
Game-Based Admission Control for Wireless Systems
(Invited Paper)

Benjamin Yolken
yolken@stanford.edu

Nicholas Bambos
bambos@stanford.edu

Stanford University
Stanford, CA

ABSTRACT
Much previous work has examined the wireless power con-
trol problem using tools from game theory, an economic
concept which describes the behavior of interdependent but
non-cooperative users. In this paper, we expand these ideas
to the antecedent process of deciding which users may par-
ticipate in the network, i.e. the admission control problem.
In particular, we propose three distinct pricing schemes for
influencing users as they make their participation decisions.
We fully characterize the equilibria induced by each and
then test their performance in a simulated, wireless envi-
ronment. Our preliminary results show that these schemes
have the potential to produce high quality outcomes in an
incentive-compatible way.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication

General Terms
Economics,Performance,Theory

Keywords
admission control, game theory, Nash Equilibrium, wireless

1. INTRODUCTION
The last decade has seen an explosion in the diversity

and ubiquity of wireless mobile devices. These are not just
used for voice communication, but now, increasingly, as part
of rich, but bandwidth-intensive, multimedia applications.
This trend, in turn, has required the study of two inter-
related issues in the allocation and use of wireless spec-
trum: (1) transmission power control and (2) quality-of-
service (QoS) guarantees. The first is important because
mobile devices, by design, have only limited battery capac-
ity. The latter must be conserved so that the user is not
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left “stranded”with a dead device before the opportunity to
recharge. In addition, the choice of transmission power can
have effects on other users. If some device is unnecessarily
“blasting” at full-power, for instance, this may significantly
increase the interference perceived by others nearby, forcing
them to also increase their powers or drop out of the system.

The second concern, QoS, arises because of the appli-
cations mentioned previously. Users watching streaming
video, for example, are very sensitive to image resolution,
skipped frames, sound-image synchronization, etc. If the
“quality” of the wireless link is not high enough, then these
and other criteria may degrade, making users unhappy and
significantly reducing the value they get from the under-
lying application. Although the environment of study has
several plausible “quality”metrics, we focus in the sequel on
the signal-to-inference ratio (SIR) in the associated wireless
channel. This value is correlated with the channel’s theoret-
ical information “capacity” and thus reflects “quality” in an
application-agnostic way.

The previous two concerns are obviously not independent.
As transmission power increases, SIR (and quality) also in-
crease. This increase, however, comes at the expense of
reduced battery life and increased interference experienced
by neighboring users. Thus, the “optimal” choices for power
and QoS expectations reflect tradeoffs between the two.

Two approaches have been developed in the literature for
addressing the latter tradeoffs. The first, originally proposed
by Foschini and Miljanic in [3], uses the concept of “hard,”
SIR-targets. When users asynchronously adjust their pow-
ers, they can converge to a Pareto-optimal power point, i.e.
one at which all targets are met with the minimal total power
expenditure. The second, parallel approach, maps the power
control problem into game theory, a branch of economics
used to model strategic interactions among non-cooperating
participants. The power-QoS tradeoff is explicitly encapsu-
lated in user-specific utility functions. By selfishly seeking
to maximize these functions, the users may converge to a
Nash Equilibrium, i.e. a point at which no player has an in-
centive to unilaterally deviate. See [1, 4, 9], among others.
A few works, such as [5, 10], have assumed utility functions
with “soft” SIR targets, thus attempting to bridge the two
approaches.

In this work, we consider the antecedent process of admis-
sion control, i.e. deciding who is allowed to use the wireless
channel in the first place. This process, for the most part not
emphasized in the previously cited works, plays a major role
in the final system outcome. In the Foschini-Miljanic model,
for instance, allowing everyone to participate may negate the
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existence of the Pareto power point discussed above. In the
game-oriented models, on the other hand, admission control
is necessary for ensuring that the resulting Nash equilibria
are desirable from the standpoint of efficiency, fairness, and
other criteria.

