

• The logical control over the exploration of parameters
can reduce the number of solutions required.

This paper describes LQX and how it integrates the experi-
ment definition with the modeling language, and the execu-
tion of experiments with the solution process, in our solver
LQNX. The relative efficiency with LQNX, compared to a
previous experiment system, ranges from a 30% to 210% im-
provement in execution time and other measures of effort.

2. LAYERED QUEUEING NETWORKS
Layered queueing is an extended queueing formalism de-

signed for systems with software servers. Basic queueing
models represent jobs that use one resource at a time, with
resources modeled as servers. In layered queueing a server
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may make a blocking request to a lower layer server, and
the waiting and service of this request becomes part of the
requester’s service time. To compensate for blocking de-
lays, servers are often made multithreaded, so that when one
thread blocks, others may continue. Multithreaded servers
are represented by multiservers, as are pools of processors
in a cluster. The model can also include non-blocking inter-
actions and parallel operations.

The concepts of layered queueing will be explained with
reference to a substantial example in Figure 2, representing
an e-commerce system. A system is made up of software en-
tities called tasks (shown as large parallelograms), offering
classes of service called entries (shown as attached parallel-
ograms) and running on host processors (shown as circles).
The execution of an entry requires service by the host, indi-
cated by a CPU demand [s] in square brackets in the entry,
and requests to other entries, which are indicated by an ar-
row to the entry labeled by a mean number of requests (y).
The tasks, entries and interactions provide the structure of
the model; the parameters are the values of [s] and (y), and
the multiplicity of the tasks {m}.

2.1 I llustrative Example
The example shown in Figure 2 will be used to demon-

strate the capabilities of LQX with LQNX.
A top-level task models users or sources of load for the

system, with a parameter for a think time (between requests)
and a multiplicity which is the number of users of that class.
Figure 2 represents two groups of users, with 50 users in the
first group and 100 in the second.

All task names begin with ‘T’ and all entry names begin
with ‘E’, to remind the reader of their roles in the model.
The users behaviour is defined by the entries EUserBehi ,
and they alternate between a period of thinking (1000 ms
for TUser1, 5000 ms for TUser2) and a single request to
EStoreAccess, defining the service given for each access to
a web page of the electronic store. This service includes a
combination of

• images read from the webserver’s own disk, by ERdImg

• browsing access to the site, including product descrip-
tion pages with details from the inventory database,
by EBrowse

• shopping cart operations gathered together in the en-
try EOrder, including buying the cart contents

• login of established customers before purchase.

Notice that an entry may represent a single interface oper-
ation of the system, or may gather several service functions
together. For example, the entry EOrder may gather to-
gether several separate service functions related to the shop-
ping cart, because their operations, and particularly their
access to lower services, are similar.

Performance questions relating to ECOMM could include:

• scalability (maximum users supported with a specified
response time)

• location of the bottleneck(s)

• sensitivity of the system capacity to execution demands
of some of the services,

3. LQN SOLUTIONS
LQNs are a kind of extended queueing network, and ana-

lytic solutions use mean-value analysis and extended queue-
ing techniques. The LQNS solver, used here, uses iterative
techniques to incorporate the blocking requests and grew
out of [23, 19]. As described in [6, 5], it creates a set of ordi-
nary queueing network “layer submodels”, in which blocking
delays are represented by surrogate delays imported from
other submodels. Other solvers for layered resources use
variations of this approach [19, 16, 13, 17].

The solution process has six steps;

1 Read and parse input file.
2 Construct LQN model objects with parameters.
3 Construct Layer submodels.
4 Initialize iterative solution process and Layer submodels.
5 Execute iterative solution to convergence.
6 Write output file.

When solving multiple models using the existing exper-
iment tools (SPEX or MultiSRVN [18]), all of these steps
must be performed for each individual experiment because
experiment control is a separate process disjoint from model
solution, shown in Figure 3(a). When using LQNX, shown
in Figure 3(b), steps 1 through 3 need only be executed once
as the LQN model objects and the layer submodels will be
re-used. Running step 1 only once will substantially reduce
I/O time. Further, by restarting the iterations for step 5 at
the previous solution, the iterative solution itself is expected
to take fewer steps.

