
Optimized Content Caching and Request Capture in
CNF Networks

Lijun Dong Dan Zhang Yanyong Zhang Dipankar Raychaudhuri

WINLAB, Rutgers University

671 Route 1 South

North Brunswick, NJ 08902-3390

{lijdong, bacholic, yyzhang, ray}@winlab.rutgers.edu

Abstract—In order to meet the overwhelming demands of

content retrieval for mobile end users, a novel architecture for the

next-generation Internet called Cache-and-Forward (CNF) has

been proposed to transport content as large packages in a hop

by hop manner towards the destination, instead of transporting a

stream of small packets along an established TCP/IP connection.

In this paper, we investigate how CNF network architecture can

be designed for efficient content retrieval for wireless mobile

nodes. In particular, we look at Integrated Caching in which

we assume each CNF router on the future Internet can cache

contents that pass by and reply to content requests with its

local copy. We name this content delivery method Cachingn-

Capture(CC). We develop a mathematical model for CC to

optimize the average content retrieval latency with limited storage

on each CNF router. We propose Sequential Reassignment(SR)

algorithm to solve the optimization problem.We compare the per-

formance of the derived optimal solutions against our integrated

caching and routing heuristics. The results show the Sequential

Reassignment algorithm significantly reduces the average content

retrieval latency by as high as 70%.

I. INTRODUCTION

In the past few decades, the Internet has enabled a large

array of applications, which have profoundly changed the

way we interact with the rest of the world. However, as

applications become more demanding, and as new technology

makes available larger storage, higher bandwidth, as well

as diverse means of connecting to the Internet, the current

design of the Internet may not be sufficient to address the

future needs and opportunities. In response to this challenge,

the research community recently initiated an effort aiming

the design and evaluation of “clean slate” protocols for the

future Internet [1]. One of these clean-slate Internet projects

is the “Cache-and-Forward” architecture which proposes the

use of hop-by-hop transport along with in-network storage and

caching to achieve efficient content delivery to both fixed and

mobile end-points [2], [3].

Assumptions of stability and end-to-end connection have

traditionally guided the design of TCP/IP protocols, and have

led to efficient information transfer and effective recovery

strategies during periods of stress. Now, however, this end-

to-end strategy is being threatened by a revolution in wireless

access technology that alters dramatically the nature of internet

traffic, and challenges the basic assumptions upon which its

protocols were built. While the end-points of Internet traffic

were once stable and predictable, now they are increasingly

embodied in wireless devices, whose numbers and information

rates are varying and frequent disconnections are common.

They have introduced instability to Internet connectivity and

made the easy assumptions of end-to-end traffic flow increas-

ingly untenable.

Wireless access rates have increased 50-fold in the last

decade, solid-state storage capacities have increased 100-fold,

while dropping in cost to $50/GB, and magnetic storage

devices have increased 100-fold, while dropping in cost to

$0.50/GB. It has become cheap enough to afford putting

storage on each individual router, enabling routers to make

independent decision whether to cache contents while forward-

ing them.

Fundamental to CNF architecture are two components: a

transport layer service that operates in a hop-by-hop store-

and-forward manner, and a content retrieval framework that

exploits large, inexpensive storage at each CNF router to cache

contents when they are routed through. For mobile nodes, the

CNF architecture enables opportunistic push-pull delivery of

files, both to and from the wired network. Routing to and from

mobile terminals will exploit location information provided by

an enhanced name service. Distributed caching of popular con-

tent will occur throughout the network, thus making peer-to-

peer file sharing a first-class service. We call the CNF caching

paradigm as In-network Caching. This paper is mainly focused

on the design of optimal content dissemination algorithms

based on distributed in-network caching.

The content dissemination framework consists of two

phases. The first phase is content discovery, which aims at

discovering the locations of the requested content based on

a distributed directory. The second phase is content retrieval,

in which the endpoint acquires the content from the content

location. A straightforward in-network caching approach is to

have each en-route CNF router independently decide whether

or not to cache passing contents, which we call Cache-n-

Capture. We note that Cache-n-Capture is not a new approach;

in fact, it was discussed in earlier studies, such as en-route

caching in [4], [5]. Researchers have been working on coordi-

nated enroute web caching context [5], [6], [7], [8]. However,

the performance of en-route web caching depends both on

the locations of the caches and how the cache contents are

Digital Object Identifier: 10.4108/ICST.WICON2010.8498

http://dx.doi.org/10.4108/ICST.WICON2010.8498

managed. In Cache-and-Forward networks, cache is integrated

to each router. Caching can happen at every enroute router

from the server to the mobile end user. Thus it is still a

challenging problem whether there is a general principal for

each CNF router to follow when a caching decision needed to

be made.

In this paper, we formulate a novel mathematical model

which takes the content caching and request capture ability

of each enroute router into consideration. We propose a

distributed caching scheme, which is called Sequential Reas-

signment. We prove that the algorithm solves the optimization

problem and converges to a suboptimal solution. The simu-

lation results further show that the average content retrieval

latency performance is much improved under the Sequential

Reassignment caching scheme.