This admission control process has obviously been exam-
ined in much previous work (see, for instance, [2, 6, 7]).
Our original contribution here, however, is in considering
this process within a framework that also includes SIR tar-
gets, user utilities, and economic incentives. In particular,
we consider a variety of payment schemes which act as a
“front door” to the overall system. These payments serve
to keep out users who would have detrimental effects in the
following power transmission game / update process. In ad-
dition, the payments could be a source of revenue for the
wireless operator. As such, these schemes simultaneously
address many important concerns in these wireless environ-
ments: power control, QoS, money, and others.

The remainder of this paper is organized as follows. In
Section 2, we discuss the mathematical, wireless network
model used for the analysis in the sequel. Section 3 adds
to the latter the idea of utility functions, a framework use-
ful for modeling user behavior and incentives in the previous
environment. In Section 4, we explore various approaches to
payment-based admission control, the main original contri-
bution of this work. Finally, in Sections 5 and 6, we present
some numerical examples, discuss directions for future re-
search, and conclude the paper.

2. WIRELESS NETWORK MODEL
As in [10], consider a wireless network modeled as N in-

terfering radio links. These links are assumed to occupy a
single channel; orthogonal channels are not considered as
they do not interfere with the former. Each user / link
selects a transmission power, pi, and experiences an SIR,
γi(p) as a function of its own power, the powers chosen by
the other users, and the system environment. In particular,
we assume

γi(p) =
Giipi

∑

i6=j
Gijpj + ηi

(1)

Using the notation commonly employed in the literature,
Gii > 0 represents the power-attenuation from the user i’s
transmitter to its receiver, Gij > 0 is the power-attenuation
of user j’s signal from the transmitter of link j to the re-
ceiver of link i, and ηi > 0 represents the thermal noise
experienced by user i. The exact values of these constants
are exogenously determined by the system environment.

Assume that each user also has a “hard” target SIR de-
noted by γ̄i > 0. We seek to characterize the set of powers at
which all of the latter are met or exceeded, i.e. γi(p) ≥ γ̄i ∀i.
As done in [2], one can show that this set is equivalent to
those power vectors, p > 0, for which

(I −F)p ≥ u, (2)

where

Fij =

{

0 if i = j
γ̄iGij

Gii
if i 6= j

∀ i, j

ui = γ̄iηi

Gii
∀ i

(3)

p
∗

p1

p2
γ2(p)=γ̄2

γ1(p)=γ̄1

Feasible region

Figure 1: Illustration of p∗ geometry for N = 2 case.
The set of all feasible powers form a “cone” with
the former point at its tip. Any other point in this
cone satisfies p ≥ p∗ and thus requires greater power
expenditure.

If (I − F)−1 is well-defined and componentwise positive,
or, equivalently, if the spectral radius of F, ρ(F), is strictly
less than 1, then the latter system has a solution given by

p∗ = (I− F)−1u > 0, (4)

This power vector is Pareto optimal in the sense that any
other solution to the previous inequality system has p ≥ p∗.
Thus, the latter point is the “best” choice in that it satis-
fies all of the SIR targets in the most power-efficient way.
See Figure 1 above for a geometric interpretation of this
result. In addition, the system will converge to this point
with the Foschini-Miljanic (FM), “best-response” power up-
date scheme:

pi(t + 1) = pi(t)
γ̄i

γi(t)
∀i (5)

See [3] for more details.
If, on the other hand, (I − F)−1 is not well-defined (⇔

ρ(F) ≥ 1), then there exists no point at which all SIR tar-
gets are simultaneously met. In fact, if users iteratively up-
date their powers according to the FM algorithm above, the
former will converge to infinity. As discussed in the intro-
duction, admission control is needed to avoid this obviously
undesirable outcome. We discuss this further in Section 4
below.

