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ABSTRACT
It is well known that the maximum weighted independent
set (MWIS) problem is NP-complete. Moreover, optimal
scheduling in wireless networks requires solving a MWIS
problem. Consequently, it is widely believed that optimal
scheduling cannot be solved in practical networks. How-
ever, there are many cases where there is a significant dif-
ference between worst-case complexity and practical com-
plexity. This paper examines the practical complexity of
the MWIS problem through extensive computational exper-
imentation. In all, over 10000 topologies are examined. It
is found that the MWIS problem can be solved quickly, for
example, for a 2048 node topology, it can be solved in ap-
proximately one second. Moreover, it appears that the aver-
age computational complexity grows polynomially with the
number of nodes and linearly with the mean degree of the
conflict graph.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design–Wireless Communication

Keywords
Maximum Weighted Independent Set; Optimal Scheduling;
Wireless Mesh Network

1. INTRODUCTION
It is well known that optimal throughput in wireless net-

works can be achieved by scheduling transmissions [1]. In
1984, [2] claimed that optimal scheduling is NP-complete.
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Since then, several authors have made similar claims. On
the other hand, it has been shown that under the assump-
tion that co-channel interference does not arise, the prob-
lem is polynomial (e.g., see [3, 4, 5]). Unfortunately, co-
channel interference does arise in typical wireless networks.
For this reason, it is believed that optimal scheduling, with
co-channel interference, is NP-complete, and that optimal
scheduling is computational impossible except for trivial net-
works. In contrast, we have found that in practical scenarios,
optimal schedules can be quickly computed.

This paper examines the computational complexity of op-
timal scheduling in practical wireless networks. Specifically,
optimal scheduling requires solving a graph theoretic prob-
lem known as the maximum weighted independent set (MWIS)
problem. Thus, the complexity of optimal scheduling is tied
to the complexity of MWIS problem. In general, the MWIS
problem is NP-complete [6]. Moreover, it is NP-complete
to approximate the MWIS with an approximation ratio of
n1−ε, for ε > 0, where n is the number of vertices in graph
[7]. On the other hand, there are many classes of graphs
where the MWIS problem has polynomial complexity. For
example, MWIS can be found in polynomial time of perfect
graphs1 [8], disk graphs [9], circle graphs [10], trees [11] and
as well as many families of graphs that are free of particular
subgraphs [12, 13]. The MWIS problem is also solvable in
polynomial time on line graphs. In wireless scheduling, line
graphs arise when there is no co-channel interference.

Beside the restrictive case where there is no co-channel in-
terference and the case of networks restricted to one-dimensions
(e.g., roads), it is unknown whether the MWIS problems
that arise in practical wireless scheduling have any spe-
cial properties that make them solvable in polynomial time.
Nonetheless, through extensive computational experiments
we have found that the MWIS that arises in practical wire-
less scheduling can be solved quickly. As shown in Section
5, the MWIS that arises when computing the optimal sched-
ule for a wireless network with 2048 nodes can be computed
in approximately one second. Moreover, computational ev-
idence indicates that the computation time grows polyno-
mially with the size of the network. This paper will also
demonstrate that the number of nodes and the average de-
gree of the conflict graph (defined in Section 3.2) are good
predictors of the computation time. Other factors such as
node density and bit-rate impact the average degree of the
conflict graph, and hence do not need to be considered be-
yond their impact on the degree of the conflict graph.

1 A perfect graph is one that does not include any chordless cycle
of odd length greater or equal to five.
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The remainder of the paper proceeds as follows. The next
section provides a brief overview of problems with worst-case
exponential complexity that have been found to be easily
solved in practice. Section 3 gives a brief overview of a
way to compute optimal schedules, and, more specifically,
how the MWIS problem arises in computing optimal sched-
ules. Then, Section 4 details how the topologies used in this
study were constructed. Sections 5 - 7 present the results of
computational experiments involving over 10000 topologies.
Finally Section 8 provides concluding remarks.

2. WORST-CASE AND AVERAGE COMPLEX-
ITY

The results of the computational experiments presented
below indicate that optimal scheduling is practical. In par-
ticular, the MWIS problem that arises in wireless schedul-
ing can be quickly solved in practice. These results are
not in contradiction with earlier proofs of NP-completeness,
but rather are well aligned with the practical computational
complexity in a wide range of other NP-complete or expo-
nential problems. For example, consider linear program-
ming. In [14], it was shown that in the worst-case, the
computational complexity of the simplex algorithm is ex-
ponential in the size of problem. On the other hand, there
is an abundance of evidence that in practice, the computa-
tional complexity of the simplex algorithm is m×n where m
is the number of constraints and n is the number of variables
[15]. Moreover, interior point methods have been developed
that have polynomial complexity. However, despite the fact
that interior point methods have a better worst-case per-
formance, state-of-the-art solvers such as CPLEX [16] and
XPress [17] use the simplex method. In summary, there
may be a substantial difference between worst-case compu-
tational complexity and practical computational complexity.