The rest of the paper is organized as follows. Section

II summarizes related work. We give a brief overview of

CNF architecture in Section III. Next, we discuss the content

dissemination framework in Section IV. The proposed mathe-

matical model and optimal solution is presented in Section V.

The simulation results are shown in Section VI. Finally, we

provide concluding remarks in Section VII.

II. RELATED WORK

Disruption/Delay Tolerant Networking (DTN): There are

major differences between CNF architecture and DTN ar-

chitecture [9]. DTN network is driven by disruption which

implies potentially long periods of disconnection while CNF is

driven by a combination of wireless, intermittent connectivity

and content. Because of this fundamental difference in the

drivers of the design, the architectures have resulted in subtle

but fundamental differences.

DTN network is an extension of the TCP/IP network for

disconnected environment. As a result, applications interface

with DTN network in a manner similar to how they interface

with TCP/IP networks. In CNF network, applications interface

with the network in a distinctly different way. Specifically, the

interface abstraction is that of content retrieval as opposed

to conversation. Therefore, an application would request the

network to retrieve a content specified by Content ID (CID),

which differs from connecting to a specific node for the

purpose of delivering/retrieving information.

DTN routing [10], [11] is again driven by disconnection,

with the goal of delivering content to a destination which may

not be connected. CNF routing has two phases, the first being a

content discovery phase whereby the network locates/discovers

the content requested by the end-user and the second phase is

similar to DTN routing. Note that the content discovery phase

is built in to the CNF architecture and is not an overlay as in

DTN architecture.

To summarize, the differences between DTN and CNF

architectures stem from the distinctions in the design drivers

for the two networks. However, most of the differences are

complementary as opposed to conflicting and hence can be

incorporated in the next-generation DTN architecture.

Caching: A lot of work has been done in the field of caching.

Caching can be implemented in various flavors, namely, hi-

erarchical caching [12], [13], [14], distributed caching with

centralized control [15], cooperative caching [16], [17] etc.

Much has been done in the placement of caches [18], [19] and

cache replacement policies [20], [21], [22].

Most of the work in the literature assumes an overlay of

caches on the network. Caches have not been considered as

an integral part of the underlying network in the same way

routers have been.

The idea of having Internet routers cache passing data has

been proposed and discussed in several contexts. For example,

in [4], the authors proposed to associate caching with en-route

router nodes to speed up object access latency. Several simple

association methods were discussed in this paper, namely,

caching at every transit node, caching at every gateway node,

and independently caching at every router node. The similar

idea was also discussed in the context of Active Networks [23].

In[24], a network level caching protocol was proposed to cache

individual data packets in the nodes of the network, which

can reduce network traffic near the server as well as packet

latency. In Active Reliable Multicast [25], routers perform

“best-effort” caching of multicast data such that any router

on the route of a request can perform retransmission, which

can significantly improve the multicast performance. In [26],

the authors proposed to cache data on intermediate routers so

that the routers can intercept later requests to reduce the server

load and the data retrieval time.

In [5], the authors considered the coordinated enroute web

caching environment for linear topology. An enroute web

caching algorithm was proposed for placing web files at only

one node on the path from client to server in the tree network

in [6]. In [7], the authors presented a mathematical model to

optimally decide where copies of the requested object should

be placed for tree networks too. The optimization problems

were formulated in single server networks in [5], [6], [7]. In

[8], the authors solved the problem of coordinated enroute web

caching in multiserver networks, with emergence of various

advanced networks that comprise a group of geographically

distributed servers. In this paper, we still make the assumption

that there is only one original server for each content. How-

ever, our mathematical model can be easily extended to mul-

tiserver situations. Maximizing cost gain is considered as the

optimization objective which is widely used in web services in

[5], [6], [7], [8]. However, in Cache-and-Forward networks,

quickly satisfying mobile end users’ content requests is the

main focus. Therefore, we consider a concrete performance

objective, called average content retrieval latency throughout

the paper.

III. OVERVIEW OF CACHE-AND-FORWARD

ARCHITECTURE

In this section, we present the basic concepts of Cache-

and-Forward architecture. We also shed some light on what

improvement that CNF achieves over the existing TCP/IP

architecture.

Digital Object Identifier: 10.4108/ICST.WICON2010.8498

http://dx.doi.org/10.4108/ICST.WICON2010.8498

Fig. 1. Cache-and-Forward architecture.

A. Concepts of Cache-and-Forward

The Cache-and-Forward architecture makes the following

assumptions:

• The network is hierarchical. As shown in Fig. 1, a very

high-bandwidth static core has edge nodes (EN) that con-

nect via a medium-high bandwidth static access network

to access nodes (AN) that act as wireless gateways. At

the mobile fringe are mobile nodes that connect to the

AN via low-medium rate multi-hop wireless links as

well as mobile nodes that exploit disconnected high-speed

file exchanges. The AN is the aggregation point for the

mobile nodes and ad hoc mobile networks, and the EN

is the aggregation point for the Access Nodes.

• Transport is provided by Cache-and-Forward(CNF)

routers. These CNF routers may appear throughout the

network hierarchy, as caching routers or edge nodes in the

core, as caching access nodes, or even as caching mobile

hosts in the mobile fringe, which are called as Carry-and-

Carry(CNC) routers. Both CNF and CNC routers have

persistent storage.