The sections that follow describe submodel construction
(step 3), initialization (step 4), the iterative solution (step
5), and how LQNX restarts the MVA solution.

3.1 MVA Submodel Construction
A LQN is solved by breaking up the original input model

into a set of submodels, each of which can be solved as a
conventional queueing network, then iterating among these
submodels until a solution to the overall network is found.
The solver first sorts topologically the tasks and processors
in the input model into a set of layers starting from tasks
which never accept requests and working on down the call
tree, as shown in Figure 2. Submodels are then constructed
from top to bottom starting at layer 2. Submodel s is con-
structed by first finding all of the tasks and processors at
layer l = s + 1 and treating these objects as the servers
for the submodel. Next, all of the tasks that make direct
requests to these servers are included in the submodel as
clients. Clients in the submodel act as customers in the
corresponding queueing network. A task can call itself, so
it can appear as both a client and a server in a submodel.
Figure 4 shows Submodels 2, 3 and 4 for the E-Commerce
system shown in Figure 2. Note that the task TStoreApp

appears as a server in submodel 2, and as a client in sub-
models 3 and 4.

The submodels are solved using the Linearizer approxi-
mate Mean Value Analysis [2], and results are exchanged
between layers. The service and think times for the queue-
ing stations and customers are found using the waiting time
array associated with each task and processor in the LQN,
illustrated in Figure 5 for task TStoreApp. The index of the
array corresponds to the submodel, and the value stored at
that index in the array corresponds to the response time for
the object when it appears as client in that submodel. The
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Figure 2: ECOMM: A LQN model of an E-Commerce System.
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Figure 4: Submodels containing task TStoreApp
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Figure 5: Waiting time components for TStoreApp.

service time for a server in a submodel is found by summing
up all of the elements of the waiting time array. The think
time for a customers in submodel s consists of a surrogate
delay [10] found by summing up all of the elements except
for the one at index s in its waiting time array plus its idle
time when it acts as a server. For example, when TStoreApp

appears as a client in submodel 4, it’s surrogate delay is it’s
response time at task TCart in submodel 2, plus its idle time
found during the solution of submodel 2.

Other layering strategies exist. One extreme is to form
submodels with exactly one server. Unfortunately, the ac-
curacy of this approach can suffer because the surrogate de-
lays don’t necessarily capture the contention effects at other
servers. The other extreme is to use only one submodel
with tasks acting as both clients and servers simultaneously.
However, this strategy results in queueing models with a
large number of stations and chains, which can take a long
time to solve in Linearizer. The approach described here

is a compromise between these two extremes and is much
like the approach used in the Method of Layers (MOL) [19]
except that MOL places all of the processors in a separate
layer effectively at the deepest call depth in the model.

3.2 In itialization
The initialization phase of the solver is used to initialize

the service time and populations in the submodel queue-
ing networks, and to set the minimum value of the response
times at each of the tasks in the LQN. First, since the pro-
cessors in the model consume “time”, the service times spec-
ified for the entries of tasks must be propagated down to the
processors. The service time at the processor is

ζe =
se

1 +
P

ye, d
(1)

where se is the service time for the entry as specified in the
input model, and ye,d is the request rate from entry e to
entry d.

Next, the blocking times at lower level servers must be
propagated up to their callers. This process starts at the
lowest submodel (corresponding to the deepest layer in the
LQN) and works it up so that the service time for layer
l is the sum of the residence times at all of the layers,
l + 1, l + 2, .... Since processors are treated uniformly, the
service time set earlier reappears as one of the components
of the residence time in the waiting time structure shown in
Figure 5 after this step. Finally, the “Type-one” throughput
bound is computed as the reciprocal of the initial value of
the residence time for all of the tasks in the model.

Digital Object Identifier: 10.4108/ICST.VALUETOOLS2009.7807 
http://dx.doi.org/10.4108/ICST.VALUETOOLS2009.7807 



3.3 It erative Solution
The solution of a LQN involves three levels of nesting,

The outermost iteration of the solver is used to solve the
submodels starting from the top-most submodel and work-
ing down. This pass propagates idle times down to the lower
level servers. Next, submodels are solved in the reverse or-
der in order to propagate contention times up through the
layers. This process continues until the change in the utiliza-
tions of all of the tasks and processors is sufficiently small,
or if a pre-determined iteration limit is hit. The number of
outer iterations is shown under the column labeled n in the
results below.

