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ABSTRACT
Cross-layer scheduling and coding for the coexistence be-
tween two wireless networks, a primary network and a sec-
ondary network, are considered for the case of two users.
Both networks want to transmit to the users, which, how-
ever, cannot receive simultaneously on the two radios. Sub-
ject to fading and random interruption from the primary
network modeled as continuous Markov chain, the secondary
network optimizes its scheduling (probing/transmission time
/ACK) and coding to maximize its throughput. Perfor-
mances of several algorithms are considered, which charac-
terize the relationship among important system parameters
and shed light on system design.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication; H.1 [Models and Principles]: General

General Terms
Performance

Keywords
Wireless communication, cross-layer design, network coding,
scheduling

1. INTRODUCTION
Recently, advanced technology has allowed a single wire-
less device to have multiple radios. For example, WiFi and
WWAN technology have been combined in laptop computer
(e.g. Intel WiMAX/WiFi Link 5350) or cell phone (e.g.,
Nokia 6310 GSM/WiFi phone). In the near future there
will be many devices with two or more radios, providing
ubiquitous connectivity and various new services. Typically
the radios on one device can not work simultaneously due
to several reasons. One reason is that they might work on

∗WICON’08, November 17-19, 2008, Maui, Hawaii, USA.
Copyright 2008 ICST 978-963-9799-36-3

the same or similar frequency bands, and interference (leak-
ing in the latter case) would deteriorate the performance.
Another reason is that the radios may share certain pro-
cessing circuitry due to cost considerations. As the density
of devices grows, coordination and scheduling among de-
vices with multi-radios become a challenging problem. IEEE
has initiated effort towards the co-existence of different net-
works/standards [1, 2].

There has been research on co-existence of multi-radios. Co-
existence of nodes, each with a different radio, has been in-
vestigated. For example, the coexistence of Ultra-Wideband
(UWB) and narrow-band cellular systems was studied in [3].
[4] presented a physical-layer based analysis of the coexis-
tence issues of UWB with other WiFi devices in the same
spectrum. In [5], a link-layer protocol was proposed for a
single node to coordinate the operation of multiple wireless
network cards tuned to non-overlapping frequency channels.
Cognitive radio, where devices can sense environment and
utilize idle frequency bands more efficiently, has attracted a
lot research interests [6]. In [7], both lower and upper bounds
were considered for multi-radio mesh networks based on a
confliction based model. In [8], how to pro-actively choose
channel was investigated based on a Markov chain model.

Network coding has also been studied for dense wireless envi-
ronment. It takes advantage of the broadcast nature of wire-
less communications, and allows users to help each other. In
[9], a cross-layer design shows that nodes can forward partial
information based on corrupted PHY packets towards later
hops so that by combining several of them, correct decoding
can be made. In [10], broadcast by using Markov Decision
Process was studied. In [11], broadcast stability region in
random access through network coding was characterized.
Yet network coding requires extra overhead in terms of in-
dexing and combining, and it is not clear whether network
coding is always better [12].

The co-existence issue of multi-radios in a dense environ-
ment is a cross-layer problem. In a traditional single-radio
network, media access control is designed for sharing the
wireless media efficiently among devices which use the same
mechanism. One example is WiFi networks which uses CSMA
/CA for media access. In a multi-radio network, when to ac-
cess and how to back up on one radio should also depend on
the activity of the other radios. Different radios/standards
have different physical layer coding, and, with the wide
spreading of smart antenna technology, a node has multi-
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ple PHY-layer coding modes (diversity, beamforming, mul-
tiplexing, etc.) to choose from. Combined with node den-
sity and traffic pattern, designing the optimal coexistence
certainly involves all the factors.

In this paper, we model the transmission among nodes with
two radios to consider both physical layer channel fading and
MAC layer scheduling. Analytical and numerical results on
the performance of several coding and scheduling strategies
are provided. With a modeling from a practice point of view,
the purpose is to understand how important parameters such
as MAC activity, PHY-layer fading, transmission period and
probing/ACK period influence the performance.

