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ABSTRACT
Searching for non-text data (e.g., images) is mostly done by
means of metadata annotations or by extracting the text
close to the data. However, supporting real content-based
audio-visual search, based on similarity search on features, is
significantly more expensive than searching for text. More-
over, the search exhibits linear scalability with respect to
the data set size.

In this paper, we present a Distributed Incremental Near-
est Neighbor algorithm (DINN ) for finding nearest neigh-
bor in an incremental fashion over data distributed between
nodes which are able to perform a local Incremental Near-
est Neighbor (local-INN ). We prove that our algorithm is
optimal with respect to both number of involved nodes and
number of local-INN invocations. An implementation of our
DINN algorithm, on a real P2P system called MCAN , was
used for conducting an extensive experimental evaluation on
a real-life dataset.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search pro-
cess; C.2.1 [Network Architecture and Design]: Dis-
tributed networks

General Terms
distributed systems, algorithms, performance

1. INTRODUCTION
Today, a large component of the Web content consists

of non–text data, such as images, music, animations, and
videos. Current search engines index Web documents by
their textual content. For instance, web tools for perform-
ing image searching (such the ones provided by Google, Ya-
hoo!, or MSN Live Search) simply index the text near the
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image and the ALT attribute of the IMG tag, used to pro-
vide a description of an image. Images indexing methods
based on content-based analysis or pattern matching (which
for instance analyze the characteristics of images, i.e., fea-
tures, such as colors and shapes) are not exploited at all.
The problem is that these processes are significantly more
expensive than text analysis. Nevertheless, what is more
important is that the search on the level of features ex-
hibits linear scalability with respect to the data search size,
which is not acceptable for the expected dimension of the
problem. The reason is that for this kind of data the ap-
propriate search methods are based on similarity paradigm,
which typically exploits range queries and nearest neighbor
queries. These queries are computationally more intensive
than exact match, since conventional inverted indexes used
for text are not suitable for such data.

Besides multimedia information retrieval, there are other
kinds of applications like bioinformatics, data mining, pat-
tern recognition, machine learning, computer vision, that
can take advantage of the similarity search paradigm. How-
ever, different applications have in general different similar-
ity functions. A convenient way to address this problem is
to formalize the similarity by the mathematical notion of
the metric space. The data elements are assumed to be ob-
jects from a metric space when pairwise distances between
the objects can be determined and the distance satisfies the
properties of symmetry, non-negativity, identity, and trian-
gle inequality. Our Distributed Incremental Nearest Neigh-
bor DINN algorithm does not require the objects to be met-
ric. We only suppose that the distance is non-negative.

P2P systems are considered today promising means to
address the problems of scalability, and several scalable and
distributed search structures have been proposed even for
the most generic case of metric space searching (see [3] for
a survey). A common characteristic of all these existing ap-
proaches is the autonomy of the peers with no need of central
coordination or flooding strategies. Since there are no bot-
tlenecks, the structures are scalable and high performance
is achieved through parallel query execution on individual
peers.

Since the number of closest objects is typically easier to
specify than the search range, users prefer nearest neighbors
queries. For example, given an image, it is easier to ask
for 10 most similar ones according to an image similarity
criterion than to define the similarity threshold quantified
as a real number. However, nearest neighbors algorithms
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are much more difficult to implement in P2P environments.
The main reason is that traditional (optimum) approaches
[7] are based on a priority queue with a ranking criterion,
which sequentially decides the order of accessed data buck-
ets. In fact, the existence of centralized entities and se-
quential processing are completely in contradiction with de-
centralization and parallelism objectives of any P2P search
network. Things are further complicated by the natural ne-
cessity of some applications to retrieve the nearest neighbor
in an incremental fashion. This because, the number of de-
sired neighbors is unknown in advance. By incremental, we
mean that such an algorithm computes the neighbors one by
one, without the need to re–compute the query from scratch.
An important example of application of Incremental Near-
est Neighbor is processing of complex queries, i.e., queries
that involve more than one feature, such as: find all images
in database similar to the query image with respect to the
color and the shape. In this situation, we do not know how
many neighbors must be retrieved before one is found that
satisfies the conditions. In fact, the widely used A0 algo-
rithm defined in [4] suppose that each single source for a
specific feature is able to perform a local-INN algorithm.

This approach is the core of the European project SAPIR 1

(Search on Audio-visual content using Peer-to-peer Informa-
tion Retrieval) that aims at finding new ways to analyze,
index, and retrieve the tremendous amounts of speech, im-
age, video, and music that are filling our digital universe,
going beyond what the most popular engines are still doing,
that is, searching using text tags that have been associated
with multimedia files. SAPIR aims at breaking this techno-
logical barrier by developing a large-scale, distributed peer-
to-peer architecture that will make it possible to search for
audio-visual content by querying the specific characteristics
(i.e. features) of the content. SAPIR’s goal is to establish a
giant peer-to-peer network, where users are peers that pro-
duce audiovisual content using multiple devices and service
providers are super-peers that maintain indexes and provide
search capabilities

In this paper, we present a first attempt to approach the
incremental nearest neighbor problem for P2P-based sys-
tems. Our proposed solution, based on a generalization
of the priority queue algorithm proposed in [7] for hierar-
chical centralized structures, is optimal and is not tied on
a specific P2P architecture, and can be used over Scalable
and Distributed Data Structures (SDDSs), P2P systems and
Grid infrastructures. We implemented our algorithm, on a
real P2P system called MCAN [5, 6] and we conducted an
extensive experimental evaluation on a real-life dataset of
1,000,000 objects.