• Every mobile node is associated with a set of Post Of-

fices(PO): Typically, access nodes on the wired network

will serve as post offices. However, in our design, any

CNF node, even a mobile CNF node can be a PO.

Each mobile has a list of post office descriptors (POD)

that characterizes both the mobile time-varying network

connection as well as the properties, such as mobility,

of the associated POs. Each mobile node is responsible

for updating its post office descriptors. Note that a PO

is different from Mobile IP Foreign Agent because the

PO is not required to forward data to the mobile; rather

the mobile is expected to arrange to pick up any data

destined for it from the PO. In addition, unlike Mobile

IP, there may be multiple POs corresponding to a mobile

node.

B. Advantages of Cache-and-Forward

1) Efficient Multihop Wireless Transmission: Consider an

ad hoc wireless network with stationary nodes such that the

PHY layer radio connectivity is adequate. Suppose that these

nodes are supporting a TCP file transfer over a multihop radio

path. In this case, data packets in the forward direction (from

sender to receiver) contend for the channel with RTS/CTS

at the PHY layer as well with TCP ACK messages in the

reverse direction. These contending data packets cause self

interference to the multihop route and can disrupt timely

control message exchanges. This condition can be perceived

as a lost link, triggering inappropriate route repair or route

discovery mechanisms, ultimately resulting in transport layer

timeouts and dramatic reductions in throughput. This defi-

ciency is in addition to the problems caused by physical layer

outages induced by fading on a single link, for which solutions

have been developed. Alternatively, hop-by-hop transmission

of the file by CNF routers avoids self-interference, since the

transmission on any hop does not start until the previous

hop is completed. Although this forfeits the potential benefits

of pipelining, preliminary experiments[27] indicate that the

reduction in self-interference more than compensates.

2) Facilitating cache-and-carry to increase capacity in

mobile scenarios: Cache-and-Forward allows for a seamless

unified routing solution for wired and wireless networks. In

this case, a route could be a sequence of hosts capable of

sustaining a real-time connection or a sequence of hosts(CNC

routers) physically carrying the data, or even some combina-

tion of these approaches. The potential diversity of routes is

increased because an end-to-end real-time connection is no

longer mandated.

3) Making content sharing a first class service: Cache-

and-forward can provide benefits in the wired Internet where

peer-to-peer (P2P) traffic has become widespread. Since P2P

data transfer is not a ”service” offered by the Internet, several

independent applications with very different architecture and

protocols have been developed to accomplish what is essen-

tially the same result. Such peer-to-peer file transfers have

become so common that it is worth having a common service

from the network to meet these needs. This is analogous to

TCP, without which each application that requires reliable

transport of packets would have had to develop its own reliable

transport protocol. Just as TCP offered a ”reliable byte stream”

service to the hosts connected to the Internet, the Cache-and-

Forward architecture can provide an ”efficient file transport

service” between hosts on the next generation network.

In such an architecture, caching of popular files becomes

a natural component of the network layer. Multiple copies of

any large content file may be stored in caches to maximize

the probability of timely delivery when the location of the

Digital Object Identifier: 10.4108/ICST.WICON2010.8498

http://dx.doi.org/10.4108/ICST.WICON2010.8498

Algorithm 1 The routine on an endpoint.

contentLocationList ← FindLoc(CID)
bestLocation ←
CalculteBestLocation(contentLocationList)
content ← RetrieveContent(CID, bestLocation)

Global Handle Registry

Handle ServerHandle Server

Local Handle Service (LHS)Local Handle Service (LHS)

Content Server Content Server CID Default Server Other Locations

Fig. 2. CNRS implementation using handle system.

recipient is not certain.

IV. CONTENT DISSEMINATION FRAMEWORK IN A CNF

NETWORK

The content dissemination framework consists of two

phases. The first phase is content discovery, in which a

requestor discovers the location(s) of the desired content files.

Following that, the second phase is content retrieval, in which

the endpoint sends a request towards the hosting server, and

the requested content will be returned to the requestor as the

outcome. This framework is summarized in Algorithm 1. In

the rest of this section, we discuss these two phases in detail.

A. Content Discovery Through Content Name Resolution Ser-

vice (CNRS)

To make the network centered around content delivery, we

introduce the notion of persistent, globally unique content

identifiers, referred to as CID’s. CID’s must be location-

independent: A content file stored in multiple locations within

the CNF network will be referred to by the same CID. In

today’s Internet, content is identified by a URL whose prefix

consists of a string denoting the location of the content, which

is not location-independent, and thus is not a good candidate

for CID. One possible candidate for CID is the notion of a

handle as in the Handle System [28]. In the Handle system,

upon creation, a content file is assigned to a unique CID, and

the CID stays the same throughout its lifetime, even though the

content may be relocated or replicated to multiple locations.

An important service a CNF network provides is for endpoints

to retrieve specific content. Here, we assume that endpoints

can obtain the content’s CID before hand through a search

engine-like service.

