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ABSTRACT
In this paper, we propose a robot assisted localization guided
by rigidity checking. For a network to be localizable, it must
be rigid, which means given the existing edge constraints,
there is only one location for each node in it. Many networks,
however, are not rigid. To localize these nonrigid network,
a robot can be used to add additional distance measure be-
tween nodes so that the network becomes rigid and local-
izable. To facilitate the localization and reduce the travel
cost of the robot, the rigid subregions of the network are first
identified. The identification of rigid subregions provides a
guide for the movement of robots. A brief introduction to
rigidity theory is presented in this paper. Experiments that
evaluate the performance of the proposed approach are pre-
sented. The experimental results prove that the proposed
approach is sound and gives excellent results compared to
previous approaches for localization.

General Terms
localization, sensor networks, robotics

1. INTRODUCTION
The recent advancements in wireless communication and

sensing technology have resulted in wide deployment of sen-
sors in applications like environmental monitoring, search
and rescue, military surveillance, and intelligent transporta-
tion, etc [1, 8, 12]. In these types of applications, the knowl-
edge of the location of each sensors is important. Due to
constraints of these application, however it is often difficult
to preset the locations of sensors before they are deployed.
Therefore, the capability of obtaining the positions of sen-
sors after the deployment is fundamental to the success of
the mission of sensor networks.

Most of the node localization algorithms are based on
range measurements, through either time of arrival (TOA)
[14], time difference of arrival (TDOA) [11], or received sig-
nal strength (RSS) [2, 9]. The problem of localization is to
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derive the geolocation of a node given a set of known loca-
tions and range measurements to these locations. The prob-
lem of self-localization is to derive geolocations of all nodes
in a sensor network given range measurements between these
nodes. Given the available range measures, there is only one
position for the nodes in the network, then the network is
localizable. Similarly, if a node has only one position that
satisfies all the range measures relevant to it, it is localiz-
able. There are four basic ways to obtain the location of
sensors: 1) GPS or other global positioning techniques. If
each sensor has GPS receiver and the sensors are deployed
in some open space, then the locations of sensors can be
easily known. With the appropriate equipment, GPS can
provide a resolution of up to 5cm. However, the high cost
of GPS receiver makes it impractical for each sensor to have
one. 2) Beacon-based trilateration. If there are enough bea-
cons, the localization can be done via trilateration in which
a sensor can caliberate its own position if it can measure
the distance to three nodes whose locations are known; This
approach requires in-sight view of beacons or nodes with
known positions. For some sparse network, this may not
be true. 3) Mobile self-localization. When all or part of
the sensors in a network are mobile, the sensors can move
around to add additional distance measures [13, 5] so that
the network becomes localizable. This approach requires a
large number of mobile nodes. It can be used to localize ev-
ery sparse network quickly since the mobile nodes can move
in parallel, but the localization accuracy is subject to the
odometry error of the mobile nodes. 4) Assisted localization
[3, 10]. In this method, a robot travels in depth first search
(DFS) pattern and adds additional distances between un-
localized nodes to localized ones so that unlocalized nodes
become localized.

In this paper, we propose a rigidity-guided and robot as-
sisted localization approach for sparse sensor networks us-
ing multiple dimensional scaling (MDS). In this method, the
nodes of the sensor networks do not move. Intial distance
measures between nodes is provided depending on what each
node can see from its fixed location. In order to make the
network localizable, additional distance measures may be
needed. In our proposed method, a robot is used to travel
in the network to add additional distance measures to turn
the network into a localizable one. The difference between
the proposed approach and the approach in [10] is that the
travel of the robot is guided by rigidity checking and the
localization is done via multiple dimensional scaling. By
checking the rigidity of the network, the rigid subregion of
the network can be identified, therefore the robot does not
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Figure 1: This network is rigid but cannot local-

ized by trilateration if there is only three beacons.