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 provides an overview of
our proposed solution while the formal definition is given in
Section 4. In Section 5 we report the results of an extensive
experimental evaluation of the DINN over the MCAN . Con-
clusions and future work are discussed in Section 6. All The-
orems, Corralaries and Conditions are given in Appendix.

2. RELATED WORK
In [12] an efficient algorithm to perform k-NN in a P2P

system (specifically the Chord [11]), is proposed. The algo-
rithm uses the same priority queue based approach of [7].

1http://sysrun.haifa.il.ibm.com/sapir

As far as we know, it is the first try to extend [7] to the dis-
tributed environment making use of the parallelism of the
P2P network.

They define their algorithm for a hierarchical index (as
in [7]). To provide distributed hashing of spatial data they
use a distributed quadtree index they developed, although
they say that other indices can be utilized as well (e.g., P2P
R-trees [8]). A NN query is first initiated on a single peer in
the P2P network. This peer maintains the priority queue of
quadtree blocks (mapping to a control point each) that are
being processed for the query. To process a block, they have
to contact from this query initiating peer, the peer that owns
that block, i.e., the control point. Hence, in their parallel
algorithm, they contact, rather than just the top entry of
the priority queue, a multiple number of these peers.

3. DINN OUTLINE
The INN algorithm [7] was defined for a large class of

centralized hierarchical spatial data structures. Instead our
DINN algorithm is distributed and not limited to hierarchi-
cal structures. Thus it can be used over SDDSs, P2P sys-
tems and Grid infrastructures. Our algorithm is built over
nodes which are able to perform locally an INN between the
objects they store (this will be our Assumption 1).

In particular, we reformulate the definition of priority
queue (Queue) given in [7] by considering as elements of
Queue, objects and nodes (or peers). We prove that our
algorithm is optimal, in terms of both number of nodes in-
volved and local-INN invocations. The elements of Queue
are ordered according to a key which is always associated
with both objects and nodes. For each object, key is its
distance from the query. For each node, we require the as-
sociated key to be a lower bound for the distance between
the query and the next result coming from the node. While
for an already involved node this lower bound can be sim-
ply the distance from the query of the last object retrieved
by its local-INN , for the not yet involved nodes a naive so-
lution could be to always use 0 as lower bound. However,
this would imply all nodes to be involved for every similarity
query. To avoid this, we suppose that each node is able to
evaluate this lower bound for every node it knows (in P2P
systems they are called neighbors).

Furthermore, in P2P systems there is no global knowledge
of the network. Thus, we make the assumption (see Assump-
tion 2) regarding the ability to find the next most promising
node (considering the lower bound mentioned before). This
assumption replace the consistency condition used in [7] for
hierarchical data structures. We prove that our assumption
can be satisfied under one of two simpler conditions (see
Appendix) which are common for data structures able to
perform similarity search. Moreover, systems satisfying one
to these two conditions (i.e., Condition 1) as MCAN , can
guarantee that next most promising node is always in Queue
just collecting information about neighbors of yet involved
nodes (i.e., without generating more message).

During the DINN algorithm execution, Queue contains a
certain number of entries sorted in order of decreasing key.
The algorithm proceeds by processing Queue from the top:
if the first entry of the queue is an object x, it is the result of
the DINN unless there are other nodes in the system which
have not yet processed a local-INN and that are “closer”
(considering the lower bound distance) to the query. In the
latter case, our DINN takes the “closest” node and places



it in the queue. In case the first entry is a node, we invoke
its local-INN . The resulting object of this operation (if any)
is placed in Queue and its distance from the query allows
us to update the entry with a more accurate lower bound
distance for the next object that would be retrieved by its
local-INN .

This outlined implementation is intrinsically sequential,
since a single step of the algorithm involves only the first
element of Queue at a time. In the second part of the pa-
per, we straightforwardly generalize the algorithm introduc-
ing parallelism by invoking the local-INN algorithm of more
than one node simultaneously. A precise definition of the
algorithms are provided in the next section.

4. THE DINN ALGORITHM

4.1 Definitions and Notation
In this subsection we provide a number of definitions and

notations required to define the DINN algorithm. Let N be
the set of nodes participating in the distributed system. Let
D be the objects domain, Xi ⊂ D the set of objects that are
stored in a given node Ni ∈ N , and X =

⋃
i Xi the set of

objects stored in the network. As in [7], our DINN is based
on a priority queue:

Definition 1. A priority queue (Queue) is a set of pairs
〈element, ϑ〉 ordered according to key ϑ ∈ R+. An element
can be either an object or a node.

In order to avoid involving all the nodes in the DINN
execution, we suppose there is the possibility to evaluate a
lower bound (δ) for the distances between the objects stored
in a certain node and any given object in D.

Definition 2. Given a node Ni ∈ N and an object x ∈ D
we define δ : N×D → R+ as a lower bound for the distances
between x and all the objects stored in Ni (i.e., Xi):

δ(Ni, x) ≤ min{d(y, x), y ∈ Xi}

Note that this lower bound could even be 0 for every node.
Thus we do not strictly require this lower bound to be evalu-
able, but we use it for efficiency in case it can be given. In
case each node Ni ∈ N of a given distributed data structure
is responsible for a portion Di of the domain D we will say
that δ is strong iff:

∀Ni ∈ N , δ(Ni, x) = 0 ⇔ x ∈ Di

In defining our DINN algorithm we will use the general
notion of downard closed set. We will limit this notion to
set of nodes with respect to a given object (using the lower
bound δ defined above).