While there are many ways to quantify practical com-
putational complexity, one common approach is to use the
average complexity [18]. By this definition of complexity,
several problems that are NP-complete in the worst case,
are polynomial on average. For example, in graph theoretic
problems, average complexity is the complexity averaged
over solving the problem over random graphs. A random
graph is one where an edge between any two vertices exists
with probability p. Under this definition, it has been shown
that the average complexity of finding Hamilton Cycles and
solving the edge coloring problem are polynomial [19, 20].
In the case of the maximum independent set (MIS) prob-
lem, there exists an algorithm with average complexity of
∑n

k=1

(
n
k

)
2−k(k−1)/2 = O

(
nlog(n)

)
on random graphs with

p = 1/2, where there are n nodes in the graph [21].
The SAT problem, which is NP-complete in general, is

another example of a significant difference between practi-
cal computational complexity and worst-case computation
complexity. While the authors are not aware of any proofs
on average complexity, several researchers have developed
algorithms that can quickly solve randomly generated prob-
lems [22, 23, 24, 25]. Due to the importance of the SAT
problem, the average complexity of the SAT problem has
been extensively studied. One finding is that the distribu-
tion of the problems plays an important role in the average
complexity of SAT problem [26].

The impact of the distribution is troublesome since it in-
dicates that the complexity averaged over a specific distrib-

ution of problems might be significantly different from the
average complexity when averaged over problems that ap-
pear in practice. For this reason, this paper investigates the
practical complexity of the MWIS problems that arise in
computing optimal schedules for wireless networks.

3. OPTIMAL SCHEDULING AND THE MWIS
PROBLEM

Maximizing throughput or maximizing network utility of-
ten directly or indirectly includes solving a MWIS prob-
lem. This section briefly explains how particular approach
to maximize throughput gives rise to a MWIS problem.

3.1 Throughput Maximization
Let φ denote a particular connection, with Φ denoting

the set of all such connections. The data rate along with
connection φ is denoted by fφ and the path followed by
connection φ is denoted by P (φ), that is, P (φ) is the set of
links used by connection φ, and the total data rate sent over
link x is

∑
{φ|x∈P (φ) } fφ, where {φ |x ∈ P (φ)} is the set of

flows that cross link x. All links are directional.
We define an assignment to be a vector v =

[
v1 · · · vL

]
,

where there are L links in the network and where vx ∈ {0, 1}
with vx = 1 implying that link x is transmitting during as-
signment v. The set of considered assignments is denoted
by V , while the set of all assignments is denoted V. Since
vx ∈ {0, 1}, V contains 2L assignments. The size of V is the
main challenging facing throughput maximization. Thus,
typically, V �V.

The data rate across link x during assignment v is denoted
by R (v, x). In general, R (v, x) is a complicated function.
However, here a simple binary relationship is used to define
R (v, x). Specifically,

R (v, x) =

{
Rx if vy = 0 for all y ∈ χ (x)
0 otherwise,

(1)

where χ (x) is a set of links that conflict with x, i.e., y ∈ χ (x)
if simultaneous transmissions over x and y are not possible.
Rx is the nominal data rate over link x. Note that this
definition of R (v, x) neglects the possibility of transmission
errors due to the aggregate interference from several links
not in χ (x). However, as discussed in [27], such problems
can easily be addressed. All computations in this paper
use this technique, and hence the computed throughputs
account for multiple interferers.

The set of conflicting links, χ (x), depends on the commu-
nication model. Arguably, the SINR binary communication
model is the most relevant of the binary models2 and is the
model that is used in this paper. Let SINR (xR ec , yTrans ) be
the SINR at the receiver of link x when the transmitter of
link y is also transmitting. Then, the SINR binary communi-
cation model specifies that y ∈ χ (x) if SINR (xR ec , yTrans ) <
T (x) or SINR (yR ec , xTrans ) < T (y), where T (x) and T (y)
are thresholds that depend on the modulation schemes. If
link layer ACKs are used, then receivers of data frames will
transmit ACKs. Thus, in this case, y ∈ χ (x) if SINR(xR ec ,
yTrans ) < T (x), SINR(xR ec , yR ec) < T (x), SINR(yR ec ,
xTrans ) < T (y), or SINR (yR ec , xR ec ) < T (y). See [28]
for more details.