However, it can easily be localized by MDS.

have to move to most of the nodes that are inside rigid sub-
regions. Moreover, the proposed method has less stringent
requirement on the positions of beacons than the method in
[10] due to use of multiple dimensional scaling, see figure 1.

This paper is organized as follows. An introduction to the
rigidity theory is presented in Section 2. Section 3 discusses
the proposed approach in details and the evaluation and ex-
periments are presented in Section 4. Conclusion and future
work are given in Section 5.

2. NETWORK LOCALIZABILITY AND RIGID-
ITY

In this section, we are going to introduce the theory in
network localizability and rigidity. A detailed description
can be found in [6, 3, 4].

Let a framework p(G) be a graph G = (V, E) along with a
mapping p : V → R2 which assigns each vertex to a point in
the plane. A finite flexing of a framework p(G) is a family
of realizations of G, parameterized by t so that the location,
ri , of each vertex i, is a differentiable function of t and
|ri(t)− rj(t)|

2 is constant for every (i, j) ∈ E. Thinking of t

as time, and differentiating the edge length constraints, we
have

(ui − uj)(ri − rj) = 0 for every (i, j) ∈ E (1)

An assignment of velocities that satisfies Eq. 1 for a particu-
lar framework is an infinitesimal motion of that framework.
Every framework has three trivial infinitesimal motion: two
translations, and a rotation. If a framework has a nontrivial
infinitesimal motion it is infinitesimally flexible. Otherwise
it is infinitesimally rigid. The checking for whether a partic-
ular framework is rigid or not can be determined from the
property of the graph.

Let G = {V, E} denote a network of vertices V = {1, 2, ..., n}
and for any edge (i, j) ∈ E, the distance between Vi and
Vj is precisely known. The network localization problem is
to determine the unique position of each node in the net-
work given the positions of available beacons and the dis-
tance between each pair (i, j) ∈ E. If under the given con-
straints, there is only one position for each node, then the
network is localizable. The network localization problem is
closely related to the Euclidean graph realization problem,
in which coordinates are assigned to vertices of a weighted
graph such that the distance between coordinates assigned
to nodes joined by an edge is equal to the weight of the edge.

For a two dimensional graph with n vertices, the positions
of its vertices have 2n degrees of freedom, of which three are

the rigid body motions. Therefore graph is rigid if there are
2n − 3 constraints. If each edge adds an independent con-
straint, then 2n−3 edges should be required to eliminate all
nonrigid motions of the graph. Clearly, if any induced sub-
graph with n vertices has more than 2n−3 edges then these
edges cannot be independent, which leads to the following
Laman theorem [7]:

Theorem 1. The edges of a graph G = {V, E} are inde-
pendent in two dimensions if and only if no subgraph G′ =
{V ′, E′} has more than 2n′−3 edges, where n′ is the number
of nodes in G′.

Corollary 1. A graph with 2n−3 edges is generically rigid
in two dimensions if and only if no subgraph G′ has more
than 2n′ − 3 edges.

Laman’s theorem characterizes generic rigidity. However,
a direct implementation of it leads to a poor exponential
algorithm. An efficient approach to check for rigidity is pro-
posed in [6] based on a pebble game. Jacob et. al proposed
Jacob’s approach uses the following formulation of Laman
algorithm:

Theorem 2. [6] For a graph G = {V, E} having m edges
and n vertices, the following are equivalent.

• The edges of G are independent in two dimensions.

• For each edge (a, b) in G, the graph formed by adding
three additional edges identical to (a, b) has no induced
subgraph G′ in which m′ > 2n′ .

The basic idea behind Jacob’s algorithm is to grow a maxi-
mal set S of independent edges one at a time. Initially, S is
empty. Let’s denote these basis edges by E.