Definition 3. A set of nodes Nx is downward closed with
respect to an object x ∈ D iff ∀Nj , Ni ∈ N :

Ni ∈ Nx ∧ δ(Nj , x) < δ(Ni, x) ⇒ Nj ∈ Nx

In words, if a set of nodes is downard closed with respect
to an object x ∈ D, there are no nodes out of the set, with
a lower bound less to that any node in the set. Another
special set of nodes we will refer in the algorithm definition
is the set of nodes whose lower bound δ is less than a given
r ∈ R+.

Notation 1. Let x be an object in D and r ∈ R+. Nx,r

is the set of nodes in N that could have objects closer to x
than r, i.e.,

Nx,r = {Ni : Ni ∈ N ∧ δ(Ni, x) ≤ r}.

4.2 Assumptions
Our DINN algorithm is based on two assumptions.

Assumption 1. Eachınode Ni ∈ N is able to perform a
local-INN algorithm over the objects Xi ⊆ Di it stores.

Assumption 2. Let x ∈ D be an object in the domain. Let
Nx ⊆ N be a subset of the nodes that is either downward
closed (with respect to x) or empty. Let Nn ∈ (N \ Nx) be
the closest node to x in (N \Nx), i.e.,

Nn = arg min
Ni

{δ(Ni, x), Ni ∈ (N \Nx)}.

Whenever an arbitrary node Nc ∈ N knows Nx, Nc must
be able to check if Nn exists and to contact it.

Assumption 1 is needed because our DINN algorithm is
built over nodes which are able to perform a local-INN.

Assumption 2 is necessary for engaging the nodes in the
DINN algorithm execution as it progresses. Basically, given
the lower bound δ defined in Definition 2, we require a mech-
anism for adding the nodes to Queue in order of increasing
δ from q. If, for a specific data structure, it is not possible
to evaluate the lower bound δ, we can consider δ(Ni, q) = 0
for every node Ni ∈ N . In this case the order in which the
nodes are added to Queue is undefined. However in this
case, we will involve all the nodes in (almost) every execu-
tion of the DINN algorithm. In fact, given that there is not
a lower bound for the distance between the objects stored
in a given node and the query, we can not exclude any node
a priori.

The role of the subset Nx will be clarified in the next sec-
tion which will extensively discuss the algorithm. However,
we can anticipate that it represents a subset of the nodes
that, at any given time duing the algorithm execution, have
been already asked for a local-INN execution. In particular,
if Nx = ∅, Assumption 2 means that any node Nc ∈ N must
be able to find (using some routing mechanism provided by
the distributed system), a node Nn ∈ N for which the dis-
tance δ(Nn, x) is minimum. Note that, in the discussion
we never supposed that in the distributed system there is a
global knowledge, but we always assume that there is a way
(usually a routing mechanism) to find the most promising
node for the algorithm progress. Note also that, if δ is strong,
the first node added to Queue is the node Nn that would
contain x (i.e., δ(Nn, x) = 0). Therefore, in this case, the
problem is similar to the lookup problem in DHTs. In case
there is some replication in the distributed system, there
could be two or more nodes Nj ∈ N for which δ(Nj , x) = 0
is minimum. However, in this case we only need to find one
of them. When Nx 6= ∅, Assumption 2 means that the dis-
tributed system must be able to search for the next most
promising node (Nn) given that we already know a set of
nodes (Nx) which are more, or equal, promising than the
next one (i.e., Nx is downward closed).

In Section B of the Appendix, we illustrate two sufficient
conditions for Assumption 2. Condition 1 can guarantee
that next most promising node is always in Queue just col-
lecting information about neighbors of yet involved nodes



(i.e., without generating more message) and is satisfied, e.g.,
by MCAN which we used in our experiments. On the other
hand, Condition 2 is a simpler condition easily satisfied by
data structures able to perform similarity search, systems.

4.3 The algorithm
In this section we present the definition of our DINN algo-

rithm for retrieving objects in order of decreasing similarity
with respect to a given query q. In Subsection 4.5 we will
present a message reduction optimization in case we want
to retrieve next k+ > 1 objects with a single invocation of
the DINN, while in Subsection 4.6 the proposed algorithm
will be extended to parallelize the operations made by dis-
tinct nodes. All the Theorems and Corollary mentioned are
reported in Appendix.

To perform the DINN we need to define a node that take
the role of coordinating node (Nc). A good candidate for
this role is the initiating node. If δ is strong (see Defini-
tion 2) another candidate is the node that would store the
query (i.e., δ(Nc, x) = 0). However, the definition of our
DINN algorithm is independent on the particular choice of
the coordinating node. This choice only affects the number
of messages exchanged during the query execution.

As in [7] we need a Queue (see Definition 1) in which ele-
ments are ordered according to their key (see Definition 4).
In Queue nodes will be assigned a different key depending
whether they have already returned objects or not. Thus,
we will use the following notation:

Notation 2. N ∗ ⊂ N is the set of nodes that already per-
formed a local-INN .

An important part of the DINN algorithm definition is
the definition of the keys used to order elements in Queue.