The conventional queueing network corresponding to a
submodel is solved using Linearizer approximate MVA [2].
The Linearizer algorithm consists of two layers of iterative
solutions. The outermost layer invokes the core Schweitzer
approximate MVA algorithm I +(I−1)K times, where K is
the number of chains (or job-classes) in the queueing model,
and I was set at 3. The innermost layer, the core algo-
rithm, iterates until the change in the queue length at all of
the stations converges to some pre-determined value, call-
ing one-step MVA on each iteration. One-step MVA is used
to compute the queue length for all M stations over all K
chains in the queueing model. The computational cost of
the core algorithm is O(MK2) operations. The number of
times the waiting time computation is called is shown under
the column labeled wait() in the results below.

3.4 It eration Restart
One of the objectives of incorporating iteration control

within the solver itself, rather than as an external program
as with SPEX and MultiSRVN is to reduce the number of it-
erations described in the preceding section by restarting the
new solution from the value of the previous one. This objec-
tive is achieved by changing the initialization operation in
step 4. Rather than initializing everything, only those wait-
ing time components at processors whose slice time found
using (1) which has changed is updated. The residence time
at the processor is changed in proportion to the change in
the slice time. All of the waiting times found elsewhere are
unaffected, so the iteration can start at a solution which is
substantially closer to the final solution.

4. THE LQ X EXPERIME NT L ANGUAGE
The LQ Experiment Control Language (LQX) is a general-

purpose programming language whose primary purpose is
to specify certain parameters of an LQN model in a flexible,
consistent manner.

4.1 Defining the Model
One of the defining characteristics of the LQNX system

is that the input model is defined with parameters that can
be set either explicitly and directly from the input file or
set as variables. The definition of the model is entirely sep-
arate from the LQX language, which is used solely for the
purpose of setting the value of variable parameters. Certain
systems allow for creation and manipulation of the structure
of the input model directly from the experiment control lan-
guage [22, 3].

Each approach has its advantages and disadvantages. Us-
ing the language to modify the parameters of a pre-defined
model has the advantage of separating the structure from
the flow of control surrounding experiment parameters. This

makes the model easier to understand and to makes it sub-
stantially easier for external tools to parse the model and
to change its structure. The disadvantage of having a fixed
model structure is that small modifications to the structure
must be tested by creating separate model file/script pairs.
These must then be run through a new instance of the solver.

Keeping the structure of the model fixed, however, has
the potential benefit of allowing for accelerated convergence
in iterative models. By changing only the input parameters,
it is possible to keep all of the state surrounding the last
convergence of the model and to use it as a starting point.
For small changes in parameters, this has the potential of
decreasing the number of iterations substantially. This also
creates the opportunity of not having to re-build the model,
saving a potentially large amount of time.

The approach taken by the LQNS/LQNX system is to
utilize XML to clearly define the structure of the model, in
a method that is easy to parse by any external tools. The
language itself is unable to modify the structure of the model
to ensure that the definition is always in sync with what is
actually being solved. The language is able to modify any
parameters specified as being editable in the model itself.

4.2 Bindings between LQX and theSolver
Whatever approach is selected, the language must expose

a set of bindings to the solver and to the model parameters.
How these bindings are exposed can depend heavily on the
nature of the language, such as whether it is a functional or
an object-oriented programming language. For example, an
object-oriented programming language may expose a docu-
ment object model for interacting with the system, similar
to that of JavaScript and the HTML DOM, for manipulat-
ing parameters. The experiment control language must also
have a way of invoking the solver, either as an explicit call
or an implicit one. Additionally, the language must decide
whether or not to expose the results of a solution to be fed
back into the solver, and how they should be exposed. Once
again, this would depend heavily on the language.

In the LQX language, there are two kinds of variables,
language variables and external or model variables. Exter-
nal variables always begin with a ‘$’, and as such are clearly
distinguishable from language variables. In most locations
within the model, the value of an attribute may either be
specified as a constant number, or as a model variable begin-
ning with ‘$’. When the LQX language assigns a value of an
external variable, that change takes place in all identically-
named locations within the model. This allows multiple pa-
rameters to stay in sync, and reduces the chance of acci-
dentally forgetting to set certain parameters. Additionally,
when the solver is invoked, it verifies that all external vari-
ables in the model have had values assigned.