3. GAME THEORETIC MODEL
The previous model addresses the power-QoS tradeoff but

does so in a way that ignores user incentives and unnecessar-
ily restricts the space of possible outcomes. To address this,
we impose user-specific utility functions and consider the
participation and power level decisions within a game-based
framework.

3.1 Utility and Value Functions
Many different utility function forms have been proposed

in the literature, and many of these are indeed plausible,
depending on the specific assumptions in the underlying en-
vironment. As in [10], however, we restrict our attention in
the sequel to utilities that can be written as
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γi
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Vi(γi)

convex
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linear

discontinuous

Figure 2: Some possible Vi(·) function forms for en-
vironments with “soft” target SIRs.

Ui(p) =

{

Vi(γi(p)) − Ci(pi) if i participates
0 otherwise

(6)

If the user participates in the system, then its utility is given
by the value, Vi(·), it receives as a function of the perceived
link quality / SIR minus the cost, Ci(·) that is has to pay.
Although written as an explicit function of power, the lat-
ter costs could be fixed or dependent on other, exogenously
determined parameters (e.g., γ̄i).

In addition, we assume that the former value functions
are target-based. In particular, these values are all (weakly)
increasing below the user targets but then saturate at γ̄i, im-
plying that the users get no additional value for SIRs above
and beyond the latter. This assumption is appropriate, for
instance, in multimedia streaming applications, where there
is some fixed, upper bound on user-perceived quality.

Of course, the description above allows for many possible
functional forms on the intervals [0, γ̄i). See Figure 2 above
for some examples. For simplicity, however, we assume in
the sequel that these have a binary, discontinuous structure,
i.e.:

Vi(γi(p)) =

{

v̂i if γi(p) ≥ γ̄i

0 otherwise
(7)

for some constants v̂i > 0 for all i. The latter values may
be private information, not known to the system operator.
Many of our results below can be extended to the case of
more general Vi(·) functions. This significantly complicates
the analysis, however, and we thus leave this as an extension
for future work.

3.2 Cost Functions
The value functions above are endogenous attributes of

the participants and their preferences (e.g., SIR targets).
We assume that the cost functions, however, are set by the
operator. By adjusting the Ci(·), this operator has a “knob”
by which it can direct the system towards specific, desired
outcomes. In particular, these can be set to facilitate the
admission control process described in the introduction.

To see this, note that, given the previously assumed utility
function forms, user i will only participate if v̂i, the maxi-
mum value it can expect to obtain, is greater than or equal
to its cost. Otherwise, it can do (weakly) better by sitting
out. Thus, by setting the costs high or low, the operator

has the implicit power to keep some users out while allow-
ing others through. Moreover, this process is done in an
incentive-compatible way. No user is forced to leave the sys-
tem against its will; rather, it chooses to not participate
based on an open, observable charging policy.

These “admission price” choices and the outcomes they
induce are discussed further in Section 4 below.

3.3 Admission and Power Control Game
Given the setup above, consider the single-stage, complete

information game in which users simultaneously name their
power choices, pi, and then receive utilities according to the
previously described form. Note that this game also includes
the admission control problem, as users can choose pi = 0
and thus signal their intent to not participate.

We then restrict our attention to those outcomes which lie
in the set of pure strategy Nash Equilibria. More formally,
this corresponds to those p for which

Ui(pi,p−i) ≥ Ui(p
′
i,p−i) ∀i, p

′
i ∈ [0,∞) (8)

where p−i represents the powers of all users other than i. At
any Nash Equilibrium, therefore, no user has an incentive to
unilaterally deviate. These points thus represent the “sta-
ble,”“expected”outcomes in a system with non-cooperating,
selfish users.

4. ADMISSION CONTROL SCHEMES
In this section, we explore several possible Ci(·) choices

and the admission control schemes they induce. For each,
we describe the properties of the resulting Nash Equilibria
(if they exist), and then discuss the advantages and disad-
vantages of the given scheme in more detail.

