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ABSTRACT
We consider a multi-class single server queueing network as a
model of a packet switching network. We discuss how such
networks perform a proportionally fair optimization when
congested. We discuss the connections between product
form queueing networks, insensitivity and proportional fair-
ness. We prove that stationary throughput of a closed multi-
class single server queueing network converges to a propor-
tionally fair allocation as the number of packets across routes
increases. We then let the rate packets enter different routes
of the network be controlled by congestion windows, which
record the number of sent but not yet acknowledged packets
on each route of the network. By considering a sequence of
such congestion windows we allow the network to become
congested. We show that these networks maximize aggre-
gate utility subject to the networks capacity constraints. To
perform this analysis we require our utility functions to sat-
isfy an exponential concavity assumption. This family of
utility functions includes the weighted α-fair family of utili-
ties for parameter α > 1.

1. DISCUSSION
As a queueing network becomes congested the demand

for its resources increases and the network becomes more
competitive. The share of the resources received is often ex-
pressed in terms of utility optimization subject to the net-
works capacity constraints.

Initial work on effective bandwidths [3, 6] considered the
demand different traffic sources i ∈ I imposed on a queue
j ∈ J of capacity Cj . A large deviations analysis showed the
bandwidth required by traffic sources imposed a constraint

X
i∈I

Λi ≤ Cj ,

where Λi is expressible in terms of the log moment generat-
ing function of the traffic load of source i ∈ I.

As a method of allocating resources and introducing fair-
ness, subsequent work of Kelly [7] considered utility opti-
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mization of the form

maximize
X
i∈I

Ui(Λi) (1)

subject to
X
i:j∈i

Λi ≤ Cj , j ∈ J , (2)

over Λi ≥ 0, i ∈ I, (3)

where Ui is an increasing convex utility function. We call
this optimization problem the system problem. In addition
[7] introduced proportional fairness as the unique solution
to the optimization problem

maximize
X
i∈I

m̄i log Λi

subject to
X
i:j∈i

Λi ≤ Cj , j ∈ J ,

over Λi ≥ 0, i ∈ I.

We call this optimization problem the network problem or
the proportionally fair optimization problem. The paper [7]
considered the combined solution of the network problem
and the following user problems, for each i ∈ I

maximize Ui

`m̄i

qi

´− m̄i

over m̄i ≥ 0. (4)

This combined solution was considered under the relation

m̄i = Λiqi, i ∈ I, (5)

where qi =
P

j∈i qj and (qj : j ∈ J ) are the Lagrange
multipliers associated with the network problem. Theorem
2 of Kelly [7] found under (5) that the combined solution
of the network and user problem gave the solution to the
system problem.

This result was constructed to suggest an end-to-end argu-
ment for providing optimization and fairness across a com-
munication network. The result provided a method for de-
composing the system problem into a user problem that is
independent of the network structure except through pa-
rameter qi and a network problem that is independent of
users preferences except through parameter m̄. Interpreted
in the context of a communication network this separated
the preferences of users performing end-to-end communica-
tion and the network’s preferred optimal behaviour. In [7]
the solution is interpreted as setting prices (qj : j ∈ J ) for
sending traffic through the network. With these prices each
user, i ∈ I, chooses an amount of money m̄i it is willing toICST 
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pay per unit of time. From this the user receives an amount
of bandwidth Λi = m̄i

qi
.

By construction this result considers a static model and
the end-to-end argument performed by users is implicit. Sub-
sequent work has successfully used differential equations to
add dynamics to this notion of optimization and decompo-
sition [10, 4, 8, 16], other work has considered the form of
utility optimization achieved by different protocols [17, 14,
11] and authors have also considered stochastic models of
flow across a network [12, 1, 2].

In 1979, Schweitzer [15] studied approximations of closed
multi-class queueing networks and considered how asymp-
totic conditions on such networks might satisfy the Kuhn-
Tucker conditions for proportionally fair optimization. In
1989, Kelly [5] studied approximations of closed queueing
networks and by an analogous analysis considered a similar
optimisation formulation. In 1999, Massoulié and Roberts
[13] studied a fluid type queueing model and used these
same Kuhn-Tucker conditions to deduce proportional fair-
ness. Using large deviations and heavy traffic analysis, re-
cent work of Walton [18] and Kelly, Massoulié and Walton
[9] have provided rigorous formalisations of the relationship
between closed queueing networks and proportional fairness.

The connection between multi-class queueing networks
and proportional fairness gives a much more literal meaning
to the network problem. With this in mind, we construct
a queueing system consisting of a multi-class queueing net-
work and congestion windows. This queueing system asymp-
totically executes Theorem 2 of Kelly [7]. This analysis leads
us to think of the flow through the network in a similar way
to the flows found for effect bandwidths and instead of in-
terpreting q and m̄ as prices and wealth we interpret them
as round-trip times and congestion window sizes.

In this queueing system congestion windows record the
number of sent but not yet acknowledged packets on each
route of a multi-class queueing network and sends packets
into this network at a rate which is a function of this number.
We allow a sequence of congestion windows to congest the
multi-class queueing network and we study the large devia-
tions behaviour of the stationary distribution of the queue-
ing system. Noting the user problem (4) is reminiscent of a
Legendre-Fenchel transform we allow a sequence of conges-
tion windows to solve a modified user problem. As discussed
above when congested the multi-class queueing network will
solve the network problem. The relation (5) will be satis-
fied as it describes Little’s Law for the number of packets
on transfer on each route. Thus the queueing system will
asymptotically satisfy the network problem, the user prob-
lem and relation (5). So given Theorem 2 of Kelly we expect
our queueing system to optimize the system problem.

We find in our analysis that we require each utility func-
tion to satisfy an exponential concavity condition, that the
map λ 7→ Ui(e

λ) is concave.
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