After obtaining the CID, an endpoint then needs to find the

locations of the content through the Content Name Resolution

Server (CNRS), which maps a CID to a list of hosts (and/or

their mirrors) that have a copy of the content. A possible

implementation of CNRS would be through the handle system

that consists of a global handle registry, local handle services,

and handle servers that form a hierarchical structure, as shown

Algorithm 2 Cache-n-Capture routine on a CNF router.

loop

/* Capture */
if The CNF just received a ContentRetrieval request originated
from node S for content CID then

cached ← CheckCache(CID)
if cached =true then

Send(CID, S, content)
else

Forward(req, nextHop)
end if

end if

/* Cache */
if The CNF just received a ContentReply destined to node S
with content CID then

toCache ← CheckCachingCriteria(CID)
if toCache =true then

Cache(CID)
else

Forward(reply, nextHop)
end if

end if

end loop

in Fig.2. The global handle registry can map a CID to the

corresponding local handle services providing links to handle

servers, which in turn store the locations of the content.

In such a system, a Content Name Resolution re-

quest from the requestor endpoint is first routed to the re-

questor’s local handle service node. If the requested CID is

not found on the local handler service node, the request will

be routed to the global handle registry, which then forwards

the request to the destination local handle service node. The

destination local handle service will then consult its handle

server and return a list of servers/hosts of the content to the

requestor. The location list consists of two parts: the default

server, and the other servers (or mirrors). The list will be

routed back to the requesting endpoint using IP protocols.

From the list of content sources, an endpoint can select the

most suitable source node to send a Content Retrieval

request to. An endpoint can make this selection based on

various criteria, and one likely candidate is the closest source

node. The request is routed towards the chosen content source

using IP protocols.

In this paper, we consider every content only has one

original server, the mapping between a CID and its server

is maintained by the CNRS service.

B. Content Retrieval Method: Cache-n-Capture (CC)

In Cache-n-Capture (CC), both content caching and access

are passive. Here, a CNF router only caches those content files

that are routed through it (i.e., caching), and a CNF router only

helps return the cached copy to those requests that are routed

through it (i.e., capture).

First, let us look at the capture part of CC. A CNF router,

after receiving a Content Retrieval request, first checks

whether the content is cached locally. If the CNF router has a

copy of the requested content, it stops forwarding the request

Digital Object Identifier: 10.4108/ICST.WICON2010.8498

http://dx.doi.org/10.4108/ICST.WICON2010.8498

to the destination node, but instead, it returns the local copy

to the requestor hop by hop.

Next, let us look at the caching part of CC. When a content

file is routed through a CNF router towards the requesting

endpoint, the CNF router can choose to cache the content

based on some criteria. Below are some example criteria:

• Popular content. Content popularity can be indicated by

the content sources.

• Interest level. A CNF router can maintain a list of content

files to which the number of requests has exceeded a

threshold, and chooses to cache these files when they

pass by.

• Source specification. Sometimes the content source can

specify whether and how the cache should be cached, e.g.

caching at every hop.

Another issue that is worth noting is the cache replacement

policy. When the cache of a CNF router becomes full, it can

evict a victim content to accommodate the new content. The

victim can be selected based on a range of policies, including

First In First Out(FIFO), Least Recently Accessed First(LRU).

The algorithm of CC is summarized in Algorithm 2.

V. THE CC OPTIMIZATION FRAMEWORK

In this study, we formulated the Caching-n-Capture strategy

as an optimization problem with the objective of minimizing

average content retrieval latency. Since the storage on each

CNF router in the static access network can not be infinitely

large to cache all contents, the problem is to answer what is

the optimal set of contents that should be cached in each CNF

router with the limited storage.

A. System Model

To formulate the optimization problem, we assume that the

popularity distribution of the contents is known a priori, which

follows the MZipf distribution, which defines the probability

of retrieving the i-th content out of F available contents as

Pr(i) =
1

(i+ q)α ·K
, (1)

and

K =

F∑
i=1

1

(i+ q)α
, (2)

where α is the skewness factor which is the same as the

skewness factor in Zipf distributions, and q is the plateau factor

which controls the plateau shape (i.e. flattened head) near the

most popular objects that are lowest ranked. A larger q value

indicates a more flattened head.

Since in CNF architecture, the access node is aggregation

point for the mobile nodes and ad hoc mobile networks,

it represents the mobile nodes to send out content retrieval

requests. Thus we model the static core and access network to

be as an undirected graph G = (V,E), where a vertex in V
represents a node, and an edge in E represents a network link.

An access node may request the same content more than once,

if there are different mobile nodes connecting to it which have

the same interest to that content. We also assume each node in

the network is a CNF router, which has persistent but limited

storage.