4.1 Fixed Admission Prices
The simplest approach for payment-based admission con-

trol is to set a fixed, flat entrance price that must be paid
by all participants, irrespective of their SIR-targets, powers,
etc. Within the above mathematical framework, this corre-
sponds to having Ci(·) = C for some positive constant C,
uniform across all users.

Before discussing the incentive-compatibility of this scheme,
we need some additional notation. Given fixed power choices,
p, let P represent the set of participants, i.e. the set of users
for whom pi > 0, and N represent the negation of P , i.e. the
set of users not participating. Furthermore, let FP and p∗

P

denote, respectively, the interference matrix and resulting
Pareto power point when Equations 3 and 4 are restricted
to just those users in P .

We now assert the following:

Proposition 1. Given some fixed admission price choice,
C, the system has a Nash Equilibrium if and only if there
exists a partition of the users such that:

1. ρ(FP) < 1

2. v̂i ≥ C ∀i ∈ P

3. v̂j ≤ C ∀j ∈ N

Proof. Suppose a Nash Equilibrium, p exists. Let P and
N represent, respectively, the set of participants and non-
participants implied by the powers in the latter vector. We
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then, necessarily have that the three conditions above hold.
If the first does not hold, then it is impossible for the users
in P to reach their targets, and thus they will constantly be
increasing their powers. If the second or third do not hold,
on the other hand, then at least one user has an incentive to
unilaterally deviate, violating the assumptions on our equi-
librium p. Thus, P and N are, indeed, a partition of the
desired form.

On the other hand, if the three conditions above hold,
then there exists a Nash Equilibrium. In particular, we can
set the powers of those users in P according to p∗

P , with
pi = 0 for all non-participants. In this case, no users in
either P or N have an incentive to deviate, giving us the
desired result.

We thus have that there is a very simple Nash Equilibrium,
provided that C is chosen properly. In particular, this ad-
mission fee must be“high enough” to ensure that the system
is not “overloaded” by those users with v̂i ≥ C. In any envi-
ronment, a Nash Equilibrium with no participation can be
induced if we set C > maxi v̂i.

Note that if C 6= v̂i ∀i and an equilibrium exists, then the
P / N partition implied by this equilibrium is unique. If
C equals one or more user values, on the other hand, then
there could exist multiple equilibria corresponding to differ-
ent participation choices of those users “on the boundary.”
The latter condition, however, is unlikely to be encountered
in practice.

This scheme has the advantage of simplicity, but with at
least two significant downsides. First, computing a “good”
value of C may be difficult, particularly with limited infor-
mation about the user v̂i values. If the operator sets this
value too low, then an equilibrium may not exist, leading to
continual power fluctuations and user unhappiness. On the
other hand, if this value is set too high, then this may make
admission unnecessarily restrictive, causing the system to be
significantly underprovisioned.

Second, even with complete information, there is no guar-
antee that any C choice will lead to an efficient outcome.
In other words, it may not be optimal from a “total user
happiness” standpoint to just let in all those with v̂i > C.
The reason is that these values do not necessarily incorpo-
rate the interference caused and experienced by each user;
a high value user, may, for instance, “block” several lower
valued ones, even if the combined values of the latter exceed
the former. By ignoring these criteria, fixed pricing schemes
can lead to significantly suboptimal allocations.

As a solution to the first concern, the operator could set C

based on some kind of iterative, price discovery process. For
instance, users could be asked to name their maximum“will-
ingness to pay” in an auction, and then the final admission
price could be set to the lowest value at which all participant
targets can be met. This is a very promising approach, but
one that requires a detailed study of truthfulness incentives
and other concerns. We thus leave it as a topic for future
research.

The second concern, on the other hand, cannot be ad-
dressed with the framework of flat admission prices. We
thus need to consider other pricing schemes, ones that pe-
nalize users for the harm they cause to others. This is the
subject of our next section.