To be more specific, we consider the influence of fading and
activity in the primary network to the secondary network.
Focusing on the simple two-user case, analysis shows that
1)PHY-layer coding needs to consider the fading process; 2)
Transmission period should be carefully calibrated to max-
imize the throughput; and 3) Simple coding encounters too
much lost due to interruptions from the primary network
when the latter is busy. We also show that network coding
improves the performance, however advanced coding which
takes care of the corrupted pieces would greatly help. Our
study justifies the need for cross-layer joint scheduling and
coding optimization in multi-radio environment.

The rest of the paper is structured as follows. In Section
II, network model and physical layer fading model are pre-
sented. In Section III, performance of several simple schedul-
ing strategies are presented. In Section IV, performances of
simple network coding is considered, and limit cases are pre-
sented in Section V. Section VI presents numerical results
and Section VII concludes with comments and future work.

2. MODELING COEXISTENCE AND FAD-

ING
We assume that there are two nodes each having two ra-
dios, one for network Net1 and the other for network Net2.
Downlink transmissions are considered as shown in Figure
1. That is, both Net1 and Net2 are trying to send messages
to both nodes. A node cannot listen to both networks at the
same time. Net2 is the primary network, meaning it sched-
ules its transmission without considering Net1. Whenever
Net2 needs to transmit to a node, the node stops its current
receiving in Net1, if any, and starts listening in Net2.Net1 Net2

Figure 1: System

We model the traffic in Net2 as a continuous time Markov
birth-death process. Each user’s activity in Net2 is indepen-
dent of the other. If user k is served by Net2, the service
period has an exponential distribution with parameter λ2.

The idle period of user k from Net2 has an exponential dis-
tribution with parameter λ1. Note that user k could be
served by Net1 in this period.

When Net1 transmits to a user, we assume that it can trans-
mit W complex symbols per second with power P. The cor-
responding received symbol can be modeled as y = hx + n,
where h is the complex channel gain and n is an independent
regular Gaussian noise with unit variance. According to in-
formation theory, the channel can achieve W log(1 + |h|2P )
bits per second when h is constant. In practice, however,
h changes with time due to fading. Within the channel
coherence time, the channel can be considered constant.
The channel h changes to other realizations when time is
longer than the channel coherence time. Block fading chan-
nel model has been consider to model this phenomenon (e.g.
[14]). In this paper we use the following continuous Rayleigh
Markov chain model. For each channel realization, the chan-
nel keeps constant for a period with exponential distribution
of parameter λ. After this period the channel changes to in-
dependent realization chosen based on Rayleigh distribution.
That is Pr(|h|2 > a) = e−a.

We assume that Net1 fixes transmission time for each packet
as Ts. Before each transmission, Net1 takes Tp seconds to
set up the transmission and probe the channel quality. After
each transmission, Net1 takes Ta seconds to end the trans-
mission and get acknowledgement. To simplify the model-
ing, we assume that probing and acknowledgement will not
be influenced by Net2 or bad channel. Denote Ta+Tp = µTs,
with µ being typically less than one. For each strategy dis-
cussed later, more details about probing and acknowledge-
ment will be specified.

To model the physical layer channel coding/decoding, we
take a outage formulation. Each packet is encoded according
to certain rate R = log(1+|h0|

2P ) for Ts seconds. A receiver
can successfully decode the packet only if during the whole
transmission the channel gain is always such that |h|2 ≥
|h0|

2. In the sequel, denote

W0 := W log(1 + |h0|
2P )

as the information bit rate per symbol achieved by a suc-
cessful decoding, and call |h0|

2 the coding threshold.

Given the above modeling, we know there are two events
that can prevent a node from receiving from Net1 success-
fully: 1) When Net1 is transmitting but the node is serviced
by Net2; and 2) When Net1 is transmitting and the node is
listening in Net1, but the channel gain is small.

We have the following observation.

Lemma 1. Suppose that Net1 codes the channel code ac-
cording to threshold |h0|

2. Then the time that the fading
channel to a node is above this threshold has an exponential

distribution with parameter (1−e−|h0|
2

)λ, and the time that
the channel is below the threshold has also an exponential

distribution with parameter e−|h0|
2

λ.