A new edge is added to S if it is discovered to be inde-
pendent of the edges existing in S. To check whether an
edge e is independent of edges in S, each vertex is assigned
two pebbles initially and a temporary set S′ is created. S′

contains all the edges in S plus four copies of e. The pebbles
can only travel via the edges in S′. If all edges in S′ can be
covered by the pebbles, then we know that e is independent
of all edges in S and e is added into S. This process is re-
peated until no more edges can be added into S. Then S is
a maximal set of independent edges. If S contains 2n − 3
edges, then the graph is generically rigid.

Having 2n−3 independent edges ensures the generic rigid-
ity of a graph. However, it does not guarantee the unique
realization of the network. A discontinuous change to the
positions of nodes may lead to another realization which sat-
isfies all the constraints of the network, as shown in Figure
2. The following theorem states the condition for a network
to be uniquely realizable.

Theorem 3. [4] A graph G with n ≥ 4 vertices is uniquely
realizable in two dimensions if and only if it is redundantly
rigid and tri-connected.

Redundant rigidity means after removing any single edge,
the remaining graph is still generically rigid. A tri-connected
graph is a connected graph such that deleting any two ver-
tices (and incident edges) results in a graph that is still con-
nected. When a network satisfies the condition in Theorem
3, it can be uniquely localized given at least three nonlinear
beacons in a two dimensional space.
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Figure 2: A generically rigid graph subject to flap-

ping transformation. The two realizations are not

continuous in two dimension space in that the sec-

ond one is obtained by a flapping of the first one.

3. THE RIGIDITY-GUIDED LOCALIZATION
As we have discussed above, a network has to be rigid to

be localizable. For those networks that are not rigid, we can
turn it into a rigid one if we have a mobile robot that can
measure the distances between itself and the nodes in the
network up to a certain range. In this section, we are going
to discuss in detail the proposed approach.

Without lack of generality, we assume that the network
is connected. The proposed approach contains two major
steps. In the first step, the robot collects the information
about the network such as the nodes and the edges in it.
With these information, the robot can then identify the rigid
subregions of the network. In the second step, the robot
travels in the network from one rigid region to the next in
order to add additional distance measures so that in the
end the whole network becomes one rigid region and is thus
localizable. The details of the each step are discussed in the
following two subsections.

3.1 Identification of r igid subregions
The reason for searching the rigid subregions is to reduce

the travel of the robot in the later phase of the localization.
If a subregion is already rigid, the robot does not have to deal
with most of the nodes inside the region. To find the rigid
subregions, the robot will check the 1-hop neighborhood of
every node in the network and put those 1-hop neighbor-
hoods that are tri-connected and redundantly rigid into an
initial list of rigid subregions. Recall that a graph is tri-
connected if there are three paths between every two nodes
of the network. Then the robot will try to merge the initial
rigid regions in the list into bigger regions. The condition
for two rigid subregion to be mergeable is that they must
share at least three common nodes. This is implemented as
follows: Two regions are merged if they
Have 3 vertices in common
Two vertices in common and one other vertex in one of the
areas that has 3 edges to the other area
One vertex in common and two other vertices in one of the
areas that have 3 edges each to the other area
No vertices in common but there are 3 vertices in one area
that have 3 edges each to the other area
This process is iteratively repeated until there is no more
regions to be mergeable. In this way, the maximal rigid
subregions of the network can be identified.

3.2 Addition of distancemeasures
In [10], a method is proposed to measure the distance

between two nodes based on distance measures between the

robot and the nodes. Let n1, n2 be two nodes between which
we want to measure the distance. If the robot moves straight
in a plane that contains both n1 and n2, then the distance
between n1 and n2 can be computed, see figure 3, according
to the following proposition [10]:

Proposition 1. The geometry of five co-planar points n0,
n1, m0, m1, m2, where m0, m1, m2 are collinear, is deter-
mined by the distances ||ni −mi|| for i = 0, 1 and j = 0, 1, 2.

