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ABSTRACT 
Many information and communications networks are very large 
and they exhibit extremely complex structures. Here we propose a 
topology visualisation tool, called the bitmap of sorted adjacency 
matrix (BOSAM), which illustrates the connectivity information 
of a network as a bitmap image. We show that by using carefully 
designed rules to sort network node in specific orders, the 
produced bitmaps are able to reveal interesting patterns associated 
with the network structures. This simple tool can facilitate the 
study on characterising and modelling large-scale complex 
networks such as the Internet and peer-to-peer (P2P) networks.   

Categories and Subject Descriptors 
C.2.1 [Network Architecture and Design]: Network topology; 
I.6 [Simulation and Modeling]: Model Validation and Analysis  

General Terms 
Algorithms, Measurement, Verification. 

Keywords 
Topology inference, visualization, bitmap, index sorting. 

1. INTRODUCTION 
Structure, or topology, of large-scale complex networks [1] is 
often characterised by using a statistical physics approach, i.e., 
methods of statistics. For example a relevant property regards the 
degree of a node, that is the number of its connections to other 
nodes. The degree distribution P(k) is the probability that a node 
in a graph having degree k. It is discovered that in many 
information and communications networks, such as the Internet [2] 
and the World Wide Web [3], the degree distribution exhibits a 
power-law tail with an exponent between 2 and 3 [4], [5], which 
significantly deviates from the Poisson distribution expected for a 
random graph [6]. 

Topology visualisation is a technique to illustrate the topology 

information of a network as an image. This technique is useful 
because images can be more intuitive and intelligible than abstract 
mathematical descriptions, especially when a network is very 
large and complex. The existing visualization schemes display 
nodes and links with dots and lines respectively in a geometrical 
space with layouts depending on certain topological or 
geometrical or hybrid metric, e.g. k-coreness [7], outdegree and 
longitude [8]. Visualisation of some topological metric, such as 
the rich-clubness proposed in [9], is also used in research. In this 
paper we introduce a topology visualisation tool, called the 
bitmap of sorted adjacency matrix (BOSAM). BOSAM displays a 
network topology with a bitmap in which a link is represented as 
a dot in a grid position corresponding to the incident nodes. The 
bitmap layout can be transformed by sorting the node indexes in 
different ways to show the topology connectivity correlation from 
different perspectives. Some interesting patterns in topologies 
revealed with this tool are presented to show BOSAM is helpful 
for characterising and assessing large-scale complex topologies. 

2. BITMAP OF SORTED ADJACENCY 
MATRIX (BOSAM) 
If a network contains N nodes and each node is assigned a unique 
index ),...,3,2,1( Nii = , the network’s connectivity information 
can be represented as an N × N matrix, called adjacency matrix. 
The matrix’s entry aij is the number of links connecting between 
node i and node j. In this paper we consider simple undirected 
graphs (i.e., no self-loop and no multiple links between any pair 
of nodes), the adjacency matrix is then a symmetric (0, 1)-matrix 
with zeros on its diagonal. As shown in Figure 1, such an 
adjacency matrix can then be visualised as a black-and-white 
bitmap, on which a black pixel represents a connection between 
two nodes and the sum of black pixels on the ith column (or the 
jth row) equals to the degree of node i (or j). 
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Figure 1. Visualisation of a network as a bitmap. (a) A 
network of 6 nodes. (b) Representation of the network’s 
connectivity information as a 6 × 6 adjacency matrix. (c) 

Illustration of the matrix as a 6 × 6-pixel bitmap.
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The bitmap of sorted adjacency matrix (BOSAM) is special in 
that it sorts a network’s nodes in specific orders using carefully 
designed rules and assigns node indexes accordingly so that the 
produced bitmaps show meaningful patterns that associate with 
the network’s topological properties. Thus the node-sorting rules 
are the key for the success of BOSAM.  Firstly we sort nodes in a 
list of decreasing degrees, e.g. the best-connected node is at the 
top of the list and the second position if the second best-connected 
node. However there are always many groups of nodes having the 
same degree. Here we introduce two node-sorting rules which 
take into account not only a node’s degree but also degrees of its 
neighbouring nodes, or neighbour degrees. 