Proof: Given any time T > 0 and that the current channel
state is above the threshold, the number of times that the
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fading will update the channel during T seconds is a Poisson
random variable with mean Tλ. So the probability that

there are k updates is (Tλ)k

k!
e−Tλ. The probability that the

channel is always good during the T seconds is

∞X
k=0

(Tλ)k

k!
e−TλPr(|h|2 ≥ |h0|

2)k = ep0Tλ−Tλ = e−(1−p0)Tλ,

where p0 = Pr(|h|2 ≥ |h0|
2) = e−|h0|

2

. So the good state
lasts according to an exponential distribution with parame-
ter (1− p0)λ. Similarly, the bad channel distributes accord-
ing to exp(p0λ).

3. SIMPLE CODING WITH SCHEDULING
In this section, several scheduling algorithms are considered.

We first consider the basic round robin scheduling without
considering the existence of Net2, which serves as the basis
for comparison.

3.1 Round Robin without Considering

Co-Existence of Net2
In this scheduling, Net1 serves each node alternatively with
Ts +Tp +Ta = Ts +µTs seconds, as if there is no Net2. This
models the case when Net1 does not know the existence
of another interfering radio and assumes full control of the
access time.

Assume that Net1 sets the channel coding threshold as |h0|
2.

Because Net2’s activity is described by a continuous Markov
chain and Net1’s channel fading is described by an indepen-
dent stationary process, the combined process is stationary.
At the start of Node A’s serving periods (of length Ts+µTs),
the probability that Node A has a good PHY channel and

is available from Net2 is 1/λ1
1/λ1+1/λ2

e−|h0|
2

, when the process

converges to its stationary distribution.

Given that Node A starts a serving period Ts with good
PHY channel and idle Net2, the probability that it will not
be interrupted by Net2 or meet a bad channel during the

next Ts seconds is e−(λ1+(1−p0)λ)Ts , with p0 := e−|h0|
2

. So
the information throughput for Node A is

1

2

1/λ1
1/λ1+1/λ2

e−|h0|
2

· W0Ts · e
−(λ1+(1−p)λ)Ts

Ts + µTs
.

The sum rate for both nodes A and B is thus

1/λ1
1/λ1+1/λ2

e−|h0|
2

· W0 · e
−(λ1+(1−p)λ)Ts

1 + µ

=
W

1 + µ

(1/λ1)e
−λ1Ts

1/λ1 + 1/λ2

· log(1 + |h0|
2P )e−|h0|

2

e−(1−e−|h0|2 )λTs .

We have the following result on the best threshold |h0|
2.

Theorem 1. The best threshold |h0|
2 for given Ts, µ, λ,

λ1, λ2 is the unique solution of the following equation:

P

(1 + xP ) log(1 + xP )
= 1 + e−xλTs.

Proof: See Appendix A.

Note that λ1, λ2 are not in the optimization. Also note

that e−|h0|
2

log(1 + |h0|
2P ) is the expected throughput if

the fading does not change (flat fading). In this case, it
is easy to show that the best threshold |h0|

2 is such that
P

(1+xP ) log(1+xP )
= 1. Compared to the optimal threshold

taking care of the fading where P
(1+xP ) log(1+xP )

= 1+e−xλTs,

this shows that a smaller and conservative |h0|
2 needs to be

chosen to combat the fading. It also shows that one should

use almost the same threshold if e−|h0|
2

λTs is small, which is
true if the original threshold is large or λTs is small. Recall
that λTs is the average number of channel changes.

3.2 Transmit Whenever Net2 Is Idle
In this scheduling, Net1 detects each node sequentially, and
sends to a node for Ts seconds whenever it is idle from Net2
at the end of probing. Note that each detection with the
scheduling at the end of the transmission cost Tp +Ta = µTs

seconds.

Assume that the coding threshold is |h0|
2. According to the

previous analysis, the threshold is set to be the solution to

P

(1 + xP ) log(1 + xP )
= 1 + e−xλTs.