Before we introduce our models, we first summarize the

parameters and variables used in the model. The following

parameters are defined in the formulation:

• Nodes: 1, 2, ...N ;

• Contents: 1, 2, ...F ;

• Link bandwidth: B;

• Request packet size: Q;

• Size of content i : fi;
• Processing delay at each node: Dp;

• Per-hop request transmission delay: Dq = Q/B;

• Per-hop content transmission delay: di = fi/B;

• Total delay of requesting content i over a hop: Di =
Dq +Dp + di;

In addition, the following variables are defined:

• Pi,j , the probability for node i to request content j;

• Vi,j , the probability for node i to cache content j;

• Ri, the storage limit of node i;

B. Problem Formulation

To formulate CC, we need to define the following additional

variables:

• Sj , the original server of content j;

• Ha,b, the hop count of the shortest path from node a to

node b;
• Ca→b

h , the h-th node on the routing path from node a to

b (assuming a is the 0-th node on the path);

The objective function is to minimize the average latency,

which can be realized through minimizing the sum of the

latencies for all requests:

min
N∑
i=1

F∑
j=1

Pi,j ·(

Hi,Sj∑
h=1

(h ·Dj ·V
C

i→Sj

h
,j
·
h−1∏
k=0

(1−V
C

i→Sj

k
,j
)))

(3)

In Equation 3, the product
∏h−1

k=0
(1 − V

C
i→Sj

k
,j
) denotes

the probability that the query from node i for content j is not

captured by the first h − 1 nodes on the routing path to the

server. The h-th node on the path (excluding the requester)

is denoted by C
i→Sj

h , and the probability that it holds the

requested content is V
C

i→Sj

h
,j

. Finally, the product, h ·Dj , is

the latency of retrieving content j from this node.

We have the following constraints:

F∑
j=1

Vi,j · fj ≤ Ri (4)

VSj ,j = 1, j = 1, 2, . . . F (5)

0 ≤ Vi,j ≤ 1 (6)

The first constraint is to make sure that the total size of the

contents cached on each node will not exceed its storage limit.

Digital Object Identifier: 10.4108/ICST.WICON2010.8498

http://dx.doi.org/10.4108/ICST.WICON2010.8498

The second constraint states that the probability that content

j resides in its server should be 1. The third constraint is to

ensure the probability for node i to cache content j is between

0 and 1.

Algorithm 3 A(i) (Reassignment at node i)

Step 1: Calculate ci,j

for j = 1 to F do

if i �= Sj then

ci,j =
∑

i∈(k,Sj)
i�=k

Pk,j(hk,i,Sj
− 1)Dj

hk,i,Sj
−1∏

�=0

(
1− V

C
k→Sj
�

,j

)

−
∑

i∈(k,Sj)

Pk,j

⎛
⎜⎜⎝

Hk,Sj∑
h=hk,i,Sj

+1

(h− 1)DjV
C

k→Sj
h

,j

h−1∏
�=0

� �=hk,i,Sj

(
1−V

C
k→Sj
�

,j

)
⎞
⎟⎟⎠

(7)

end if

end for

Step 2: Sort ci,j/fj
such that

ci,j1/fj1 ≤ ci,j2/fj2 ≤ · · · ≤ ci,jti /fjti (8)

where ti denotes the size of the set of j ∈ {1, 2, . . . , F} such that
i �= Sj ;

Step 3: Find extra storage space of node i
Find 0 ≤ d ≤ ti such that

∑
1≤m′≤F
i=Sm′

fm′ +
∑

1≤m≤d

fjm ≤ Ri (9)

and for any n > d,
∑

1≤m′≤F
i=Sm′

fm′ +
∑

1≤m≤n

fjm > Ri (10)

Step 4: Reassign the values of Vi,j

Set Vi,j = 1 for Sj = i.
if d = 0 then

Set Vi,j = 0, if Sj �= i;
else

Set

Vj1 = · · ·Vjd = 1 (11)

and

Vi,jd+1
=

Ri −
∑

1≤m′≤F
i=Sm′

fm′ −
∑

1≤m≤d
fjm

fjd+1

, (12)

Vjd+2
= · · · = Vti = 0 (13)

end if

C. Sequential Reassignment Algorithm

In this subsection we give a distributed algorithm that can

obtain a suboptimal solution to (3), which is called Sequen-

tial Reassignment Algorithm. As suggested by its name, the

atomic operation of the reassignment algorithm is reassign-

ment at node i which is denoted by A(i). The execution

of the reassignment algorithm simply consists of each node

randomly or periodically executing A(i), whose details are

given in Algorithm 3. A(i) adjusts Vi,j for j = 1, 2, . . . , F
for local optimality. When A(i) is executed, Vi′,j , i′ �= i,
j = 1, 2, . . . , F , are assumed to be feasible (meeting the

respective constraints) and fixed. Though the algorithm we

present here implicitly assumes each node i somehow knows

Vi′,j for all j and i′ such that i ∈ (i′, Sj) (the shortest

path from node i′ to the original server of content j), in

practice, these quantities can be piggybacked by requests from

i′ or be estimated at node i by observing request patterns of

node i′. In Algorithm 3, ci,j is the derivative of the objective

function corresponding to vi,j . The morale of the reassignment

algorithm comes from the following observations.

Proposition 1: ci,j ≤ 0.

Proof: As given in the assumption for A(i), when Vi′,j

(∀j and ∀i′ �= i) are known as fixed feasible values at node i,
(3) can be rewritten as

minimize

F∑
j=1

ci,jVi,j + some constants, (14)

subject to

F∑
j=1

Vi,jfj ≤ Ri, (15)

0 ≤ Vi,j ≤ 1, if Sj �= i, (16)

Vi,j = 1, if Sj = i. (17)

after some algebra. Though (7) that gives the formula of ci,j
is fairly complicated, it is clear that increasing Vi,j for any

particular choice of i and j, while keeping other caching

probabilities fixed, can only decrease the average latency, i.e.,

caching a new file without replacing any old files can only

reduce the latency. Apply this observation to (14), we find

this is possible only when ci,j ≤ 0.