4.2 Externality-Based Pricing
Much research in the field of economics has shown that

overall system outcomes can be significantly improved when
users are forced to internalize the effects of their actions on
others (see, for instance, [8]). The easiest approach is often
to incorporate these externalities directly into the observed
system prices. Users who could, potentially, cause more
harm to others are charged more and, as a result, weigh
this result when deciding whether to participate.

This method can only work, however, if there is some
way of quantifying these inter-user effects. In full general-
ity, these could reflect the total drop experienced in “other
user” utilities when each user decides to participate. This
method, however, is computationally difficult and leads to
non-uniform, potentially “unfair” pricing schemes.

A more palatable approach is to instead charge on the
basis of some easily observed proxy for these externality ef-
fects. Before describing these, we need one more piece of
notation. Let gi represent the sum of the coefficients used
to calculate user i’s interference effects on the other users.
More formally

gi =
∑

j 6=i

Gji (9)

We describe the intuition behind this metric later in this
section.

Given the above, we now consider the following two, non-
flat pricing schemes:

1. Charge users in proportion to their transmission pow-
ers: Ci(·) = cpi

2. Charge users in proportion to the interference metric
defined above: Ci(·) = cgi

where, in each case, c > 0 is some system-wide scaling term
set by the operator.

Note that each of these captures the externalities described
previously. The first does this by charging more as powers
are increased. Since this increase in power also increases
the interference experienced by the other users, the trans-
mitting user is, in a sense, being penalized in proportion
to this “harm.” The second approach increases payments
in proportion to gi, a metric that is increasing in the Gji

interference coefficients. Thus, i pays in proportion to the
potential interference that it could cause by participating.
Both approaches, therefore, force users to “pay” in a manner
consistent with their impacts on the optimality of the overall
system.

As in the previous section, it is also possible to character-
ize the equilibria resulting from these schemes. In particular,
we have the following theorems:

Proposition 2. Suppose that prices are set as Ci(·) =
cpi. Then, there exists a Nash Equilibrium if and only if
there exists a partition of the users, P and N , such that:

1. ρ(FP) < 1

2. v̂i ≥ cp∗
i,P ∀i ∈ P

3. v̂j ≤ cp∗
j,P+j ∀j ∈ N

Proposition 3. Suppose that prices are set as Ci(·) =
cgi. Then, there exists a Nash Equilibrium if and only if
there exists a partition of the users, P and N , such that:
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1. ρ(FP) < 1

2. v̂i ≥ cgi ∀i ∈ P

3. v̂j ≤ cgj ∀j ∈ N

The proofs are very similar to that for Theorem 1 above,
so we omit the details. Note that the conditions for 2 are
slightly more complicated then the ones in the other two
theorems; the price in this case depends on power, which in
turn varies based on the participants in P .

As with flat, fixed prices, the schemes defined here are
sensitive to operator-defined thresholds. If c is set too low,
then an equilibrium may not exist because too many users
will want to participate. As c is increased, the chances of
getting an equilibrium increase. This, however, happens
at the expense of setting this bar “too high” and keeping
out users who could, potentially, be admitted. Setting this
value optimally ultimately requires information about the
user preferences, information that may not be available to
the operator. As in the previous section, this problem could
be addressed with an auction; we leave this as a topic for
future work.

4.3 Convergence Algorithms
Given any of the pricing schemes above, a natural question

to ask is how the system can reach an equilibrium, provided
it exists. In the case of Ci(·) = C or Ci(·) = cgi, this
convergence is straightforward; ignoring the case of “ties,”
(i.e., v̂i = C or v̂i = cgi for some i), all users with values
strictly above their costs enter the system. These users can
then use the Foschini-Miljanic update procedure (described
previously in Section 2) to reach the corresponding Pareto
power point, p∗

P .
The case of Ci(·) = cpi is trickier because the final P /

N partition is hard to determine apriori. As is commonly
done, we propose here using an iterative, “best response dy-
namics” algorithm to reach the equilibrium point. In par-
ticular, users “update” their powers at discrete intervals, in
each instance setting these to maximize their utilities given
the currently observed interference:

pi = argmax
p̄i≥0

Ui(p̄i,p−i) (10)

The updates may be done either synchronously or asyn-
chronously. These types of procedures have been proven to
converge in other game-theoretic applications, and we have
observed that the algorithm above seems to work well in our
environment of study. Proving this rigorously, however, will
be addressed in future research.