Since the transmission of Net1 does not depend on the fad-
ing, the process is described by Net2’s activity. For each
user, denote Net2’s status as ’0’ is Net2 is transmitting to
it, and ’1’ if not. Then for each user, Net2 is a continuous
Markov chain with transition matrix

H := [h11(t), h10(t); h01(t), h00(t)], (1)

with

h11(t) =
λ1

λ1 + λ2
e−(λ1+λ2)t +

λ2

λ1 + λ2
,

h00(t) =
λ2

λ1 + λ2
e−(λ1+λ2)t +

λ1

λ1 + λ2
.

This can be found in standard text such as [15].

For the two user case, we construct the following discrete
Markov chain. The states are (B1B2), where B1 denotes the
“current” serving node’s status after the probe (Tp). That
is, B1 = 1 means that the node Net1 is probing is not busy
in Net2; B1 = 0 means otherwise. B2 is the status of the
other node when it was probed by Net1 the last time. We
thus get a chain with 4 states: {00, 01, 10, 11}. (Note that a
transmission consists three parts Tp, Ts and Ta.)

We have Pr(00|00) = h00(2µTs), where h00(2µTs) is the
probability that the other node is busy after 2µTs seconds
since the last probe (which was busy too in Net2). Similarly,
we have

Pr(10|00) = h01(2µTs), P r(00|00) = h00(2µTs)
Pr(10|01) = h11((1 + 2µ)Ts), P r(00|01) = h10((1 + 2µ)Ts)
Pr(01|10) = h00((1 + 2µ)Ts), P r(11|10) = h01((1 + 2µ)Ts)
Pr(11|11) = h11((2 + 2µ)Ts), P r(01|11) = h10((2 + 2µ)Ts).

Denote a := Pr(10|00), b := Pr(00|01), c := Pr(11|10) and
d := Pr(01|11), and denote (π00, π01, π10, π11) the stationary
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distribution. We have

π00ā + π01b = π00

π11d + π10c̄ = π01

π01b̄ + π00a = π10

π11d̄ + π10c = π11.

Solving the equations we get π01 = (a/b)π00, π11 = a/b
d/c

π00

and π10 = a
b
π00. Thus we have

π10 + π11

π00 + π01
=

1 + c/d

1 + b/a
.

Consider the chain (B1B2). A successful transmission can
only happen when the state is 10 or 11. Given that the
current serving node is in state ’1’, the packet transmis-
sion of Ts seconds is successful only if during the period
the PHY channel is always better than |h0|

2 and there is
no interruption from Net2. This happens with probability

p0e
−λ(1−p0)Ts ·e−λ1Ts with p0 := e−|h0|

2

. Since each ’1’ state
consumes (1 + µ)Ts seconds, the overall information rate is
thus

(π10 + π11)p0 · e
−λ(1−p0)Tse−λ1Ts · W0Ts

(π10 + π11)(1 + µ)Ts + (π00 + π01)µTs

=
(π10 + π11)e

−|h0|
2

· e−λ(1−e−|h0|2 )Tse−λ1Ts

(π10 + π11)(1 + µ) + (π00 + π01)µ

·W log(1 + |h0|
2P )

=
e−|h0|

2

· e−λ(1−e−|h0|2 )Tse−λ1Ts · W log(1 + |h0|
2P )

(1 + µ) + µ
1+

λ1(1−e−(λ1+λ2)(1+2µ)Ts )

λ2(1−e−(λ1+λ2)2µTs )

1+
λ2(1−e−(λ1+λ2)(1+2µ)Ts )

λ1(1−e−(λ1+λ2)2(1+µ)Ts )

=
e−|h0|

2

e−λ(1−e−|h0|2 )Ts log(1 + |h0|
2P ) · We−λ1Ts

(1 + µ) + µ
1+

λ1(1−e−(λ1+λ2)(1+2µ)Ts )

λ2(1−e−(λ1+λ2)2µTs )

1+
λ2(1−e−(λ1+λ2)(1+2µ)Ts )

λ1(1−e−(λ1+λ2)2(1+µ)Ts )

.