Proposition 2: A(i) solves the optimization problem in

(14).

Proof: If
∑F

j=1
fj ≤ Ri, then the optimal solution is

trivially Vi,j = 1, ∀j, which is accomplished by A(i). Now

assume
∑F

j=1
fj > Ri. Form the partial Lagrangian of (14)

minimize L =

F∑
j=1

ci,jVi,j + μ

⎛
⎝

F∑
j=1

fjVi,j −Ri

⎞
⎠ (18)

=
F∑

j=1

(ci,j + μfj)Vi,j − μRi (19)

=
F∑

j=1

fj(ci,j/fj + μ)Vi,j − μRi (20)

Digital Object Identifier: 10.4108/ICST.WICON2010.8498

http://dx.doi.org/10.4108/ICST.WICON2010.8498

subject to (16) and (17), with μ ≥ 0 be the dual variable.

Suppose the optimal dual variable μ satisfies μ = 0. Since we

know ci,j ≤ 0 by Proposition 1, the optimal solution is clearly

Vi,j = 1, ∀j. But by assumption
∑F

j=1
fjVi,j =

∑F

j=1
fj >

Ri, i.e., the optimal solution violates the constraint. This

contradiction shows that μ > 0 and, by complimentary

slackness, (15) is tight. The optimal solution is hence obtained

by setting Vi,j = 1 if Sj = i and setting

Vi,j =

⎧⎪⎨
⎪⎩

1, ci,j/fj + μ < 0,

0, ci,j/fj + μ > 0,

any feasible value, ci,j/fj = 0,

(21)

for those j if Sj �= i, such that μ > 0 and (15) is tight. Readers

can check that one such solution is constructed by A(i) if we

let μ = −ci,d+2/fd+2.

Corollary 1: The reassignment algorithm converges to a

suboptimal solution.

Proof: By Proposition 2, each execution of A(i), in any

order, can only result in a smaller and better optimal objective

value in (3). Since the objective value is lower bounded by

0. The reassignment algorithm converges to a suboptimal

solution.

Corollary 2: If the reassignment algorithm discovers a op-

timal solution, every further execution of A(i) can only result

in an optimal solution.

Proof: Obvious.

VI. SIMULATION RESULTS

A. Parameter Settings

1) Network Topology: In order to keep the optimization

problem tractable, we considered a network with 12 CNF

routers that totally host 12 contents. We used the Georgia

Tech Internetwork Topology Model (GT-ITM) [29] [30] to

generate the network topology. The network consists of one

transit network and two access networks. Within a stub, the

stub nodes represent access nodes for mobile end users in local

area networks (LANs) (each of these stub nodes represents one

LAN), and as a result, these stub nodes generate user requests.

Each CNF router can cache contents that pass by.

2) Normalized Content Request Probability: In order to

solve the objective functions, the key is to calculate Pi,j , the

unified probability for node i to request content j. In order

to model spatial locality, we assume that requests from an

end node are most for contents originated from the same stub,

others are for remote contents. We define this percentage to

be σ, which is called locality parameter.

Calculating the variable Pi,j involves two steps. First, from

Equation 1, we can derive the probability of retrieving an

content at a certain rank out of a total of F contents. Second,

we should take the locality property of content retrieval into

consideration. Thus, we have:

Pi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

if i is the server of content j

σ × 1
N

× Pr(j)
∑h∈SSi Pr(h)

,

if j ∈ SSi

(1− σ)× 1
N

× Pr(j)
∑h∈DSi Pr(h)

,

if j ∈ DSi

1
N

× Pr(j)
∑h∈DSi Pr(h)

,

if j ∈ DSi and SSi is empty
1
N

× Pr(j)
∑h∈SSi Pr(h)

,

if j ∈ SSi and DSi is empty

(22)

SSi = {contents hosted in the same stub as node i}

DSi = {contents hosted in different stubs}

B. Caching Schemes Evaluated

In addition to the proposed Sequential Reassignment

caching algorithm, we included four caching schemes:

• LPFO-every: Contents are cached on every enroute CNF

router from the original content server to the requester

if there is extra storage. Otherwise, Least-Popular-First-

Out(LPFO) replacement policy is applied, which means a

CNF router always evicts the least popular content from

its cache to provide room for the new one.

• LPFO-even: Contents are cached on enroute CNF routers

which are even hops away from the original server. In

any case, the requester always caches the content. LPFO

replacement policy is also used.

• LRU-every: It is similar to LPFO-every. Instead of Least-

Popular-First-Out, LRU replacement policy is employed.

If thre is no enough free space, the CNF router purges

one least recently accessed content to make room for the

new one.

• LRU-even: It only varies from LPFO-even in the replace-

ment policy. LRU is used instead.