This proposition is very easy to prove. The coordinates of
the five points have 10 degrees of freedom, which include 2
degrees of freedom for translation and 1 degree of freedom
for rotation. Therefore, the actual degrees of freedom for
the geometry of the five points are 7. Given the six dis-
tance measures plus the constraint that m1, m2, and m3 are
collinear, the geometry of the five points can be uniquely
determined.

For some very sparse network, there might be no rigid
subregions at all. In this case, we can still obtain a small
rigid subregion. For example, let n1, n2, n3 are three nodes
in the visible neighborhood of the robot. The robot can
move in straight lines and compute the distance between
every pair of the three nodes, thus getting a triangle which
is always rigid. After identifying the rigid subregions, each
node will be assigned a label by the robot, indicating the
ID of the rigid subregions it belongs to. For those nodes
that are not in any rigid subregion, their label is -1. The
mission of the robot is then to travel in the network and
compute additional distances between unconnected nodes,
so that when it stops movement, all nodes in the network
have the same label. We assume that robot can see and
measure distance to nodes up to 3 hops away. For a node n,
if the robot can add distance measures from n to three nodes
in a rigid subregion, then n can be merged into the subregion
and be assign a label equal to the ID of the subregion it
merges to. For two rigid subregions R1 and r2, if three
nodes in R1 are assigned label equal to the ID of r2, or vice
verse, region R1 and r2 can then be merged into a single
rigid subregion and all nodes in R1, r2 will be assigned a
new label. Starting from a rigid subregion, the mobile robot
moves as follows:

1. Start from a rigid subregion

2. Move around its visible area, looking for a node that
is labeled differently

3. For each such node, compute the distance from it to
three nodes in the current rigid subregion using Propo-
sition 1.

4. Change the label of the node and look for the next
node labeled differently.

The Robot contains the areaList (list of vertices in each
rigid subregion) and the adjList (adjacency list of the graph)
of the graph. The Robot has vision that is at 3 hop distance
in the graph. What it means is that assuming that maximum
length of an edge is 5 units then the Robot can see nodes
that are within radius of 15 units.

First the robot adds the area containing the starting ver-
tex to the localized graph by figuring the coordinates of it-
self. Then it travels to a next adjacent vertex. If the next
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Figure 3: Computing distance by measuring the dis-

tances from three points on a straight line.

adjacent vertex has all its edges in the same region, then it
travels to another vertex, until it reaches a vertex that has
an edge to another region. It then tries to annex the new
region by ensuring that there are 3 vertices in that new re-
gion that have 3 edges each to the existing localized graph.
It may need to add new edges that are in 3 hop distance.

The robotic movement in detail is

1. Robot is at v1 of the localized graph. Assume that v5

and v6 in the localized graph are adjacent to v1

2. Robot moves v2, using edge (v1,v2). Assume that v2 is
in a new region R1 Edges to be added while at v2 are
(v5, v2) and (v6,v2) if they do not exist. Now v2 has 3
edges to the localized graph, so v2 is localized

3. Robot moves to v3 using the edge (v2,v3) and assume
that v3 is in R1 Edges to be added while at v3 include
(v5,v3), and (v6,v3), if they do not exist. Now v3 has
three edges to the localized graph so it is localized

4. Robot moves to v4 using the edge (v3,v4). Assume that
v4 is in R1 Edges to be added while at v4 are (v4, v2),
(v4, v1) if it does not exist. Now v4 has three edges to
the localized graph, so it is also localized

5. There are 3 vertices v2, v3, v4 in R1 that have 3 edges
each to a localized part of the graph, so the entire
region R1 can now be localized. The rest of the vertices
in region R1 need not traversed by the robot. The
Robot now continues to travel to a vertex in a region
that is not localized yet.

As you can see, the robot moves in a way similar to depth-
first search. The above moving strategy will guarantee that
the network will eventually become a single rigid region. The
robot also minimizes the traversal and the number of edges
added.