3.3 Transmit only When Both Net2 Is Idle and

Channel Is Good
We consider the following scheduling. Net1 alternatively de-
tects each user to see whether it is idle in Net2 and has a
good channel above the coding threshold. If so, Net1 trans-
mits to this user for Ts seconds, otherwise, it turns to the
next user for detection.

This process can also be described by a Markov chain simi-
larly as in the above subsection. However, here more states
are needed for denoting the physical channel quality. The
Markov chain can be constructed as follows. Let (X1X2;
Y1Y2) denote the status of the two nodes. X1 and X2 de-
note the current serving node’s status immediately after the
probing. X1 denotes its Net1 channel status, with X1 = 1
meaning that the node has a good PHY channel and X1 = 0
otherwise. X2 denotes the status of the node’s status in
Net2, with ’1’ being idle and ’0’ being busy. Y1 and Y2 de-
note the status of the node last probed, with Y1 denoting
the status of the channel in Net1 and Y2 the status of Net2.

This Markov chain has 16 states. Because Y1Y2 denote the
status of the node probed last time, each state can transit
into four possible states. The probability of going from state
(a1a2a3a4) to state (b1b2a1a2) is determined by f11(t) and
f00(t) defined in (1) and the following transition functions
of the fading channels for given |h0|

2:

g11(t) :=
λ̃1

λ̃1 + λ̃2

e−(λ̃1+λ̃2)t +
λ̃2

λ̃1 + λ̃2

,

g00(t) :=
λ̃2

λ̃1 + λ̃2

e−(λ̃1+λ̃2)t +
λ̃1

λ̃1 + λ̃2

,

where λ̃1 := λ(1−e−|h0|
2

) and λ̃2 := λe−|h0|
2

. To illustrate,
the first 4 columns of the state transition matrix can be
described as follows.

Pr(0000|0000) = Pr(0001|0100) = Pr(0010|1000)
= f00(2µTs)g00(2µTs),

P r(0011|1100) = f00((1 + 2µ)Ts)g00((1 + 2µ)Ts);
Pr(0100|0000) = Pr(0101|0100) = Pr(0110|1000)

= f00(2µTs)ḡ00(2µTs),
P r(0111|1100) = f00((1 + 2µ)Ts)ḡ00((1 + 2µ)Ts);
Pr(1000|0000) = Pr(1001|0100) = Pr(1010|1000)

= f̄00(2µTs)g00(2µTs),
P r(1011|1100) = f̄00((1 + 2µ)Ts)g00((1 + 2µ)Ts);
Pr(1100|0000) = Pr(1101|0100) = Pr(1110|1000)

= f̄00(2µTs)ḡ00(2µTs),
P r(1111|1100) = f̄00((1 + 2µ)Ts)g00((1 + 2µ)Ts).

The stationary distribution (πx1x2,y1y2) can thus be com-
puted numerically. Denoting π11 := π1110 + π1101 + π1100 +
π1111, we know that the information rate achieved is

π11 · e
−λ(1−e−|h0|2 )Tse−λ1Ts · W log(1 + h2

0P )Ts

π11(1 + µ)Ts + (1 − π11)µTs

=
π11 · e

−λ(1−e−|h0|2 )Tse−λ1Ts · W log(1 + |h0|
2P )

π11(1 + µ) + (1 − π11)µ
.

In this policy, finding the best coding threshold |h0|
2 be-

comes complicated because the parameters of both Net2 and
Net1 interact deeply in the scheduling.

4. NETWORK CODING WITH SCHEDUL-

ING
In the previous section, when there is a transmission from
Net1, only the intended node is receiving the packet. In this
section, we consider a simple network coding where a packet
can be received by two nodes. Given that Net1 can receive
acknowledgement from the nodes, it can utilize this infor-
mation to send more than one packet in one transmission if
there is such chance.