5. SIMULATED PERFORMANCE
The three pricing schemes above were studied in a sim-

ulated wireless network. In a manner similar to [10], this
network was constructed by randomly placing transmitter-
receiver pairs into a 1000 × 1000 grid. 25 such pairs were
placed, each corresponding to a single system user. See Fig-
ure 4.3 above for the resulting network topology. The Gii

and Gij parameters were computed assuming a power drop-
off proportional to 1

d4 , and the thermal noise terms were set

to ηi = 10−8 for all i.
The user SIR targets were chosen uniformly at random

from [0, 1] intervals. Their values were then set according
to:

0 200 400 600 800 1000

0

200

400

600

800

1000

x

y

Figure 3: Randomly located links used in simula-
tion. Arrows point from transmitters to receivers.

v̂i = ln(1 + γ̄i) (11)

for all i, thus reflecting the information theoretic capacities
of these links at the targeted SIR levels.

Given this setup, we simulated the equilibrium power choices
in each scheme as a function of the appropriate cost scaling
term (i.e., either C or c). For the cases of flat, fixed prices
and interference-based charging, this was done by first de-
termining the P / N partition as discussed in Section 4.3
above. We then ran the Foschini-Miljanic algorithm among
those users in the former set. In the case of power-based
pricing, we ran the synchronous, “best response dynamics”
algorithm specified in Equation 10 above.

The results of these runs are shown in Figures 4 and 5
below. In cases where a Nash Equilibrium was found, we
have plotted the total value of the associated participants,
i.e.

∑

i∈P v̂i. This is a good metric for the “quality” or “ef-
ficiency” of these outcomes. “Gaps” or undefined regions of
these plots correspond to cost choices for which an equi-
librium could not be found. For the cases of fixed and
interference-based prices, we have also plotted the cardinal-
ity of the P set, i.e. the number of users for whom either
v̂i > C or v̂i > cgi.

For the first two schemes, we clearly see the“threshold”be-
havior discussed earlier. When costs are zero, all users want
to participate, but no equilibrium exists because the system
is too “overloaded.” As these costs are increased, however,
users “drop out” in increasing numbers until, finally, a p∗ ex-
ists for those remaining. As costs are increased beyond this
point, equilibria always exist, but the total value of those
participating decreases. Eventually, these admission criteria
become too strict for any user, and number of participants
drops to 0. Note, however, that the peak total value is
much lower in the fixed pricing scheme; by not incorporat-
ing power or interference criteria, it does not admit users in
a capacity-aware manner.

The results from the power-based pricing scheme also show
total value decreasing in cost. Here, however, this curve is
not continuous; there are numerous “gaps” where our power
control algorithm did not converge. We hypothesize that
these correspond to places where, in fact, equilibria do not
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(a) Fixed Admission Pricing
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(b) Interference-Based Pricing

Figure 4: Total user value (solid lines) and number of participants (dotted lines) as functions of C and c

scaling terms for fixed and interference-based pricing schemes. The former is plotted only for those costs
at which an equilibrium exists; the latter is shown for all costs, even those where “too many” users want to
participate and no feasible powers exist. We see that, as expected, the number of participants decreases until,
eventually, an equilibrium exists. Beyond this point, the value of those users in equilibrium also decreases
until eventually hitting zero.

exist. Unlike the previous two cases, power-based pricing
does not admit any clear thresholds. Increasing c may ex-
clude some users, but then allow in others by reducing the
powers necessary to reach their targets. Because power is
incorporated into the user costs, these participation criteria
can be highly non-monotonic, thus leading to the discontinu-
ities observed. Future research will explore this phenomenon
further.