Definition 4. Given a query object q ∈ D we define the
key ϑ as:

• ϑx = d(x, q), for any object x ∈ D;

• ϑNi = δ(Ni, q), for any node Ni that has not yet been
asked for a local-INN (i.e., Ni /∈ N ∗);

• ϑNi = d(li, q), for any Ni ∈ N ∗, where li ∈ Xi is the
last object that Ni returned performing its local-INN.

Note that both keys used for nodes are lower bounds for
the distance between the query q and the next result coming
from the local-INN invocation on node Ni.

The DINN algorithm consists of a loop in which:

1. If Queue is empty, the closest node (Nn) to q that has
not yet performed a local-INN is added to Queue. In
case Nn does not exist, the DINN is ended (there are
no more objects in the distributed data structures);

2. Else, if the first element in Queue is a node (Ni), this
node is asked to perform a local-INN . Then the re-
turned result li ∈ Xi is added to Queue and the key of
Ni is updated with ϑNi = d(li, q). In case Ni did not
return any object (i.e., it has already returned all its
objects), the Ni is removed from Queue;

3. Else, if the first element in Queue is an object x: let Nn

be the closest node to q that has not yet performed a
local-INN and has δ(Nn, q) < d(x, q); if Nn exists, add

Algorithm 1 Distributed Incremental Nearest Neighbor Al-
gorithm

loop
if Queue is empty then

Ni ⇐ Getnextnode(q, N ∗)
if Ni = NULL then

Return NULL
end if
Enqueue(Queue, 〈Ni, δ(Ni, q)〉 )

else if First(Queue) is an object then
x ⇐ First(Queue)
Ni ⇐ Getnextnodeinr(q, 〈N ∗, d(x, q)〉 )
if Ni = NULL then

Return x
end if
Enqueue(Queue, 〈Ni, δ(Ni, q)〉 )

else if First(Queue) is a node then
Ni ⇐ First(Queue)
x ⇐ LocalINN(q, Ni)
N ∗ ⇐ N ∗ ∪Ni

if x 6= NULL then
Enqueue(Queue, 〈x, d(x, q)〉 )
Updatekey(〈Ni, d(x, q)〉 )

else {node Ni has no more objects}
Exqueue(Queue, Ni)

end if
end if

end loop

it to Queue, otherwise the loop is stopped returning x
as next result. Note that if N ∗ is downward closed Nn

can be found because of Assumption 2. We prove N ∗

to be downward closed in Corollary 1.

Queue must be kept alive for future request of more re-
sults. Obviously, the requester can close the session assert-
ing that no more results will be asked. In this case Queue
can be discarded.

In Algorithm 1 we give a DINN algorithm definition using
a pseudo language. The function used in Algorithm 1 are
defined as follows:

• First(Queue): returns the first element in Queue.

• LocalINN(q, Ni): asks node Ni to return the next
result according to its local-INN with respect to the
query q.

• Enqueue(Queue, 〈e, ϑ〉 ): adds element e, either an
object or a node, to Queue with key ϑ.

• Updatekey(Queue, 〈Ni, r〉 ): updates the key of node
Ni in Queue with the value r ∈ R+.

• Exqueue(Queue, e): removes element e and its key
from Queue.

• Getnextnodeinr(q, N ∗, r): returns
arg min

Ni

{δ(Ni, q), Ni ∈ (Nq,r \ N ∗)}.

• Getnextnode(q, N ∗): returns
arg min

Ni

{δ(Ni, q), Ni ∈ (N \N ∗)}.



Note that if N ∗ is always downward closed with respect
to q, because of Assumption 2 it is possible to implement
the function Getnextnode(q, N ∗). We prove this in Corol-
lary 1. Please note also that Getnextnodeinr(q, N ∗, r)
can be implemented using Getnextnode(q, N ∗). On the
other side, using Getnextnodeinr, we can realize Get-
nextnode increasing r until a node is found. However
Getnextnodeinr(q, N ∗, r) can be more efficiently imple-
mented considering that it does not need to return a node
if it is farther away than r from q.

In Appendix, we prove DINN to be optimum in terms
of both local-INN invocations in Theorem 3 and number of
involved nodes in Theorem 2.

4.4 Algorithm considerations
The major differences between our DINN algorithm and

the INN defined in [7] are:

• Once a node comes at the head of the queue we don’t
ask it to return all its objects ordered according to
their distances from the query. This would be the nat-
ural extension for the INN algorithm, but, in a dis-
tributed environment, such an algorithm could not be
scalable. Therefore, we ask it to return its next object
using its local-INN ;

• Whenever a node returns an object, we move it back
in the queue using d(li, q) as new key (li is the last
object the Ni returned as a result). Please note that
d(li, q) is a lower bound for the distance between q and
the next result coming from the local-INN of Ni;

• The original INN algorithm requests a consistency con-
dition (Definition 1 of [7]) to ensure that once a node
reaches the head of the queue no other nodes can re-
turn objects with a distance smaller than the head
node key. This condition has been defined for hierar-
chical data structure thus limiting the use of their INN
algorithm. In our DINN we replaced the consistency
condition with Assumption 2.

4.5 Using DINN to find next k+ results
In this section we give an extension of our DINN to reduce

the number of messages when we want to retrieve next k+ ≥
1 objects. The price to be paid for the messages reduction
is the possibility to ask a node to retrieve more objects than
what is strictly necessary. At any given time during the
execution of the DINN :

Notation 3. let k̄ be the number of objects already re-
trieved by the previous invocations of the DINN,

Notation 4. let k+ be the number of more objects we want
to retrieve, and

Notation 5. let kans ≤ k+ be the number of results al-
ready found by the DINN during the current invocation.