The scheme works as follows. Net1 detects both nodes at the
same time, using Tp seconds. If only one node is good such
that it is idle in Net2 and also has a good physical channel,
then Net1 transmits only to this node for Ts seconds. If
neither node is good, then Net1 keeps detecting. If both
nodes are good, then Net1 uses the following Ts seconds as
a network coding slot. Net1 takes the following procedure
as described in [11] [13] in these network coding slots:
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• STEP 0 (Initialization): Net1 chooses a node from
{A, B} uniformly as Destination.
Set NCcounter = 0.

• STEP 1: Net1 notifies both nodes Destination, and
broadcasts a data packet intended for Destination. If
Destination receives it successively or neither node
receives correctly, go to STEP 1; if otherwise
(Destination does not receive but the other receiver
does), the node who receives correctly put this packet
PKT (Destination) in memory, and:

– If NCcounter = 0, set NCcounter = 1, switch
Destination, and go to STEP 1;

– If NCcounter = 1, go to STEP 2.

• STEP 2: Notify both nodes that the next transmission
is to broadcasts PKT (A) ⊕ PKT (B).

– If neither receiver receives correctly, go to STEP
2;

– If both receive correctly, node A decodes PKT (A)
by XOR-ing with the received packet with
PKT (B), and similarly node B decodes PKT (B)
by XOR-ing with the received packet with
PKT (A). Go to STEP 0;

– If only A receives, A decodes PKT (A) by XOR-
ing with the received packet with PKT (B). Set
Destination = B, and go to STEP 1;

– If only B receives, B decodes PKT (B) by XOR-
ing with the received packet with PKT (A). Set
Destination = A , and go to STEP 1;

For each network coding slot, the probability for one node
to fail receiving the packet is

ε := 1 − e−λ(1−e−|h0|2 )Tse−λ1Ts ,

and the packet has W log(1 + |h0|
2P )Ts bits information.

According to [13], the achieved information bits per such
network coding slot is

2(1 − ε2)

2 + ε
W log(1 + |h0|

2P )Ts =: Rnc · Ts.

In order to calculate the overall performance, the frequency
of the different slots - transmitting to only one node, to no
node, or to both using network coding - needs to be deter-
mined. One can construct a Markov chain as follows. Let
(A1A2; B1B2) denotes the status of both nodes after each
probing, where A1 denotes the status of Node1’s channel in
Net1 and A2 the status of Node1’s status in Net2. Sim-
ilarly (B1B2) denotes the status of Node2. This gives a
Markov chain with 16 states. Its transition probability ma-
trix can be determined easily given the transition functions
f00(t), f11(t), g00(t) and g11(t) as determined in previous sec-
tion.

Suppose the stationary distribution is (πa1a2b1b2), and de-
note π̃11 := π1100 + π1101 + π1110. Then the overall achieved
rate is

π̃11e
−λ(1−e−|h0|2 )Tse−λ1TsW0Ts + π1111RncTs

(π1111 + π̃11)(1 + µ)Ts + (1 − π1111 − π̃11)µTs

=
π̃11e

−λ(1−e−|h0|2 )Tse−λ1TsW log(1 + |h0|
2P ) + π1111Rnc

(π1111 + π̃11)(1 + µ) + (1 − π1111 − π̃11)µ
.

5. CODING ACROSS SLOTS WITH AGGRE-

GATE FEEDBACK
In previous sections, we assume that during the Ts seconds
that any interruption from Net2 or any bad channel from
Net1 will fail the packet. If delay requirement can be re-
laxed, Net1 can send multiple slots to a node continuously
and only requires one feedback at the end. This way saves
time for probing and acknowledgement. We also consider
the case when each node is serviced by Net1 with long time
and with small Ts and the case when probing and ACK need
zero time.

5.1 Transmit Multiple Slots with Aggregate

Feedback
In this case we assume that Net1 detects each user sequen-
tially. If a user is available from Net2 after the detection
(Tp), then Net1 starts transmitting L packets to the node,
each packet lasts Ts seconds. After this batch, the node will
feedback which packets are received. If one of the Ts’s is
interrupted by Net2, then the corresponding packet is con-
sidered lost. The feedback needs Ta second, and this will let
Net1 know which packets are received and which are not. If
a user is not available in Net1 after the detection, then Net1
turns to the next node for detection.