Rule 1: After sorting node degrees in a decreasing order, for each 
group of nodes with the same degree, we sort the largest 
neighbour degree of the nodes in a decreasing order and rearrange 
the sorting list accordingly. For those who have the same largest 
neighbour degree, we then sort their second largest neighbour 
degree in a decreasing order. For example in Figure 1, there are 
three 2-degree nodes, node 3, 4 and 5. The largest neighbour 
degree of node 3 and node 4 is larger than that of node 5, and the 
second largest neighbour degree of node 3 is larger than that of 
node 4. This process continues until all neighbour degrees have 
been considered. For nodes whose degree and all neighbour 
degrees are same, they are positioned in the list next to each other 
in arbitrary orders. 

Rule 2: We sort nodes in a similar way as above, but we sort the 
smallest neighbour degree of nodes with the same degree in an 
increasing order. If necessary we do the second smallest 
neighbour degree in an increasing order and so on. 

We assign each node an index according to its rank, or the node’s 
position in the sorted list. The above two rules sort nodes in 
different orders and thus we can produce two BOSAMs for a 
given network. The rationale underlying the two rules is as 
follows. Suppose in a network high-degree nodes cluster into a 
core and low-degree ones scatter peripherally, then the neighbours 
largest degree is a measure of the ‘cohesion’ force a node receives 
from the network core, and the neighbours smallest degree is a 
measure of the ‘radiation’ force the node receives from the 
peripheral. Recently a number of studies have shown that the joint 
degree distribution P(k, k’), i.e., the probability that a link 
connects k- and k’-degree nodes, plays a significant role in 
defining a network’s structure [10]. 

The above two rules are presented to show how BOSAM works 
whereas the sorting rule can be designed by the researchers as 
desired to visualize the degree-degree correlation in a network 
from different viewpoints.  

3. APPLICATIONS OF BOSAM 
The Internet contains millions of routers, which are grouped into 
thousands of subnetworks, called autonomous systems (AS). The 
topology of the Internet at the AS-level is relevant to the Internet 
engineering because the delivery of data traffic through the global 
Internet depends on the complex interactions between ASes that 
exchange routing information using the Border Gateway Protocol 
(BGP). Figure 2 shows BOSAMs of the three Internet AS graphs 
studied in [10]: (i) WHOIS graph, extracted from RIPE’s WHOIS 
database [11]; (ii) BGP-table graph, using BGP tables collected 
by the Route Views project [12]; and (iii) skitter graph, using 

traceroute data collected by CAIDA’s active probing tool skitter 
[13]. Besides, Figure 2 shows two other Internet AS graphs: (iv) 
DIMES graph, provided by the active measurement project 
DIMES [14] and (v) BGP-update graph, extracted from BGP 
updates colleted by Route Views project [12] (at the same time 
when the above BGP-table graph was collected). The size and 
order of these graphs are given in Table 1. 

Table 1. the number of nodes and links of the networks 

Network  Nodes  Links 
WHOIS Internet AS graph  7,485  56,949 
BGP-table Internet AS graph  17,446  40,805 
BGP-update Internet AS graph 17,417 42,484
DIMES Internet AS graph 13,386 24,670
skitter Internet AS graph  9,204  28,959 
ER random model  9,204  28,859 
BA scale-free model  9,204  27,597 
PFP Internet model  9,204  27,612 
Gnutella P2P network  317,592  7,396,948 