The interface from the LQX language to the solver itself
is a single function call, solve(), which returns whether
or not the model solved successfully, to the point of con-
vergence. The LQNS/LQX system provides a method of
accessing all of the results generated by solving the model,
such that they can be fed back. They are exposed through
a partially object-oriented API as described subsequently.

4.3 The LQX Language
The LQX language itself takes a number of cues from

primarily-procedural languages such as PHP (PHP Hyper-
text Preprocessor) and ANSI-C. The language includes a
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Listing 1: Sample LQX program
foreach ( $x in [0.1, 0.2, 0.3]) {

if (solve () == true) {
t1 = task("t1");
ph1 = phase (t1 , 1);
print (" Phase 1 Utilization of T1: ",

ph1.utilization );
}

}

small number of data types numerical, boolean, string and
object. The LQX language is dynamically typed, and in its
initial incarnation has no support for user-defined functions
or data types. The language includes support for common
C constructs such as postfix notation, function calls and for

loops, but also brings in more modern constructs such as as-
sociative arrays and foreach loops for iterating over them.
Additionally, the language is dynamically typed to make it
as flexible and expressive as possible. Due to its roots in C
and PHP, the language is very clear and readable. The use
of dynamic typing helps make it terse enough to both write
quickly and read easily.

The decision to base the language on C and PHP was
made because of the pervasiveness of not only of the C
and PHP programming languages, but also their derivatives.
People with a passing familiarity with one of any number of
modern programming languages would be able to pick up
LQX quickly, with minimal learning curve. The goal of the
language was to make it as simple as possible for users to
get started parameterizing their models, and make it flexible
enough to fulfill the vast majority of their needs.

By providing a general purpose programming language
rather than a domain specific programming language, the
users gain a large amount of flexibility. A variety of dif-
ferent APIs can be exposed. For example, file IO can be
exposed for writing custom-formatted reports or for reading
data from separate input files. Listing 1 shows how a user
would parametrize a simple model, with one variable defined
in the model, $x, and obtain the Phase 1 utilization of a task
named “t1,” and write it on the console.

5. COMMO NLY PERFORMED EXPERI-
MENTS

In this section the most commonly performed experiments
are described, and the efficiency of LQNX is compared to
that of our previous experiment system SPEX [9]. The ex-
periments will be performed on the ECOMM model shown
in Figure 2. The parameters of that model with symbolic
names (beginning with $) may be controlled by LQX; in a
given experiment some subset of them is varied. To describe
the experiments in a general way, the following notation will
be used: X = (x1, x2, ...) = set of model parameters that are
controlled in a given experiment.

5.1 Parameter Traversal
The most common parameter traversal reported in a per-

formance study is the response time or throughput, against
the workload intensity expressed by the number of users or
the arrival rate. Figure 1 earlier showed such a traversal for
ECOMM, varying the users in Group 1 ($nUsers1) from 1 to

Listing 2: LQX Program for the Parameter Traver-
sal Experiment (§5.1).
webserver = task(" TWebServer ");
foreach ( $yRdImg in [5 ,15 ,25 ,35 ,45 ,55]) {

foreach ( $nUsers1 in [1,3,5,10,15,18,
19 ,20 ,21 ,22 ,25 ,30] ) {
$nUsers2 = 2 * $nUsers1 ;
solve ();
print ( $yRdImg , " ", $nUsers1 , " ",

webserver .throughput );
}

}

Table 1: Performance Comparison of LQNX vs
SPEX for the Parameter Traversal Experiment
(§5.1).

Solver n wait() Elapsed CPU
SPEX 522 64785128 15.32±0.31 13.34±0.03
LQNX 437 9334452 7.12±0.11 5.54±0.01

η 1.2× 6.9× 2.2× 2.4×

30 and in Group 2 ($nUsers2) from 2 to 60 in direct propor-
tion, and including a variation of the parameter $yRdImg,
the number of image files per web page, from 3 to 18. For a
small number of pages the system bottleneck is the database,
while for $yRdImg > 45 approximately, it shifts to the im-
age disk. The LQX code to run the traversal experiment is
shown in the Listing 2.