4. EVALUATION
In this section, we are going to evaluate the proposed

approach in localizing various networks. We would like to

study the proposed approach from the following aspects: the
number of edges added by the robot in localizing networks
of various degrees, the reliability and accuracy of the local-
ization, and the effects of noise in the distance measures
obtained by the robots on the localization accuracy.

Figure 4 shows the results of the localization on two net-
works. The top four figures show the test on the first net-
work and the bottom four figures show the test on the second
network. In each test case, the four figures from left to right
and top to bottom are the original network, the rigid subre-
gions, the original network with added edges shown as red
dashed lines, and the localization result respectively. As we
can see, there are five rigid subregions in both networks. By
detecting the rigid subregions, the robot only have to add
enough distances between nodes of different labels in order
to merge the subregions. Therefore, the travel cost of the
robot can be reduced. Figure 4-(d) and figure 4-(h) show
the localization results, in which a circle is drawn around
the estimated positions to make it more observable. The lo-
calization error is indicated by a line segment starting from
the estimated position to the known position. The longer the
line segment, the larger the localization error is. As we can
see, on both cases, the localization error is very small. There
are however, some cases that big localization errors can hap-
pen due to the fact that in the MDS localization algorithm,
the distance between any pair of nodes is approximated by
the shortest path between them. In some irregular networks,
this approximation causes problems. This problem can be
solved by adding more edges to the networks or use a local
patch-based MDS method. For a detailed discussion, please
refer to our previous work [13].

Figure 5 shows the result of evaluating the relationship
between the number of edges added by the robot and the
average degree of nodes in a network. The evaluation is done
on four cases with different number of nodes. By changing
the communication range of nodes, the average degrees of
nodes can be changed. As we can see from this figure, the
number of edges, shown in percentage of the original edges
in the network, decreases sharply when the average degree
increases, which matches our expectation. When the average
degree is less than 4, the number of edges to be added is more
than 50% of the number of the existing edges. When the
average degree increases to 6, only about 20% edges have to
be added by the robot. When the average degree increases
to 8, less than 10% new edges have to be added.

We also carried out an experiment in evaluating how the
error in the distance measure done by the robot affects the
accuracy of the localization. The evaluation is done on ran-
domly generated networks of 20 nodes but different average
degrees. The error in distance measure by robot is modeled
as an multiplicative Gaussion noise with zero mean. The
standard deviation of the error varies from 0 to 0.15. Figure
6 shows the results. The x-axis shows the deviation of the
noise and the y-axis shows the mean localization error. The
curves show the mean localization error and the vertical bar
shows the deviation. As we can see, the higher the average
degree, the smaller effect the error has on the localization.
The communication range of the networks in the four figures
are 23, 29, 35, and 41. The field size is 100*100. When the
average degree is less than 6, we see large localization error
which can be explained by the inaccuracy in the approxi-
mating the distance between nodes by shortest path. When
the average degree increases up to 7, the localization error is
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Figure 4: Two cases of robot assisted localization. The first four figures show a network of 20 nodes. The

last four figures show a network of 100 nodes. For each case, the original network, the rigid subregions, the

edges added by the robot, and the error of localization are shown in left to right and top to bottom order.
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about 10% of the communication range. When the error in
distance measure increases, the localization error also slowly
increases until the distance error becomes larger than 12%
which triggers a large increase in the localization error.

5. CONCLUSION
Localization is an important problem in the application of

sensor networks. In this paper, we proposed a localization
approach for sensor networks using a mobile robot. The
robot travels in the network and add additional distances
between nodes so that the whole network becomes localiz-
able. Based on rigidity theory, the rigid subregions of the
network can be identified. The rigid subregions provide a
guide for the robot in that the robot does not have to deal
with a large portion of the nodes in the rigid subregions.
Simulation experiments show the performance of the pro-
posed approach. The future work will be the coordination
of multiple robots in localization, the study on the reliability
of MDS for localization, and the field test of the proposed
approach.
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Figure 6: Effect of robot introduced error on localization
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