Now we calculate the performance. The key is to calculate
the average number of packets of the L packets which are
received successfully. For l-th packet, 1 ≤ l ≤ L, the node
needs to be available from Net2 at the start lTs, and Net2
will not interrupt during the next Ts seconds (The condi-
tional probability is e−λ1Ts). So the probability that packet
l is a success is h11(lTs)e

−λ1Ts when the PHY channel is not
considered. For a successful transmission, the PHY channel
must be good too. This has probability p0e

−λ(1−p0)Ts be-
cause the fading process is stationary and is independent of
Net2.

In sum, the average number of packets received successfully
during the LTs seconds is

LX
l=1

h11(lTs)e
−λ1Tsp0e

−λ(1−p0)Ts

=

LX
l=1

(
λ1

λ1 + λ2
e−(λ1+λ2)lTs +

λ2

λ1 + λ2
)

·e−λ1Tsp0e
λ(1−p0)Ts

=

�
λ1

λ1 + λ2

1 − e−L(λ1+λ2)Ts

1 − e−(λ1+λ2)Ts
+

λ2L

λ1 + λ2

�
e−λ1Tsp0e

λ(1−p0)Ts .

So the average throughput is

(π10 + π11)
�

λ1
λ1+λ2

1−e−L(λ1+λ2)Ts

1−e−(λ1+λ2)Ts
+ λ2L

λ1+λ2

�
(π10 + π11)(L + µ) + (π00 + π01)µ

·e−λ1Tsp0e
λ(1−p0)TsW log(1 + |h0|

2P ) (2)
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where (πij) is the stationary distribution of the Markov
chain as in Section 3.2 (by replacing Ts with LTs).

Remark 1. We can also consider the scheduling where
Net1 only transmits to a node when it is both available from
Net2 and with a good channel in Net1. This can be solved
by constructing a Markov chain and solving it numerically.
It is easy to see that when extremely small Ts and large L
(with LTs being large) are assumed, this scheduling achieves
similar performance as what we considered here.

5.2 The Extreme Case When Ts Is Small and

LTs Is Large
If one lets Ts → 0 and LTs → ∞ in the above policy, it
becomes equivalent to the following coding and scheduling.
Net1 transmits to the two nodes alternatively for T̄s sec-
onds, and any bit received during the period with the chan-
nel being above the coding threshold is considered received
correctly. Here T̄s is large, and is equivalently to LTs in
previous subsection.

Because both the Net1 channel and Net2 are stationary, the
fraction of time when Node1 has good channel and idle from
Net2 equals the probability that Node1 has good channel
and idle from Net2 in stationary distribution. The probabil-

ity is λ2
λ1+λ2

· e−|h0|
2

. So the overall information throughput
is

λ2

λ1 + λ2
· e−|h0|

2

W log(1 + |h0|
2P ).

This can also be verified by taking Ts → 0 and LTs → ∞ in
(2).

5.3 The Extreme Case When Both µ and Ts Is

Small
If both the probing and ACK time Tp +Ta and transmission
time Ts are small and µ goes to zero, then Net1 can suc-
cessfully transmit whenever there is a node available from
Net2 and with a good channel. There is no need for network
coding.1

In this case, the overall rate achieved is 
1 −

�
1 −

λ2

λ1 + λ2
e−|h0|

2
�2
!

W log(1 + |h0|
2P ).