2 A binary communication model is one that satisfies (1) for some
χ.
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Algorithm 1 Computing an Optimal Schedule

1: Select an initial set of assignments V(0), select a level of
accuracy ρ ≥ 0, and set n = 0.

2: Solve (2) with V = V(n), and, hence, compute the flow
rates f(n) and the Lagrange multiplies µ(n) and λ(n)
associated with constraints (2c) and (2d), respectively.

3: Search for an assignment v(n) such that

v(n) = argmax
v∈V

L∑

x=1

R (v, x)µx (n)− λ(n). (3)

4: case G(f) = minφ∈Φfφ

5: if
∑
L

x=1
R(v(n),x)µx(n)−λ(n)

G(f(n))
< ρ

6: Stop.
7: end if
8: case G(f) =

∑
φ∈Φ log(fφ)

9: if
∑L

x=1R (v(n), x)µx (n)− λ(n) < L log(1 + ρ)
10: Stop.
11: end if
12: set V (n+ 1) = V (n) ∪ v(n)
13: set n = n+ 1, and go to Step 2.

In this paper, it is assumed that all channel gains are con-
stant. Since the focus of this paper is on the communication
over the mesh infrastructure (which is not moving), such an
assumption is reasonable.

A schedule is a convex combination of assignments. Specif-
ically, a schedule is a set {αv : v ∈ V} where

∑
v∈V αv ≤ 1

and αv ≥ 0. With this notation, the total data rate that the
schedule α provides over link x is

∑
v∈V αvRxvx. Finally,

the capacity optimization problem is

max
F,α,f,

F (2a)

subject to:

F ≤ fφ for all φ ∈ Φ (2b)
∑

{φ|x∈P (φ) }

fφ ≤
∑

v∈V

αvR (v, x) for each link x (2c)

∑

v∈V

αv ≤ 1 (2d)

0 ≤ αv for each v ∈ V , (2e)

where f is the vector of flow rates.
As mentioned, the challenge in solving this problem is that

optimality can be achieved if V =V , but V has 2L elements.
Alternatively, the set V can be constructed iteratively fol-
lowing Algorithm 1. It can be proved that Algorithm 1
will converge to the optimal solution. However, Step 3 in
Algorithm 1 requires searching for a new assignment. As ex-
plained in the next section, this step is the same as solving
the MWIS problem. The following was proved in [27].

Theorem 1. Let f (n) be the vector of flow rates found by
the nth iteration of Algorithm 1, let f (∞) be the optimal
flow rates, and let G (f) = minφ∈Φ f (φ). Then (G (f (∞))−
G (f (n+ 1)))/ (G (f (∞))−G (f (n))) ≥ δ for some constant
δ > 0, that is, G (f (n)) converges to G (f (∞)) geometrically
fast. Also, if Algorithm 1 terminates after n∗ iterations with

ρ > 0, then
G(f(∞))−G(f(n∗))

G(f(∞))
< ρ.

3.2 MWIS
The search for a new assignment required in Step 3 of

Algorithm 1 requires solving

max
v

L∑

x=1

R (v, x)µx, (4)

where µx is the Lagrange multiplier associated with con-
straint (2c). As will be shown next, solving this maximiza-
tion is equivalent to finding the maximum weighted inde-
pendent set of the weighted conflict graph.

The utility of the conflict graph for finding schedules has
been demonstrated in several previous works (e.g., [2, 29]).
A wireless network induces a conflict graph as follows. Each
link in the network induces a vertex in the conflict graph.
Thus, a link x in the network is associated with a vertex
in the conflict graph; this vertex is denoted with x, where
whether x refers to a link in the network or a vertex in the
conflict graph is clear from the context. There is an edge
between vertices x and y if y ∈ χ (x), where, as discussed in
Section 3.1, x and links in χ (x) cannot simultaneously trans-
mit. The weighted conflict graph is constructed by assigning
the weight Rxµx to vertex x, where Rx is the nominal data
rate across link x.