If a node Ni is first in Queue we ask this node to retrieve
next k̂ results where:

k̂ = k+ − kans

Because k̂ represents the number of objects we need to end
the given task (i.e., retrieving next k+ objects) we are sure
that we will never involve Ni again before the current task

will be completed. Note that, by definition, k̂ ≥ 1 always
holds until the current task is completed.

Furthermore, we can reduce the number of unnecessary
objects retrieved by the nodes considering the distance of
the k̂-th object, if it exists, in Queue.

Definition 5. At any given time, let xk̂ ∈ X be the k̂-th
object, if it exists, in Queue to guarantee that node Ni will
be involved only once during the current task, we ask node
Ni to perform a sequence of local-INN invocations until at
least one of the following conditions is true:

• k̂ more objects have been retrieved (k̂ = k+ − kans);

• d(li, q) ≥ d(xk̂, q), where li is the last object retrieved;

• all the objects stored in Ni have been retrieved.

The results coming from Ni are added to Queue. If all
the objects stored in Ni have been retrieved Ni is removed
from Queue, otherwise its key is update with ϑNi = d(li, q)

and now ϑNi ≥ d(xk̂, q). Either the k̂ objects retrieved are

before Ni or Ni is now after xk̂. In both cases at least k̂
objects are before Ni in Queue. Thus, we will not involve
Ni again in retrieving next k̂ results.

In Figure 1 we give an example of Queue at a given time
during the DINN execution. The dotted lines show from
which node every object comes from. Suppose that we are
searching for the next k+ = 5 objects and we have already
found next kans = 2 results (they are no more in Queue).

We still have to search for next k̂ = k+ − kans = 5 − 2 =
3 results. The k̂-th object xk̂ in Queue is z. Using the
proposed extension, the DINN will ask node N3 to retrieve
objects, using its local-INN , until 3 objects have been found
or the last object l3, retrieved by N3, has distance d(l3, q) ≥
d(z, q).

4.6 Parallelization
The DINN algorithm presented in Section 4.3 always in-

volves only the most promising node (the first in Queue).
In this section we give a parallelized version of our DINN .

Generally speaking, the k-NN operation, is not a easily
parallelizable operation as the RangeQuery is. To execute
a RangeQuery, every single node can perform the search
between his objects without considering the results coming
from other nodes. Given the query and the range, each
node can search between his objects regardless the results
found in other peers. To parallelize the DINN algorithm we
must accept the possibility to ask a node to give its next
result even if it could be not necessary. Furthermore, in
a parallelized DINN it is possible to involve nodes which
would not be involved by the serial execution.

Let us assume that at a given time during the algorithm
execution x1 is the first object, if it exists, in Queue. In
principle it is possible that we will ask all the nodes before
x1 in Queue to invoke their local-INN. This is true, e.g.,
if all these nodes return results further away from q than
x1. To parallelize the DINN execution, we can decide to
ask all the nodes before x1 to retrieve the next object. We
now give a definition of DINN parallelization which can be
used in combination with the message optimization given in
Definition 5.

Definition 6. Let xk̂ ∈ X be the k̂-th object, if it exists,
in Queue and d(xk̂, q) its distance from the query. Given



x d(x,q) N5 δ(N5,q)N3 δ(N3,q) N7 d(x,q) z d(z,q)

1th object 2nd object

N1 d(z,q)y d(y,q)

3rd object

Figure 1: Snapshot of the priority queue at a given time during the execution of the DINN algorithm

p ∈ [0, 1] we parallelize the DINN asking all the nodes
Ni ∈ Queue whose ϑNi ≤ p d(xk̂, q). In other words, us-
ing Definition 4, a node Ni ∈ Queue is involved iff:

• ϑNi = δ(Ni, q) ≤ p · d(xk̂, q),
in case Ni ∈ N \ N ∗ (i.e., Ni has not yet been asked
for a local-INN );

• ϑNi = d(li, q) ≤ p · d(xk̂, q),
otherwise (i.e., Ni ∈ N ∗) where li ∈ Xi is the last
object that Ni returned invoking its local-INN ).

Any involved node is asked to retrieve its next object in-
voking its local-INN . However, using the DINN optimiza-
tion for k-INN search (see Definition 5), any node can be
asked to perform more than one local-INN with a single
message. However, in this case, there are nodes that are not
at the top of Queue, asked to retrieve objects. We can then
consider the case in which there are objects before them in
Queue. Let k̃Ni be the objects in Queue before node Ni.
The max number of objects we are interested in retrieving
from Ni is no more k̂ but k̂ − k̃Ni .

In Figure 1 we give a snapshot of Queue at a given time
during the DINN execution. As said before, the dotted lines
show from which node each object comes from. As before,
let us suppose that we are searching for the next k+ = 5
objects and we have already found next kans = 2 results.
We still have to search for next k̂ = 3 results. Using the
proposed extension, the DINN will ask node N3, N5 and N7

to invoke their local-INN and they all will work in parallel.
If we also use the message reduction optimization, N3 will
be asked to retrieve at most 3 objects, while N5 and N7 will
be asked to retrieve at most 2 objects. All of them will stop
the iteration of their local-INN if d(l, q) ≥ d(z, q), where l is
the last object they retrieved.