6. NUMERICAL RESULTS
In this section, we plot and discuss the performances of the
aforementioned strategies.

To illustrate the performance, fix P = 15dB, W = 1MHz,
Ts = 1ms, µ = 0.1. Assume that the average service time
in Net2 is 5ms (i.e., 1/λ2 = 5ms) and in Net1 is 1ms. To
see how the activity in Net2 influences the performance, we
vary λ1. As shown in Figure 2, if Net2 is not busy (with
a large 1/λ1), then network coding scheme outperforms all
other scheduling except the extreme case when Net1 detects

1We simplify the decoding by assuming that decoding is
always successful whenever the channel is above the coding
threshold. However one should note that the decoding is
always subject to thermal noise in reality.

with zero time and coding is zero length. However the rela-
tive gain of network coding diminishes as the Net2 idle time
increases. Another observation is that detect and feedback
achieve much better performance than even the best time
sharing - the red star line. When Net2 is busy with a small
average idle time (1/λ1), as shown in Figure 3, the interrup-
tion from Net2 becomes dominant and kills the performance.
Network coding’s performance shrinks to just that of detect
and transmit. The idealized coding achieves much better
relative gains but needs fast detection with infinitely small
coding length, which is limited by practical considerations.
One should caution here that the coding is assumed to be
simple such that the ratio |h0|

2 plays an important rule in
decoding. Coding with advanced features such as water-
filling across channel realizations is not discussed. Also, for
simplicity, |h0|

2 is the same for all the strategies.
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Figure 2: Performance when Net2 has long idle
time.
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Figure 3: Performance when Net2 is busy.

Figure 4 shows how Ts – the Net1 coding length and service
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time – influences the performance with regard to a fixed de-
tection and acknowledgement time Tp + Ta. As expected,
smaller Ts achieves better performance until Tp + Ta pre-
vents this trend. This is because as Ts becomes smaller, the
fraction of time spent in detection and acknowledgement be-
comes significant.
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Figure 4: Performance showing that Ts is a tradeoff
between detection/ACK and coding.

7. CONCLUDING REMARKS
This paper discusses a simple coexistence model with two
radios (networks) and two nodes. Performance of several
scheduling and coding strategies are considered. It shows
that in such multi-radio environment, joint coding and
scheduling is needed for achieving better throughput. Net-
work coding and accumulated acknowledgement (one exam-
ple is fountain code and HARQ) could achieve better gain
by fighting the frequent interruption. From a more practical
point of view, the extra overhead of such coding (memory,
sequencing, etc.) needs also be considered. Another ob-
servation is that it is hard to characterize the performance
of varies strategies by analyzing the corresponding Markov
chain. As the number of nodes grows large, the state space
grows much faster. A future work is to simplify the model-
ing with smaller state space and to generalize strategies to
larger networks with more nodes and more radios.
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APPENDIX
A. PROOF FOR THEOREM 1.
Denote f := log(e−|h0|

2

log(1 + |h0|
2P )e−(1−e−|h0|2λ)Ts) =

−x − Ts + e−xλTs + log log(1 + xP ), with x := |h0|
2. We

know f ′ = −1 − e−xλTs + P
(1+xP ) log(1+xP )

. It is easy to

verify that f ′ > 0 when x → 0+ and f ′ → −1 when x → ∞.
So there exists an x maximizing f and satisfying f ′(x) = 0.

Now we show that such x is unique. We have

f ′′ = e−xλTs − P 2 1 + log(1 + xP )

(1 + xP )2(log(1 + xP ))2
.
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It is easy to show that f ′′ < 0 when x → 0+ or x → ∞. So
if f ′(x) = 0 has more than one solution, f ′′(x) = 0 has at
least one solution with f ′ ≥ 0 at this solution. Suppose this
solution is y. Then we have

f ′′(y) = 0 = e−yλTs − P 2 1 + log(1 + yP )

(1 + yP )2(log(1 + yP ))2
.

So at this point,

f ′(y) = −1 − P 2 1 + log(1 + yP )

(1 + yP )2(log(1 + yP ))2
+

P

(1 + xP ) log(1 + xP )

=
−(1 + yP )2(log(1 + yP ))2 − P 2(1 + log(1 + yP ))

(1 + yP )2(log(1 + yP ))2
+

P (1 + yP ) log(1 + yP )

(1 + yP )2(log(1 + yP ))2

<
−(1 + yP )2(log(1 + yP ))2 − P 2 + P (1 + yP ) log(1 + yP )

(1 + yP )2(log(1 + yP ))2

< 0,

by Cauchy’s inequality. This is a contradiction! q.e.d.
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