An independent set (or stable set) of a graph is a set
of vertices where no two vertices in the set are neighbors.
Thus, an independent set of the conflict graph is a set of
links that are not in conflict and hence, are able to trans-
mit simultaneously. Letting I be an independent set, the
weight of I is the sum of the weights of the vertices in I , i.e.,∑

x∈I Rxµx. Since I is an independent set,
∑

x∈I Rxµx =∑L
x=1R (v (I) , x)µx. Thus, solving (4) is equivalent to find-

ing the maximum weighted independent set.
While there are several techniques available to compute

MWIS, this paper used a technique based ILP via

max
v

L∑

x=1

Rxµxvx (5a)

subject to: vx + vy ≤ 1 if y ∈ χ (x) (5b)

vx ∈ {0, 1} . (5c)

In large networks, there are many constraints (5b). The
computation time can be dramatically improved if a clique3

decomposition is used, where we define a clique decompo-
sition to be a set of cliques {Qi, i = 1, 2, ...M} such that if
y ∈ χ (x), then there is a clique Qi such that x ∈ Qi and
y ∈ Qi. Then, (5) becomes

max
v

L∑

x=1

Rxµxvx (6)

subject to:
∑

x∈Qi

vx ≤ 1 for i = 1, 2, ...,M

vx ∈ {0, 1} .

This paper explores the computational complexity of solving
(6), which is equivalent to solving a MWIS problem.

3 A clique is a set of vertices where there is an edge between each
vertex pair in the set .
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4. CONSTRUCTION OF RANDOM WIRE-
LESS NETWORKS

In order to investigate the average computational com-
plexity of the MWIS problem for optimal scheduling in prac-
tical wireless networks, statistics must be generated from
a large number of networks. This investigation focuses on
topologies that might arise in large scale wireless mesh net-
works. Such infrastructure networks are composed of wire-
less routers and gateways, which have both wired and wire-
less interfaces. Such networks have densely distributed wire-
less routers while gateways are more lightly distributed. The
routing forms a forest, where gateways are roots of the trees.

In this investigation, five parameters are used to charac-
terize a mesh network. Four of these parameters are the
number of the nodes, the density of nodes (i.e., how many
neighbors a node has), the density of the gateways, and the
target bit-rate of links. The propagation environment also
plays an important role in the performance of a network.
Thus, in order to fully explore the computational complex-
ity, we consider three popular propagation environments,
namely, the two-ray model, the two-ray with shadow fad-
ing model, and a realistic urban propagation model. Thus,
the propagation model is a fifth parameter that controls the
topology. The next subsections detail the generation of ran-
dom topology based on these five parameters.

4.1 Propagation Models
Propagation is a key aspect of wireless networks. In the

two-ray propagation model, the received signal strength (in
dB) at a node that is d meters from a transmitting node is

P2R ay (d) = 20 log10

(
λ

4π

)
+ PTransm itPower [dB]

−

{
20 log10 (d) for d ≤ C
40 log10 (d/C) + 20 log10 (C) for d > C

,

where C is a parameter that depends on the node height.
In the case of hand-held radios, the height is approximately
1.5m, and C = 225m. Throughout this paper, PTransm itPower =
18 dBm and λ = 0.125m, as is the case for 802.11b/g. When
shadow fading is added, the received signal strength (in dB)
at a node that is d meters from a transmitting node is

P2R ayAndShadow ing (d) = P2R ay (d) +X

where X is a Gaussian random variable with mean 0 and
standard deviation 4 dB [30]. We assume that nodes are
spaced far enough apart that the random part of the propa-
gation are independent. However, propagation is symmetric
[30].

Due to the difference between indoor and outdoor propa-
gation, and due to wave guide effects of streets, urban prop-
agation is distinct from the random propagation models.
Thus, in order to investigate the performance of the com-
plexity of optimal scheduling in urban areas, the UDel Mod-
els Propagation Simulator [31] was employed. Specifically,
for this study, ray-tracing was performed on a 2 km2 re-
gion of downtown Chicago. This computation provided the
received signal strength between any pair of nodes.

Topologies were randomly generated by selecting a subset
of nodes from a large baseline set of nodes. In the case of the
two-ray propagation model and the two-ray with shadowing
model, the baseline set of nodes were densely distributed

Algorithm 2 Selecting the Gateways

1: Let G be a randomly selected set of NGW nodes from
N .

2: Set G′ = G.
3: Remove the node from G that has been in G for the most

iterations.
4: Set G = G ∪ argminw∈N\G D (w).
5: If G′ �= G, go to 2, else stop.

so that within a 15 km2 region 5000 nodes where distrib-
uted. However, for the urban propagation model, nodes were
placed to mimic a large infrastructure network. Specifically,
outdoors, nodes were placed on lampposts throughout the
city, and indoors, enough nodes were placed on each floor so
that the entire floor was covered. In all, the baseline set of
nodes included over 7000 nodes positioned throughout the
city.