Table 1 compares the iteration effort by the solver, and the
running time, between SPEX without integration with the
solver, and LQX. The column labeled n shows the number of
outer iterations of the solver and wait() show the number of
times the inner-most waiting time calculation was executed.
The last two columns show the“wall-clock”and CPU time to
run the experiments, the former including blocking caused
by I/O operations. The execution time was averaged over 10
replications of the solution, to obtain confidence intervals.
The LQNS solver invoked by the two experiment tools was
the same, with the same solution options.

The improvement is due to reduced iterations between the
layer submodels, starting from the previous solution. If the
system is not saturated, the next solution does not require
a large number of new iterations, but as a resource becomes
a bottleneck, any change can have a large affect on the re-
sponse times, thus requiring more iterations to converge. If
the foreach loops were written in the opposite order, then
the incremental change would be in $yRdImg which might
require more iterations to converge.

5.2 Full -Factorial Exploration
A two parameter traversal is a simple example of a full

factorial experiment. If N parameters are varied and have
M levels each, a full factorial experiment requires NM model
solutions. A small example with three parameters with three
levels each was performed: X = ($s1, $y1, $s2), parameters
labeled on Figure 2. Listing 3 shows the LQX code for this
experiment.

Table 2 compares the effort between the two tools. The
iterations are reduced by a third, but are still substantial.
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Listing 3: LQX Program for the Full-Factorial Ex-
periment (§5.2).
sFrd = [1,2,3,4,5];
yBwsIvRd = [5.74 ,6 ,47 ,7.3 ,7 ,93 ,8.66];
sInvUpd2 = [8 ,9 ,10 ,11 ,12];
foreach ( $s1 in sFRd ) {

foreach ( $y1 in yBwsIvRd ) {
foreach ( $s2 in sInvUpd2 ) {

solve ();
}

}
}

Table 2: Performance Comparison of LQNX vs
SPEX for the Full Factorial Experiment (§5.2).

Solver n wait() Elapsed CPU
SPEX 1517 356858100 85.85±0.34 79.21±0.04
LQNX 961 11318310 25.68±1.38 16.29±0.06

η 1.6× 31.5× 3.3× 4.9×

5.3 Partial Factorial Exploration
A partial factorial design (see, e.g. [11]) omits some pa-

rameter combinations. For example, instead of all combina-
tions, the base case may be perturbed by changing only one
parameter at a time (a traversal in each dimension). For
N parameters with K levels for each one, this reduces the
number of solutions from NK to NK + 1. To include inter-
action effects, parameters may also be varied in pairs, for all
pairings. We should expect similar efficiency, as in the full
factorial case.

5.4 Model It eration
In some models a parameter is known only as function

of the solution. The model can be solve by fixed-point it-
eration on the entire model, by solving it, recomputing the
parameter, and repeating until convergence. The results of
a solution of a model are used to change the inputs of the
model.

As an example, we will consider the model in Figure 6,
containing a local network modeled by the approximate ex-
tended queueing model based on a description by Lazowska
et. al. ([14], Sec 15.3). The network is represented by the
infinite server (pure delay) task “Network”.

The contention delay depends on the mean number n of
contending users. In our model contending users all occupy
“Transmit” while waiting to transmit, so the mean number
is the mean utilization of this server. Then the probability
of a successful attempt is A = (1 − 1/n)(n−1), the average
unsuccessful attempts is C = (1−A)/A and the mean delay
to a successful transmission is $cont delay = C× (packet
transmission time). This is coded in LQX in Listing 4 below.

The same iterative computation was done in a version
of SPEX, using the same parameter update function. The
results in Table 3 compare the two systems. LQNX took
just over two-thirds the total model iterations.

5.5 Sensitivity Matr ix
A sensitivity value for this discussion will be taken to be

the derivative of some performance measure with respect
to some parameter. A sensitivity matrix J is the Jacobian

Client {10}

Send
[0,0.004]

P_Client
{inf}

Contention {inf}

Contend
[X]

Network {inf}

Transmit
[0.004]

Server

Receive
[0.0004]

P_Contention
{inf}

P_Network
{inf} P_Server

(0,1) (0,1) (0,1)

Figure 6: Carrier Sense, Multiple Access Collision
Detect feedback model.