C. Performance Results

1) Impact of Cache Size: In Fig. 3, we compare the average

content retrieval latency of the four caching schemes. The

simulations were made across a wide range of cache sizes,

from 10% to 80%, and we set the locality parameter σ
to be 0.8. All caching schemes provide steady performance

improvement as the cache size on each CNF router increases.

The curves of LPFO-every and LPFO-even overlap. With

LPFO replacement policy, caching contents on every or every

other enroute CNF router does not make much difference

in the resulting performance. The two schemes with LRU

replacement policy achieves better average retrieval latency

than those two schemes with LPFO. Compared to LPFO, LRU

running on each intermediate CNF router is more capable

of learning the real content popularity by looking at the

access rate of cached contents. The caching scheme LRU-

every outperforms other three schemes, thus in Fig.4 we only

compared the proposed Sequential Reassignment algorithm

with LRU-every.

Digital Object Identifier: 10.4108/ICST.WICON2010.8498

http://dx.doi.org/10.4108/ICST.WICON2010.8498

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
2

4

6

8

10

12

14

16

18

20

Cache Size Per Router(% of all contents)

A
ve

ra
ge

 C
on

te
nt

 R
et

rie
va

l L
at

en
cy

 (
se

c)
LPFO−every
LPFO−even
LRU−every
LRU−even

Fig. 3. Average content retrieval latency with four caching schemes

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10

12

14

16

18

Cache Size Per Router(% of all contents)

A
ve

ra
ge

 C
on

te
nt

 R
et

rie
va

l L
at

en
cy

 (
se

c)

LRU−every
Sequential Reassignment

Fig. 4. Average content retrieval latency with Sequential Reassignment

From Fig.4, we can see that Sequential Reassignment

algorithm significantly reduces the average content retrieval

latency. The relative improvement over LRU-every increases

with the cache size on each CNF router. The performance

gain can be as high as 70% when the cache size is 80%. At a

reasonable cache size, such as 20% or 30%, the performance

improvement can reach 20% and 30% respectively.

2) Impact of Locality Parameter: In this set of experiments,

we varies the locality parameter σ from 0.6 to 1. The cache

size on each CNF router is set to 20%. From Fig.5, we can

see that the average content retrieval latency decreases with

the locality parameter for both LRU-every and Sequential

Reassignment. Larger σ means mobile end users tend to

request the contents originated from the same stub, which

makes the retrieval latency small due to small distance from

the original server or enroute cache. The gap is more widened

between LRU-every and Sequential Reassignment when the

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
8

10

12

14

16

18

20

Locality Parameter(% of requests for contents from the local stub)

A
ve

ra
ge

 C
on

te
nt

 R
et

rie
va

l L
at

en
cy

 (
se

c)

LRU−every
Sequential Reassignment

Fig. 5. Average content retrieval latency vs. locality parameter

locality parameter is smaller. Sequential Reassignment shows

outstanding efficiency in guiding enroute CNF routers to cache

proper contents.

VII. CONCLUDING REMARKS

The Cache-and-Forward (CNF) Internet architecture is a

significant departure from TCP/IP based Internet architecture

in that it opportunistically transports named contents in “pack-

ages” in a hop-by-hop manner. CNF is designed to solve

the problem of content dissemination and content retrieval in

future Internet with a significant number of intermittently con-

nected mobile endpoints. Such an architecture is made feasible

by improving cost-performance of storage and computation at

routers.

The CNF network has two key components when it comes

to content dissemination and content retrieval: (1) in-network

caching and (2) content-enhanced routing. Caching in the

CNF network is distinctively different from caching in today’s

Internet because caching is built into the very fabric of the

CNF network by allowing each individual CNF router to cache

rather than building caching as an overlay infrastructure on top

of the core TCP/IP network. This is instrumental in keeping

content close to the requester, no matter whether the content

is globally or locally popular.

Based on this architecture, we presented the content dis-

semination framework, which consists of two phases: content

discovery and content retrieval. We focused on the content re-

trieval method: Cache-n-Capture. An intermediate CNF router

can cache those content files that are routed through it and

helps return the cached copy to those requests that pass by.

We developed a mathematical model for CC to solve the

problem how a CNF router independently decides which con-

tents should be cached. We proposed the Sequential Reassign-

ment algorithm to solve the optimal problem. The simulation

results show that SR outperforms the simple enroute caching

with LPFO and LRU replacement policies by as high as 70%

Digital Object Identifier: 10.4108/ICST.WICON2010.8498

http://dx.doi.org/10.4108/ICST.WICON2010.8498

when the cache size is large. Even with small cache size, the

performance gain can achieve 30%.

REFERENCES

[1] “NSF NeTS FIND Initiative,” http://www.nets-find.net/.
[2] D. Raychaudhuri, R. Yates, S. Paul, and J. Kurose, “The cache-

and-forward network architecture for efficient mobile content delivery
services in the future internet,” in ITU-NGN conference, 2008.

[3] L. Dong, H. Liu, Y. Zhang, S. Paul, and D. Raychaudhuri, “On the
cache-and-forward network architecture,” in Proceedings of the IEEE

International Conference on Communications(ICC), 2009.
[4] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura, “Self-organizing

wide-area network caches,” in Proceedings of IEEE Infocom’98, vol. 2,
1998.