4.2 Random Topology Generation

Node Selection.
Beyond the propagation model, four parameters are used

to construct a topology, namely, n the number of nodes, r∗

the target bit-rates, ∆ the maximum number of neighbors,
and NGW the number of gateways. The target bit-rate
corresponds to a specific received signal strength. Letting
RSS (r) be the minimum required received signal strength
to decode a transmission at data rate r, then using 802.11g’s
coding and modulation, typical values of RSS are

RSS (6) = −90dBm; RSS (12) = −87dBm;

RSS (18) = −84dBm;RSS (24) = −81dBm;

RSS (36) = −78dBm;RSS (48) = −74dBm;

RSS (54) = −72dBm,

where the data rates are in Mbps. We say that two nodes
are neighbors if the propagation model results in a received
signal strength that is above RSS (r∗).

Let N denote the set of nodes in the topology. Initially,
N is a single node selected at random. Then, a node is
selected at random among all the nodes that satisfy 1.) the
node has between 1 and ∆ neighbors in N , and 2.) adding
the node to N will not make any node in N have more than
∆ neighbors in N . If no such node exists, then the process
is restarted. If suitable nodes do exist, the process continues
until N has n elements.

Next, gateways are selected. The objective is that the
gateways are uniformly spread throughout the network in
the sense that the average distance from a node to the closest
gateway is minimized. This is formulized as follows. Given
a set of gateways, G, a new gateway is added by finding the
node, w, that minimizes D (u) where

D (u) =
∑

w∈N

min

(
d (u, w) ,min

g∈G
d (g,w)

)

where d (u, w) is the distance in hops from node u to node
w. Thus, the gateways are selected in Algorithm 2.
Note that the above is not a convex optimization and hence
the final set of gateways might depend on the initial selection
of gateways. Thus, the above algorithm was run ten times
and the set of gateways that resulted in the smallest value
of
∑

w∈N ming∈G d (g,w) was used.
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Algorithm 3 Greedy Method to Select Single Path

1: Let Sx be the optimal flow rates that solve (7) and set
W = ∅.

2: Randomly select w ∈ N and w /∈ W.
3: Set W = w ∪W.
4: P (w) = argmax{ p∈P|p is a path to w}minx∈p Sx, i.e.,
P (w) is the path that results in the highest flow to w.

5: S (w) = min
(
F,minx∈P (w) Sx

)
.

6: Set Sx = Sx − S (w) for each x ∈ P (w).
7: If W �= N go to 2, else stop.

Routing.
Once the wireless routers and gateways have been se-

lected, the routing was determined. As mentioned above,
the routing forms a forest, where each gateway is a root of
a tree and each wireless router is in exactly one tree. While
there are several approaches for routing, this investigation
used a max-flow-based, interference aware routing.

The first step in forming routes is to identify the set of
potential links, their bit-rates, and the links that they in-
terfere with. Let x denote a link with transmitter xt and
receiver xr and let Px be the received signal strength at the
receiver. The bit-rate used by link x is denoted r (x) and is
given by

r (x) := max {r : Px − PGuard > RSS (r)} ,

where PGuard is used as a buffer to reduce sensitivity to
interference. This study used PGuard = 3 dB. If no such
bit-rate exists (i.e., Px−PGuard < −90dBm), then the link
is removed from consideration. Given the bit-rates, for each
link x, the set of conflicting links, χ (x) can be found, as
described in Section 3.1.

Interference aware, multi-path max-flow routing is found
by solving

max
S,F

F (7a)

∑

{x:xt=w}

Sx −
∑

{y:xr=w}

Sy + F = 0 for w /∈ GW(7b)

Sx
r (x)

+
∑

y∈χ(x)

Sy
r (y)

≤ 1 for all x, (7c)

where Sx is the flow over link x. Note this optimization
problem approximates the impact of interference. Specifi-
cally, Sx

r(x) is the fraction of time that link x transmits, and

hence (7c) ensures that the fraction of time that link x trans-
mits and the fraction of times that all links that interfere
with link x transmit sum to no more than one. Of course, it
is possible that some links that interfere with x can transmit
simultaneously. But (7c) does not account for this possibil-
ity. Thus, (7) provides a lower bound on the throughput. It
should be pointed out that while problem (7) is polynomial,
solving (7) was, by far, the computational bottleneck of this
investigation.