Unfortunately, there could be one or more nodes (Ni) for
which δ(Ni, q) which are not yet in Queue. In fact, the
DINN algorithm does guarantee only that the next most
promising node is present in Queue before asking to the first
node in Queue to perform a local-INN. In this case the DINN
algorithm will continue to be correct, but the parallelization
would be reduced. To better parallelize the DINN algorithm
is useful to put more nodes in Queue than necessary. As said
before, parallelizing the DINN can increase the total cost.
For this reason a parametrized parallelization is useful to
find the desired trade-off between total and parallel cost.

Definition 7. Let k̂ ∈ N+, and xk̂ ∈ X the k̂-th object,
if it exists, in Queue which is, by definition, ordered. Let
p ∈ [0, 1] be the parallelization factor. We ask all the nodes
in Queue whose ϑ ≤ p · d(xk̂, q) until at least one of the
following conditions is true (as in Definition 5):

• k̂ more objects have been retrieved (k̂ = k+ − kans);

• d(li, q) ≥ d(xk̂, q), where li is the last object retrieved;

• all the objects stored in Ni have been retrieved.

Note that, since k̂ ≤ k+, the degree of parallelization does
depend on k+. In other words, the more objects we request
at each invocation of the DINN algorithm, the greater de-
gree of parallelization we obtain with the same p.

In case xk̂ does not exist (i.e., there are less than k̂ objects
in Queue), we involve just the first node (which is at the top
of Queue). Once xk̂ does exist in Queue, the parallelization
is used again.

Another choice, in case xk̂ does not exist, is to use the
distance of the last object in Queue in place of d(xk̂, q).
In this case the operation would became more parallel but
also more expensive considering its total cost. The degree
of parallelization of the DINN is also related to the number
of nodes present in Queue. Thus, it is important to have
more than only Nn (see Assumption 2) in Queue. Differ-
ent strategies can be used to efficiently put nodes in Queue
depending on the specific data structure that is used.

5. DINN OVER MCAN
The MCAN [5, 6] is a scalable distributed similarity search

structure for metric data. MCAN is able to perform dis-
tributed similarity searches between objects assuming that
the objects, together with the used distance, are metric. For
a complete description of MCAN see [5]. A comparison of
MCAN with similar distributed similarity search structure
for metric data can be found in [3].

MCAN satisfies Condition 1 which guarantees Assump-
tion 2 as demonstrated in Theorem 2. In fact, it can be
proved that in a MCAN , if a node Ni is neighbor of a node
Nj that is closer to the query than Ni and δ(Nj , q) > 0,
then Nj is also neighbor of at least one other node which is
closer to the query than Nj . In other word MCAN satisfies
Assumption 2. In fact, given a set of nodes N ∗ downward
closed with respect to q, the node Nn (see in Condition 1)
is always between the neighbors of at least a node Nj ∈ N ∗.

5.1 Experimental Results
Experiments have been conducted using a real-life dataset

of 1,000,000 objects. Each object is a 45-dimensional vector
of extracted color image features. The similarity of the vec-
tors was measured by a quadratic-form distance [10]. The
same dataset have been used for, e.g., [6, 3, 9, 1]. The dimen-
sionality used for the MCAN is 3 as in [6]. All the presented
performance characteristics of query processing have been
taken as an average over 100 queries with randomly chosen
query objects.

To study scalability with respect to the number of objects,
we limited the number of objects each node can maintain
(the same has been done in [2, 5, 6, 3, 9]). When a node
exceeds its space limit it splits by sending a subset of its
objects to a free node that takes responsibility for a part of
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Figure 3: N. of local-INN invocations for different
k+ (parallel factor p = 0)

the original region. Note that, limiting the number of ob-
jects each node can maintain, we simulate the simultaneous
growing of dataset and number of nodes. In Figure 2 we
show the number of nodes as the dataset grows.

The parallelization and the number of messages reduction
are tuned varying respectively parameter p defined in Defini-
tion 7 and k+ (i.e., the objects requested at each invocation
of the DINN algorithm). As described in Subsection 4.5 the
more the objects (k+) we request at each invocation, the
greater degree of parallelization we obtain with the same p.

Usually evaluation methodologies of metric space access
methods are based on the number of distance computations.
However, to give a fair performance evaluation, we base our
evaluation on the number local-INN invocations. This eval-
uation approach has the advantage to be independent from
the particular local-INN implementation. Furthermore, dif-
ferent nodes could even have different local-INN implemen-
tations. We use the following two characteristics to measure
the computational costs of a query:

• total number of local-INNs – the sum of the number
of local-INN invocations on all involved nodes,

• parallel computations – the maximum number of local-
INN invocations performed in a sequential manner
during the query processing.

Note that the total number corresponds to the cost on a
centralized version of the specific structure while the par-
allel computations, together with the number of messages,
directly effects the response time.
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Figure 4: N. of messages for different k+ (p = 0)
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Figure 5: Estimated cost for different k+ (p = 0)

In Figure 3 we show the total number of local-INNs for
p = 0 (i.e., no parallelization) for different k+ as function
of the number of results k. Note that, to obtain the same
number of results k varying k+, we need

⌈
k/k+

⌉
DINN in-

vocations. While increasing k+ does not seem worthwhile
since the cost, as total number of local-INNs, increases, the
advantage of greater k+ is evident observing the number
of messages exchanged during the DINN execution in Fig-
ure 4. In fact, as said in Subsection 4.5, increasing k+, we
can reduce the number of messages.