 
In the BGP-table and skitter bitmaps, black pixels are densely 
concentrated along the top and the left borders, where i <0.5k or j 
<0.5k. This indicates two topological properties: (1) power-law 
degree distribution, that a small number of nodes have very large 
numbers of links; and (2) negative degree-degree correlation 
[1][15], that low-degree nodes tend to link with high-degree nodes 
and vice versa. The rich-club phenomenon [9] describes the fact 
that high-degree nodes are tightly interconnected with each other. 
In the WHOIS bitmaps, black pixels are densely concentrated at 
the top-left corner where i < 2k and j < 2k. This suggests that the 
WHOIS graph by comparison exhibits a stronger rich-club 
phenomenon than the BGP-table and skitter ones. On the other 
hand, WHOIS bitmaps have much less empty white area that 
corresponds to the 1-degree nodes. This indicates WHOIS graph 
has less 1-degree nodes and is much denser compared with the 
former two AS graphs. These observations are in agreement with 
the numerical results presented in [10]. Observe bitmaps of other 
two AS graphs. The BGP update bitmaps look quite similar with 
the BGP-table ones except that less 1-degree nodes appear in the 
BGP-update graph, which means they are similar in the degree-
degree correlation properties. This phenomenon has been noticed 
by the authors of [10] as well. The DIMES graph has not been 
numerically compared with other AS graphs in literature. The 
DIMES bitmaps show roughly similar patterns with the BGP and 
skitter bitmaps but with quite larger empty areas. This indicates 
that DIMES graph is sparser than other AS graphs but has roughly 
similar degree-degree correlation properties with the BGP and 
skitter graphs. 

Figure 2 also shows BOSAMs of three network models: (i) the 
Erdös-Rènyi (ER) model [6], which generates random graphs; (ii) 
the Barabási-Albert (BA) model [5], which grows scale-free 
networks having a power–law degree distribution P(k) ~ k−3; and 
(iii) the positive-feedback preference (PFP) model [16], which is 
an Internet topology generator. As shown in Table 1, all models 
are grown to the same number of nodes as the skitter Internet AS 
graph. The BOSAMs show that the models generate distinctive 



topologies. It is clear the PFP model well resembles the skitter 
Internet AS graph.  

Gnutella is a popular P2P file-sharing network. A snapshot of the 
Gnutella network obtained by a crawl from October 13 to 
November 11 in 2005 [17] contains more than three hundred 
thousands of nodes (the so-called reachable ultrapeers [18]) and 
seven millions of links. Such a scale makes the statistical analysis 
of degree-degree correlation intractably burdensome in 
computation. Via BOSAM the visualization of such scale graph is 
feasible to be accomplished efficiently. Figure 3 shows that 
Gnutella is profoundly different from power-law networks such as 
the Internet, the BA model and the PFP model in Figures 2. 
Instead it shows similarity to the ER random model. Moreover, 
the top-left (bottom-right) 1: 4L (L = 1 ~ 7) corners of rule-1 

BOSAMs are presented with different resolutions in the subplots 
of Figure 3. They clearly exhibit some fractal patterns recurring at 
different scales. Such fractal scaling properties have not been 
reported and can be interesting for further study. 

The interesting patterns in the BOSAMs revealed here actually 
represent the degree distribution and joint degree distribution of 
the original graphs. Further analysis of the implications of these 
patterns and their relationships with the statistical properties and 
metrics is ongoing and will be reported in the future. 

4. CONCLUSIONS 
We show that by sorting network nodes in specific orders, 
BOSAM is able to illustrate a number of network topological 
properties. This simple tool is indicated to be scalable and 
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Figure 2. BOSAMs of 5 Internet AS graphs and 3 network models. 
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efficient for large-scale complex networks so that it can facilitate 
the study on large-scale complex networks. Some real networks 
and canonical topology models are visualized via BOSAM. The 
visual comparisons between these graphs are consistent with 
existing statistical researches and some more detailed correlation 
structures are exposed. The BOSAMs of a Gnutella snapshot with 
more than 300k nodes unveil the similarity between Gnutella 
network and the ER model instead of BA and PFP models. 
Furthermore, some interesting fractal patterns are also discovered 
in Gnutella topology. Though only two sorting rules are provided 
in this paper as examples to show how BOSAM works, users can 
add new ingredients to the node sorting rules to highlight other 
topological properties that they are interested.  
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Figure 3. Rule-1 BOSAMs of the Gnutella P2P network and their enlargements at increasing scales. 
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