Problem (7) results in multipath routing. Single path
routing can be formed by quantization as follows. Define
P (w) to be the set of paths from some gateway to node w.
Then the greedy algorithm shown in Algorithm 3 is used to
construct P (w), a path from some gateway to node w.

5. COMPUTATION TIME AS A FUNCTION
OF THE NUMBER OF NODES IN THE
NETWORK - THE LOW DEGREE CASE

Figure 1 (a), (b), and (c) show the average time to solve
(4) for urban propagation, the two-ray propagation model,
and the two-ray with shadowing propagation model, respec-
tively. These computation times4 were averaged over each
iteration of Algorithm 1 and averaged over 100 randomly
generated topologies. For small topologies, the compuat-
tion time is quite small. Randomness due to memory man-
agement and other high priority tasks, small computation
times are significantly influenced by noise. Therefore, for
topologies with fewer than 256 nodes, each time that the
ILP program was to be solved, it was repeatedly solved ten
times. The computation time was then the average of these
ten times. Figure 1 also shows the 95% confidence inter-
vals, which were found with bootstrapping. When gener-
ating these topologies, the maximum number of neighbors,
∆, was equal to 6, the target bit-rate was set to 24Mbps,
and the number of gateways was the number of nodes in the
network divided by 16.

Three conclusions can be made from Figure 1. First, the
time to solve the MWIS is quite small, with 2048 node
topologies taking approximately one second. Clearly, the
statement that the MWIS can only be solved for trivial net-
works is incorrect. Second, it appears that in practice, the
time to compute the MWIS grows polynomially with the
size of the network. Specifically, for the topologies shown in
Figure 1, we have

Time to find a MWIS for ∆ = 6 (8)

≈ A× nB + To sec.

where (A,B, To) is
(
10−6.7, 1.97, 0.0095

)
,
(
10−6.7, 1.85, 0.0095

)
,(

10−6.1, 1.75, 0.0095
)

for urban propagation, the two-ray model,
and the two-ray with shadowing model, respectively. This
relationship between computation time and topology size is
also shown in Figure 1. However, as will be shown in the
following sections, this behavior is unique to networks that
have a low degree (i.e., ∆ is small). A third conclusion drawn
from Figure 1 is that the computational complexity does
not greatly depend on the propagation model. Specifically,
the computation times for different propagation models are
within 10%.

Note that in (8), To = 0.0095 sec., for all types of propa-
gation. We suspect that it takes approximately 9.5 msec to
load the CPLEX optimizer (which is a DLL) and to begin
solving the MWIS problem.

6. IMPACT THE MEAN DEGREE OF THE
CONFLICT GRAPH

Figure 1 shows a relationship between the computation
time and the size of the network under a specific type of
topologies. We seek to understand this relationship for a
wider range to types of topologies. This section will present

4 All computations were run on a machine with two Intel E5440
CPUs and 16GB RAM using Matlab v 7.2, and CPLEX v 10
with the Tomlab interface to CPLEX. However, at all times, 8
computations were solved simultaneously. Hence, the computa-
tion times shown correspond to the time on a single core (i.e., the
MWIS problem was not parallelized across cores).
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Figure 1: The time to compute the MWIS versus the number of nodes in the network. (a), (b), and (c) show this relationship
when the propagation is the urban propagation, the two-ray model, and the two-ray with shadow fading model, respectively.
In all cases, the maximum number of neighbors is 24, the target bit-rate is 24 Mbps, and the number of gateways is the
number of nodes divided by 16.

results from computational experiments that indicate that

Time to find a MWIS− To
Mean degree of the conflict graph

≈ α× nβ , (9)

where α and β only depend on the propagation environment.
This result implies that in terms of the time to find a MWIS,
the mean degree of the conflict graph encapsulates many
of the parameters used for generating topologies, namely,
the number of gateways, the target bit-rate, r∗, and the
maximum number of neighbors, ∆.

We take two steps to show that (9) is a good model for the
computation time. First, we fix n, in which case (9) implies
that

Time to find a MWIS − To (10)

≈ K ×Mean degree of the conflict graph,

where the constant K is dependent of the number of nodes,
but K is independent of the other parameters of the topol-
ogy, namely, the number of gateways, the target bit-rate,
r∗, and the maximum number of neighbors, ∆. The next
two subsections will explore the relationship between K and
these other topology parameters.

In the second step to demonstrating (9), we will show that
K is polynomial in n, that is, K = α× nβ for some α and
β, where α and β depend on the propagation model. This
relationship is explored in Section 6.3.