Since obtaining the first result from a local-INN in an ar-
bitrary node is significantly more expensive than obtaining
the next ones, a more realistic approach is to consider the
cost of the first result of a local-INN as several times the
cost of subsequent local-INN invocations. In Figure 5 we
report the same result of Figure 3, but assuming that the
first invocation cost of a local-INN is 10 times the cost of
subsequent invocations. In this case the gap between the
graphs for different k+ remains but it decreases. Note that,
since in this case there is no parallelization, there is no dif-
ference between the parallel and total cost.

In Figure 6 we show the estimated cost for retrieving up
to 500 objects 10 by 10 (i.e., k+ = 10) comparing the defined
DINN with a stateless execution of the DINN in which after
searching first 10 objects we destroy Queue and then we ask
for next 10 objects (thus requesting a 20-NearestNeighbor
search from scratch) and so on. What we want to under-
line is that the use of a Incremental Nearest Neighbor when
the number of desired neighbors is unknown in advance is
mandatory to preserve efficiency. In fact the cost of retriev-
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ing next k+ once a given number of results has already been
retrieved using a stateless approach is prohibitive.

Let’s now consider the parallelized version of the DINN
defined in Subsection 4.6. In Figure 7 we compare the total
and parallel cost when p = 1.0 (i.e., maximizing the paral-
lelization). The graph of the parallel cost demonstrates the
advantage of the parallel execution. Observing for instance
k = 100 for the case k+ = 10, the parallel cost is slightly
larger than 100, while for the same case the sequential cost
(Figure 5) is about 1300. k+ = 10 seems a good trade off
between the total and the parallel cost. In fact, the total
cost is almost the same as of the sequential case.

Another set of experiments were conducted by varying p
from 0 to 1 for a growing dataset. In this experiments we
fixed k = 500 and used various k+.

In Figure 8(a) we report the costs for growing dataset,
number of results k = 500 and k+ = 1. The total cost does
not significantly vary with p, i.e., parallelization, for k+ =
1, is obtained without increasing the total cost. Another
important aspect is that parallel cost is slightly influenced by
the dataset size when the parallelization degree is maximum
(p = 1).

In Figure 8(b) we report the costs for growing dataset,
k = 500 and k+ = 10. We can see that increasing k+ the
differences between the parallel costs of different degree of
parallelism (p) are more relevant. However, the total cost for
different p are very similar and almost the same of the ones
obtained for k+ = 1 in Figure 8(a). It is also important to
observe that the parallel cost does scale, with respect to the
dataset size, for p = 1 and just a little bit less for p = 0.5.

Finally, in Figure 8(c) we report the costs for k = 500
and k+ = 50. In this case the parallel cost is better than
for the k+ = 1 case but the total cost does depend on p.
However, the most important result is that the parallel cost
not only scale with respect to the dataset size, but it slightly
decreases. Obviously, this is possible because we are adding
more resources (nodes) as the dataset size increase (propor-
tionally), but this should be common in a P2P environment
where typically more nodes means more data and vice-versa.

In Figure 9 we report the percentage of involved nodes for
k+ = 10 as the dataset grows. As expected, the more paral-
lelism, the greater percentage of involved nodes. However,
it is interesting to notice that results for p = 0.5 and p = 1.0
are almost the same. Considering scalability with respect
to the dataset size, it is important that the percentage of
involved nodes does decrease with the number of objects,
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Figure 7: Parallel and total estimated costs for dif-
ferent k+ (p = 1)

i.e., with the number of nodes.

6. CONCLUSIONS AND FUTURE WORK
Distributed incremental nearest neighbor search is a big

challenge for at least two reasons. It is quite handy to
have a possibility to easily increment the number of near-
est neighbors at a low cost instead of being forced to an
expensive solution of specifying high values of k to ensure
having enough objects in all situations or staring the near-
est neighbor search over and over again whenever the value
of k grows. Second, distributed environments do not allow
application of existing centralized solutions and completely
new solutions are needed.

In this paper, we have defined a distributed incremental
nearest neighbor especially suitable for structured P2P sim-
ilarity search networks. The proposed algorithms have been
implemented in a large network of computers using MCAN
and extensively tested on a real-life data collection: color
features of images. We proved our algorithm to be optimum
in terms of both the number of involved nodes and the num-
ber of local-INN invocations when executed in a serial way.
However, our algorithm also allows controlling the degree of
parallelism by using a special parameter.

As a next step of our research, we plan to apply this dis-
tributed incremental nearest neighbor search to other dis-
tributed similarity search structures, such as GHT* , VPT* ,
or M-Chord . Naturally, this incremental approach will vi-
tally be important in developing multi feature similarity
search execution strategies, such as we need for the top k
multi-feature queries.
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Figure 8: Parallel and total Estimated Costs for
obtaining 500 results for various parallel factors p.
Each subfigure reports the result presented obtained
using different k+
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APPENDIX
A. CORRECTNESS AND OPTIMALITY

Corollary 1. At any time during the DINN algorithm
execution, the set of nodes N ∗ (i.e., the set of nodes that
already performed a local-INN) is downward closed with re-
spect to the query q.