Listing 4: LQX program for the Model Feedback
Experiment (§5.4).
$prop_delay = 0.0000025;
old_delay = -1;
transmit =entry (" Transmit ");
do {

util = phase(transmit ,1). utilization ;
if ( util >= 1 ) {

prTrans = 1.0;
} else {

prTrans = (1 -(1/ util ))**( util -1);
}
avgSlots = (1- prTrans )/ prTrans ;
if ( avgSlots != 0 ) {

$cont_delay = avgSlots * $prop_delay ;
} else {

$cont_delay = 0.0;
}
solve ();
delta = old_delay - $cont_delay ;
old_delay = $delay ;

} while ( abs( delta ) > 0.00001 );

Table 3: Performance Comparison of LQNX vs
SPEX for the Model Feedback Experiment (§5.4).

Solver n wait() Elapsed CPU
SPEX 16 69392 0.119±0.003 0.058±0.003
LQNX 8 17632 0.087±0.004 0.044±0.003
η 2.0× 3.9× 1.4× 1.3×
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Listing 5: LQX program for the Sensitivity Analysis
experiment (§5.5).
foreach ( i in [0,1,2,3,4,5,6,7] ) {

$sEInvRd =2;
$sEBrowse =15;
$sECustRd =3;
$sERdImg =1;
$sEBuy =30;
$sEAccess =2;
$sEShipService=230;
if (i==1) $sEInvRd =$sEInvRd *1.01;
else if (i==2) $sEBrowse =$sEBrowse *1.01;
else if (i==3) $sECustRd =$sECustRd *1.01;
else if (i==4) $sERdImg =$sERdImg *1.01;
else if (i==5) $sEBuy =$sEBuy *1.01;
else if (i==6) $sEAccess =$sEAccess *1.01;
else $sEShipService=$sEShipService *1.01;
solve ();

}

Table 4: Performance Comparison of LQNX vs
SPEX for the Sensitivity Experiment (§5.5).

Solver n wait() Elapsed CPU
SPEX 151 27629100 7.62±0.24 6.94±0.02
LQNX 63 1643094 1.14±0.06 0.99±0.00

η 2.4× 16.8× 6.7× 7.0×

of a vector of measures (model outputs) with respect to a
vector of model parameters, computed at a base value of the
parameter vector. It is defined as

Jij =
dyi

dxj

dyi/dxj can be estimated by an experiment in which xj is
displaced by a small fraction (a 1% displacement was used
here).

If a performance model is a nonlinear function of its pa-
rameters, the Jacobean matrix gives a local linearization.
The Jacobian matrix is required for nonlinear estimation of
model parameters, as described in [25, 24]. It also provides
a gradient vector for a gradient optimization technique, for
parameter optimization. The pattern of parameter values is
a special case of a partial factorial experiment.

6. SUMMARY AND C ONCLUSIONS
This paper has described an experiment control language

integrated into the analytic Layered Queueing Network Solver,
LQNS. The performance model being analyzed is specified
using XML; the control program is specified as an optional
element within the model. This approach allows the in-
terchange of the model with other XML-based tools which
would be difficult if a completely custom modelling language
were used instead.

The control language, LQX, is loosely based on C and
PHP, in order to retain the familiar if not terse syntax of
these common programming languages. LQX, like many
other modern scripting languages, is dynamically typed and
supports boolean, string and numerical types. Model ele-
ments such as tasks, processors and entries are also types in
the language, so that outputs from a solution can be refer-
enced and fed back as inputs into the LQX program. LQX

also supports associative arrays, so arbitrary data structures
can be created as needed.

The analytic solver described here attempts to improve
the performance of solving multiple models by integrating
the experiment control into the model solution. Rather
than starting all iterations from scratch for each experiment,
the solver starts from the previous solution. In the mod-
els shown here, the number of times the underlying waiting
time calculation for the MVA solver was called was reduced
from 3.9 to 31.5 times, and run-time improvements of from
1.4 to 6.7 times were achieved over comparable experiments
which invoked the solver on separate model files. Further
improvements to the solution speed should be possible as
the algorithms are refined.
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