6.1 The Mean Degree of the Conflict Graph,
the Number of Gateways, and the Num-
ber of Neighbors

Figure 2 shows the relationship between the mean degree
of the conflict graph and the computation time for differ-
ent numbers of gateways and different numbers of maxi-
mum neighbors, ∆, but with the target bit-rate fixed at 24
Mbps. Here, urban propagation is used and, as above, each
point is averaged over 100 topologies (both the mean degree
of the conflict graph and mean computation time are aver-
aged over 100 topologies). As can be observed, there is an
approximately linear relationship between the computation
time and the mean degree of the conflict graph. Specifi-
cally, the computation time is approximately given by (10),

where K is 0.00018, 0.0012, and 0.008 for 128, 512, and 1024
node networks, respectively. These models are also shown
in Figure 2.

Figure 2 also shows the computation time for particu-
lar values of the topology parameters. As expected, as ∆,
the maximum number of neighbors in the wireless network,
increases, the mean degree of the conflict graph increases.
Figure 2 (b) shows the computation time for different num-
bers of gateways. As can be observed, as the number of
gateways increases, the mean degree of the conflict graph
slightly decreases, leading to a slight reduction in the com-
putation time. Moreover, notice that the computation times
for a larger number of gateways tends to be slightly below
the linear fit, while a smaller number of gateways cases tend
to be slightly above the linear fit. Nonetheless, the linear re-
lationship between the mean degree of the conflict graph and
the computation time provides a reasonable approximation
for a wide range of gateways.

6.2 The Mean Degree of the Conflict Graph,
the Target Bit-Rate, and the Number of
Neighbors

The topologies shown in Figure 2 used a target bit-rate
of 24Mbps. Figure 3 shows the relationship between the
mean degree of the conflict graph and the time to compute
the MWIS for a wide range of target bit-rates and different
numbers of gateways. In this case, urban propagation was
used, there were 512 nodes in the topology, and the maxi-
mum number of neighbors was set to 6. This figure shows
that the mean degree (and computation time) increases with
the target bit-rate. The reason for that the mean degree of
the conflict graph increases with the target bit-rate is that
higher bit-rates are more susceptible to interference. For ex-
ample, 54 Mbps requires 23 dB of SINR, while 6 Mbps only
requires 5 dB of SINR. Consequently, transmissions that are
several hops away will interfere with high bit-rate transmis-
sion, whereas only nearby transmissions will impact low bit-
rate transmissions. Since the maximum number of neighbors
is held fixed, links in topologies where a high target bit-rate
is used will interfere with considerably more links than do
links in topologies with low target bit-rates.
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Figure 2: The mean time to compute the MWIS versus the mean degree of the conflict graph for several topologies. (a) Shows
the case where the topologies have 128 nodes, 16 gateways, and the maximum number of neighbors, ∆ vaires from 3 to 24.
(b) Shows the case where the topologies have 512 nodes, 16, 32, and 64 gateways, and ∆ vaires from 3 to 24. (c) Shows the
case where the topologies have 1024 nodes, 64 gateways, and ∆ vaires from 3 to 24.
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Figure 3: The mean time to compute the MWIS as a func-
tion of the mean degree of the conflict graph for different
topologies where the topologies are generated with different
target bit-rates.

The linear fit shown in Figure 3 is the same one shown
in Figure 2, i.e., (10) with K = 0.0012. This further con-
firms the linear relationship between the mean degree of the
conflict graph and the time to compute the MWIS.

6.3 Time to Compute a MWIS and the Mean
Degree of the Conflict Graph

The previous sections provide a strong indication that (10)
is a good model for the computation time, where K only
depends on the number of nodes. While Figures 2 and 3
only show the case for urban propagation. However, the
plots are similar for the two-ray propagation model and the
two-ray with lognormal shadowing propagation model.

Figure 4 (a), (b), and (c) show K as a function of the num-
ber of nodes for urban propagation model, the two-ray prop-
agation model, and the two-ray with lognormal shadowing
propagation model, respectively. These plots also show the
model K = αnβ , where (α, β) =

(
1.77× 10−8, 1.88

)
, (1.09

×10−7, 1.64),
(
7.78× 10−8, 1.75

)
, for the three types of prop-

agation, respectively. As can be observed, this model pro-
vides a high quality of fit. Thus, we conclude that with
the computers and algorithms used in this investigation,
the time to solve MWIS problem associated with optimal
scheduling in practical wireless networks can be modeled
with (9).