[5] X. Tang and S. T. Chanson, “Coordinated en-route web caching,” IEEE

Transactions on Computers, vol. 51, no. 6, pp. 595–607, 2002.
[6] A. Jiang and J. Bruck, “Optimal content placement for en-route web

caching,” in Proc. the 2nd IEEE International Symposium on Network

Computing and Applications, 2003, pp. 9–16.
[7] K. Li, H.Shen, F. Chin, and S.Zheng, “Optimal methods for coordinated

enroute web caching for tree networks,” ACM Transactions on Internet

Technology.
[8] H. Shen and S. Xu, “Coordinated en-route web caching in multiserver

networks,” IEEE Transactions on Computers, vol. 58, no. 5, pp. 605–
619, 2009.

[9] K. Fall, “A delay tolerant network architecture for challenged internets,”
in Proceedings of SIGCOMM, 2003.

[10] M. Mirco, H. Stephen, and M. Cecilia, “Adaptive routing for inter-
mittently connected mobile ad hoc networks,” in Proceedings of the

IEEE 6th International Symposium on a World of Wireless, Mobile, and

Multimedia Networks (WoWMoM 2005). Taormina, Italy., 2005.
[11] A. Lindgren, A. Doria, and O. Scheln, “Probabilistic routing in in-

termittently connected networks,” in Proceedings of the Fourth ACM

International Symposium on Mobile Ad Hoc Networking and Computing,
2003.

[12] A. Chankhunthod, P. B. Danzig, C.Neerdaels, M. F. Schwartz, and
K. J. Worrell, “A hierarchical internet object cache,” in USENIX Annual

Technical Conference, 1996, pp. 153–164.
[13] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:

Modeling, design and experimental results,” IEEE Journal on Selected

Areas in Communications, vol. 20, no. 7, 2002.
[14] P. Rodriguez, C. Spanner, and E. Biersack, “Analysis of web caching

architectures: Hierarchical and distributed caching,” IEEE/ACM Trans.

on Networking, vol. 9, no. 4, pp. 404–418, 2001.
[15] S. Paul and Z. Fei, “Distributed caching with centralized control,”

Computer Communications, vol. 24, no. 2, pp. 256–268, 2001.
[16] M. Dahlin, R. Wang, T. E. Anderson, and D. A. Patterson, “Cooperative

caching: Using remote client memory to improve file system perfor-
mance,” in Operating Systems Design and Implementation, 1994.

[17] L. Yin and G. Cao, “Supporting co-operative caching in ad hoc net-
works,” in Proc. of IEEE INFOCOM, 2004.

[18] P. Krishnan, D. Raz, and Y. Shavitt, “The cache location problem,” IEEE/

ACM Transactions on Networking, vol. 8, no. 5, pp. 568–582, 2000.
[19] E. Cohen and S. Shenker, “Replication strategies in unstructured peer-

to-peer networks,” in Proc. of the ACM SIGCOMM, 2002.
[20] A. Wierzbicki, N. Leibowitz, M. Ripeanu, and R. Wozniak, “Cache

replacement policies revisited: the case of p2p traffic,” in IEEE Inter-

national Symposium on Cluster Computing and the Grid, 2004.
[21] J. Xu, Q. Hu, W. Lee, and D. Lee, “Performance evaluation of an optimal

cache replacement policy for wireless data dissemination under cache
consistency,” IEEE Transactions on Knowledge and Data Engineering,
vol. 16, no. 1, pp. 125–139, 2004.

[22] F. Benevenuto, F. Duarte, V. Almeida, and J. Almeida, “Web cache
replacement policies: properties, limitations and implications,” in Pro-

ceedings of the Third Latin American Web Congress, 2005.
[23] D. L. Tennenhouse and D. J. Wetherall, “Towards an active network

architecture,” Computer Communication Review, vol. 26, pp. 5–18, 1996.
[24] E. N. Johnson, “A protocol for network level caching,” Master’s thesis,

Massachusetts Institute of Technology, May 1998.
[25] L.H.Lehman, S.J.Garland, and D.L.Tennenhouse, “Active reliable mul-

ticast,” in Proceedings of Infocomm 98, vol. 2, 1998.

[26] U. Legedza, D. Wetherall, and J. Guttag, “Improving the performance of
distributed applications using active networks,” in Proceedings of IEEE

Infocom 98, 1998.
[27] H. Liu, Y. Zhang, S. Paul, and D. Raychaudhuri, “Performance eval-

uation of the ”cache-and-forward (cnf)” network for mobile content
delivery services,” in IEEE International Conference on Communica-

tions(ICC) Workshops, 2009.
[28] S. Sun, L. Lannom, and B. Boesch, “RFC 3650:handle system overview,”

November 2003.
[29] K. Calvert, M. Doar, and E. Zegura, “Modeling internet topology,” IEEE

Communications Magazine, vol. 35, no. 6, pp. 160–163, 1997.
[30] E. Zegura, K. Calvert, and S. Bhattacharje, “How to model an internet-

work,” in Proceedings of IEEE Infocom, 1996.

Digital Object Identifier: 10.4108/ICST.WICON2010.8498

http://dx.doi.org/10.4108/ICST.WICON2010.8498

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