Proof. We prove the corollary using induction. When
the algorithm starts Queue is empty and a node Ni is added
to Queue using Getnextnode(q, ∅) (usually δ(Ni, q) = 0).
After Ni has been asked for a result, N ∗ contains only Ni

and is downward closed by definition of Getnextnode. At
a given time in the algorithm execution, let Nn be the node,
if it exists, returned by the function Getnextnodeinr(q, r,
N ∗) or by the function Getnextnode(q, N ∗). Because of
the functions definitions, if Nn exists, there is no other node
Nj ∈ N ∗ for which δ(Nj , q) < δ(Nn, q). Then (N ∗ ∪Nn) is
still downward closed with respect to q.

Theorem 1 (Correctness). Let R be the set of ob-
jects already returned by the DINN algorithm. Whenever
DINN returns an object x there are no objects nearer to the
query:

∀y ∈ X , d(y, q) < d(x, q) ⇒ y ∈ R
Proof. By definition of X there must be a node Nj ∈ N

for which y ∈ Xj . Using Notation 1, d(y, q) < d(x, q) ⇒
Nj ∈ Nq,d(x,q). Because of the algorithm definition, Get-
nextnodeinr(x, d(x, q),N ∗) did not return any node. Then,
by Getnextnodeinr definition, (Nq,d(x,q) \ N ∗) = ∅ and
then Nj ∈ N ∗ (i.e., y belongs to a node which has already
been asked for a local-INN ). If Ny ∈ N ∗ has some not re-
turned objects by algorithm definition Nj is in Queue with
key d(li, q) (where li ∈ Xi is the last object it returned). Be-
cause x is first, d(li, q) ≥ d(x, q) > d(y, q). Then y must be
between the objects Ni already returned, which are either
in R or in Queue. But y can not be in the priority because
x is first and objects are ordered according to their distance
from the query, then y ∈ R .

Theorem 2. The DINN is optimum with respect to
number of involved nodes given the lower bound δ to ex-
clude nodes.

Proof. The theorem can be rewritten as follows. Let N ∗

be the set of involved nodes, x ∈ X the last object returned
by the DINN and q ∈ D the query object. If the local-INN
is invoked in Ni, the lower bound of the distance between
q and the objects in Ni is less than the distance between q
and x, i.e.,

Ni ∈ N ∗ ⇒ δ(Ni, q) ≤ d(x, q).

Because of the algorithm definition (see Algorithm 1), x
was the first element in Queue and each node is requested
to perform a local-INN result only when they are at the
head of Queue. Because of δ(Ni, q) and d(x, q) are used as
key for not yet involved nodes and objects respectively (see
Definition 4), the last equation always olds.

Theorem 3. The DINN is optimum with respect to
the number of local-INN invocations given the lower
bound δ to exclude nodes and using the lower bound d(li, q)
for the distance between the query q and the next result com-
ing from the Ni local-INN.

Proof. In Theorem 2 we proved that the DINN is op-
timum in terms of number of involved nodes. Thus, DINN
is optimum in terms of local-INN first invocations. More-
over, being ϑNi = d(li, q) the key (used to order elements in
Queue) for a node Ni that already performed a local-INN
(see Definition 4), whenever Ni is asked to retrieve its next
result (using its local-INN ) we are sure that the DINN next
result will be further away than d(li, q). In fact, we are using
as key in Queue (see Definition 4): d(x, q) for every object
x; a lower bound for d(yi, q) for every node Ni.

B. SUFFICIENT CONDITIONS FOR
ASSUMPTIONS 2

Condition 1. Let Nq be a downward closed set respect to
an object q ∈ D. For any given Ni ∈ N , let Ni ⊆ N be the
set of nodes which Ni is able to contact directly indepen-
dently from the execution of the current DINN algorithm.
Let Nn ∈ N be the closest node to the query (according to
δ) which is not in Nx (as defined in Assumption 2) . If Nn

exists, it is in the union of the set of nodes known by the
nodes in Nx :

Nn = arg min
Ni

{δ(Ni, q), Ni ∈ (Nq,r\Nx)} ∈
⋃
{Ni, Ni ∈ Nx}.

Theorem 4. Condition 1 is sufficient for Assumption 2.

Proof. By Condition 1, Nc can ask each node Ni ∈ N ∗

which are its neighbors (Ni). Sorting the union of them
(
⋃
{Ni, Ni ∈ Nx}) Nc is able to find Nn.

Condition 1 basically says that it is always possible to
pass from one node Nn−1 to the next one (Nn) just using
the information we found in the previous nodes. The in-
formation we need is the knowledge they have about other
nodes (typically neighbors). This condition is very useful to
efficiently implement Getnextnode.

Condition 2. For any given object q ∈ D and r ∈ R+,
every node Ni ∈ N is able to know all the nodes (their
addresses) in Nx,r.

Theorem 5. Condition 2 is sufficient for Assumption 2.

Proof. By Condition 2, Nc can ask for all the nodes in
Nq,r . If (Nq,r \ Nx) 6= ∅ , the next node Nn is the nearest
to the query in (Nq,r \ Nx). Otherwise, if (Nq,r \ Nx) = ∅ ,
Nc can try again increasing r until r ≤ dmax. In this last
case Nn does not exist.

Please note that all distributed data structures able to
perform a range query, should be able to satisfy Condition 2
(and then Assumption 2). Under Condition 2 Getnextn-
odeinr is efficiently implemented while Getnextnode can
be realized increasing r until either a node is found, using
Getnextnodeinr, or r exceeds the max possible value of d
(i.e., dmax = max(d(y, x), y, x ∈ D)).
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