7. THE MEAN DEGREE OF THE CONFLICT
GRAPH

It is important to note that (9) does not imply that the
time to find a MWIS grows like nβ. Specifically, as Figures
2 and 3 show, the mean degree of the conflict graph also
varies with the number of nodes. Thus, the scaling of the
computation time depends on how the network is scaled,
or more specifically, it depends on how this scaling impacts
the mean degree of the conflict graph. In the case of ur-
ban propagation, the time to compute the MWIS grows like
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Figure 4: The relationship between K, the parameter in (10), and the number of nodes in the network. (a) is for urban
propagation (b) is for the two-ray propagation model, and (3) is for the two-ray propagation model with lognormal shadow
fading.

nβ with β = 1.88 only if the mean degree of the conflict
graph is somehow held constant as the size of the network
grows. However, the mean degree of the conflict graph varies
in a complicated way, and hence there does not appear to
be any simple relationships between the number of nodes
and the mean degree of the conflict graph. Figure 5 shows
how, in the case of urban propagation, the mean degree of
the conflict graph varies as the number of nodes increases,
but the gateway density is held constant and ∆, the maxi-
mum number of neighbors, is held constant. For this type of
scaling of the topology, it is difficult to draw any definitive
conclusions about the relation between the number of nodes
and the mean degree of the conflict graph. For example,
for ∆ = 24 and ∆ = 18, the mean degree clearly increases
with the number of nodes. Thus, the time to find a MWIS
increases faster than n1.88. However, for other values of ∆,
the mean degree of the conflict graph appears to reach a
plateau.

Note that the models shown in Figure 1 do not have the
same exponent as the one given in the previous section.
These can be reconciled by recognizing that the mean de-
gree of the conflict graph can vary with n. For example, in
the urban propagation case shown in Figure 1, the compu-
tation time grows like n1.97, thus in order for (9) to hold
with the parameters given above, we must have that for the
topologies used to generate Figure 1 (a)

A× n1.97

mean degree of the conflict graph
= 1.77× 10−8n1.88,

which implies that the mean degree of the conflict graph
must grows like n0.09. Similarly, for the two-ray model and
the two-ray with shadowing model, the models shown in
Figure 1 (b) and (c) can be reconciled with (9) if the mean
degree of the conflict graph is approximately O

(
n−0.21

)
and

O
(
n0.0

)
, respectively. Considering Figure 5, such a varia-

tion is plausible, especially, when ∆ is small, as it is in the
case of Figure 1.

8. CONCLUSIONS
This paper studied the practical computational complex-

ity of the maximum weighted independent set (MWIS) prob-
lem that arises in optimal scheduling in wireless networks.
In contrast to folklore, the MWIS problem is solvable in
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Figure 5: Relationships between the number of nodes and
the mean degree of the conflict graphs.

many practical wireless scheduling problems. Specifically,
by examining over 10000 randomly generated topologies, it
was found that the time to compute the MWIS grows poly-
nomially with the number of nodes and linearly with the
mean degree of the conflict graph. Moreover, the mean time
to solve the MWIS problem for networks with 2048 nodes
was approximately one second.

While this result might appear to be in conflict with prior
research on the complexity of scheduling, it is not. First,
there are a wide range of problems that have a worst-case
complexity that grows exponentially with the size of the
problem, and yet in practice grow polynomially with the size
of the problem. Second, prior research on the complexity
of scheduling relied on the relationship between the 3-SAT
problem and the MWIS problem. However, it is well known
that in many cases the 3-SAT problem can be quickly solved
[22, 23, 24, 25]. Moreover, the MWIS problem that arises in
practical scheduling is particular subset of MWIS problems.
The relationship between practical scheduling and the 3-
SAT problem is not clear. Figure 6 show a possible Venn
diagram of the set of problems. Note that it is unknown if
there is any overlap between difficult 3-SAT problems and
the MWIS problems that arise in practical wireless networks.
The computational experiments in this paper indicate that
there is not a significant overlap.
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Figure 6: Possible Venn diagram of maximum independent
set (MIS) problems, 3-SAT problems, and scheduling prob-
lems.

An important consequence of this paper is that the ability
to quickly solve MWIS problems allows optimal schedules to
be quickly found. In previous work, the perceived practical
intractability had been circumvented by using suboptimal
methods or by making strong assumptions about interfer-
ence.

Disclaimer
The views and conclusions contained in this document are
those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of
the Army Research Laboratory or the U. S. Government.
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