These simulations, therefore, show that our pricing schemes
have the potential to achieve admission and power control
in an incentive-compatible way. By adjusting the appropri-
ate cost parameter, the operator can either raise or lower
the bar for admission into the system, affecting both the ex-
istence and quality of the resulting equilibria points. Our
results here are promising but obviously preliminary; future
research will need to run these types of simulations with a
wider variety of input parameters.

6. CONCLUSION
In this paper, we have thus looked at the wireless ad-

mission control problem from a game theoretic, payment-
oriented perspective. Assuming binary utility valuations, we
studied three different, price-based admission control schemes–
flat pricing, power-based pricing, and interference-based pricing–
and characterized the resulting Nash Equilibria for each.
These schemes were tested in a simple 25 user, simulated
wireless network. While somewhat limited, our simulations
show that these approaches have the potential to achieve ad-
mission control in a way that is both incentive-compatible
and value maximizing.

In future work, we will extend our results here to a wider
set of utility function forms. In addition, we propose to
more rigorously explore efficiency, convergence, fairness, op-
erator revenue, and other properties of the resulting Nash
Equilibria. We will also test our schemes more thoroughly
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Figure 5: Total user value as a function of c scaling
term for power-based pricing scheme. Gaps in the
plot correspond to regions where the algorithm spec-
ified in Equation 10 did not converge. We hypoth-
esize that the latter points correspond to regions in
which no equilibria exist.

by running larger, more complex simulations. This is a very
exciting topic of study, particularly as payment systems be-
come increasingly integrated into consumer wireless systems.

7. REFERENCES
[1] T. Alpcan, T. Basar, R. Srikant, and E. Altman.

CDMA uplink power control as a noncooperative
game. In IEEE Conference on Decision and Control,
Dec. 2001.

[2] N. Bambos, S. Chen, and C. Pottie. Channel access

Digital Object Identifier: 10.4108/ICST.WICON2008.4917 
http://dx.doi.org/10.4108/ICST.WICON2008.4917 



algorithms with active link protection for wireless
communication networks with power control.
IEEE/ACM Transactions on Networking,
8(5):583–597, Oct. 2000.

[3] G. Foschini and Z. Miljanic. A simple distributed
autonomous power control algorithm and its
convergence. IEEE Transactions on Vehicular
Technology, 42(4):641–646, Nov. 1993.

[4] S. Gunturi and F. Paganini. Game theoretic approach
to power control in cellular CDMA. In IEEE
Vehicular Technology Conference, Oct. 2003.

[5] S. Koskie and Z. Gajic. A Nash game algorithm for
SIR-based power control in 3G wireless CDMA
networks. In IEEE/ACM Transactions on Networking,
Oct. 2005.

[6] T. Kwon, Y. Choi, C. Bisdikian, and M. Naghsineh.
Call admission control or adaptive multimedia in
wireless/mobile networks. In ACM International
Workshop on Wireless Mobile Multimedia, Oct. 1998.

[7] M. Naghshineh and M. Schwartz. Distributed call
admission control in mobile/wireless networks. IEEE
Journal on Selected Areas in Communications,
14(4):711–717, May 1996.

[8] N. Nisan. Algorithms for selfish agents. In Symposium
on Theoretical Aspects of Computer Science, Mar.
1999.

[9] C. Saraydar, M. Mandayam, and D. Goodman.
Pricing and power control in a multicell wireless
network. IEEE Journal on Selected Areas in
Communications, 19(10):1883–1892, Oct. 2001.

[10] B. Yolken and N. Bambos. Target-driven and
incentive-aligned power control for wireless networks.
In IEEE Global Communications Conference, Nov.
2007.

Digital Object Identifier: 10.4108/ICST.WICON2008.4917 
http://dx.doi.org/10.4108/ICST.WICON2008.4917 


