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ABSTRACT 
Wireless sensor network technology provides an opportunity for 
innovation. Their applications in urban environment have 
attracted many attentions recently. Due to the dynamic operational 
environment, the reliability and energy efficiency are two 
important criteria for the routing protocol designs of wireless 
sensor networks. This paper presents a heuristic study on fault 
tolerant and energy efficient routing algorithm for wireless sensor 
networks in street-based urban environment. The leveling 
algorithm, combined with the energy extension scheme, is 
presented as an effective routing protocol in the presence of 
malfunctioned nodes. A local optimization scheme is further 
proposed for energy efficiency, which is implemented only based 
on the neighboring nodes information. The simulation results 
show that the proposed technique achieves optimal fault tolerant 
performance provided a limited transmission range. The average 
energy consumption and the packet latency is also simulated and 
compared with the theoretical optimum solution generated based 
on the global routing information.  

Keywords 
Urban wireless senor networks, fault tolerance, energy efficiency, 
routing protocol 

1. INTRODUCTION 
Wireless sensor networks (WSNs) represent an emerging 

technology that has become very appealing to researchers. It is 
considered as a next generation technology to bridge between the 
Internet and the physical world. Recently the interests of urban 
environment wireless sensor networks (UWSNs) have been 
growing in both academia and industry. The applications of such 
networks include deploying the sensors in hazardous 
environments, such as urban search and rescue [1], flood 
monitoring and forecasting [2], and sewage system monitoring [3]. 
Other applications include city environment monitoring, such as 
traffic monitoring and air pollution detection [4, 5]. Due to the 
rapid population growth in urban regions, these applications have 
shown great social impact on our daily life and have attracted 
more and more attentions.  

Many routing protocols have been successfully developed for 
traditional WSNs. Direct diffusion is a data-centric routing 

protocol that is developed for information dissemination in sensor 
networks [6]. Low-energy adaptive clustering hierarchy (LEACH) 
is a well-known cluster-based algorithm [7]. Greedy perimeter 
stateless routing (GPSR) is a geographic routing protocol [8]. 
Temporally-ordered routing algorithm (TORA) is a distributed 
routing protocol based on “link reversal” algorithm [9]. A 
comparison of many other existing protocols is available in [10]. 
Most of the above routing protocols were focused on the effective 
information retrieval with the emphasis on energy efficiency for 
sensor networks. Unlike the randomly distributed sensor networks 
in rural areas, the sensor nodes in UWSNs are manually deployed 
in urban environment to form certain communication topology. 
To the best of authors’ knowledge, little work has been done to 
develop efficient routing algorithms for UWSNs in the existing 
literature.  

 In this paper, we present a heuristic study on fault tolerant and 
energy efficient routing protocol for UWSNs. We focus on a 
single network flow with one sink node attempting to collect 
information from a number of data sources. The data source nodes 
and the sink node are distributed along streets and avenues as in a 
geographic road map of an urban city. We begin by presenting the 
leveling algorithm from our previous work [11], which is an 
efficient approach with self-configuration and automatic routing 
path update in unpartitioned network. However, the leveling 
algorithm is limited to the unpartitioned networks. Thus a power 
extension scheme is added to the leveling algorithm to overcome 
the partitioned network problem, this achieves an optimum fault 
tolerant performance within the dedicated transmission range. 
Furthermore, because of the variety of the deploying environment, 
the power supply is not always available to the sensor nodes, 
which makes the power efficiency one of the key challenges in 
UWSNs. Data aggregation [12, 13] scheme is usually used in the 
data-centric networks to improve the power efficiency. Besides 
this, a local optimization algorithm is developed in this paper to 
discover power efficient paths from source nodes to sink node 
based on local information. By these two means, the power 
consumption is optimized for the whole network. A unique feature 
in our study is that different power levels can be assigned to 
different sensor nodes at the very beginning through manual 
deployment based on the workloads. The original power level for 
each node can be resulted from the software simulation of the data 
traffic and loading in the network. The system performances, in 
terms of network coverage efficiency, system latency and power 
consumption are simulated and compared between these 
algorithms. The results demonstrate that the local optimization 
algorithm can improve the fault tolerant performance and can 
achieve near optimum power consumption performance.  

 

 

 The main contributions of this paper are as follows: to the best 
of our knowledge, this is among the first few researches that 
present and analyze the routing problems for urban wireless 
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sensor networks; and a fault tolerant and power efficient routing 
algorithm is proposed and presented with simulation results.  

The rest of the paper is organized as follows. Section 2 
introduces the network topology of UWSNs and the evaluation 
metrics for the routing protocols in it. The details of the proposed 
routing algorithms are presented in Section 3. The theoretical 
analysis of the proposed algorithms is discussed in Section 4. 
Section 5 compares the performances of the proposed algorithms, 
which is followed by the conclusion Section 6.  

2. NETWORK TOPOLOGY AND   
PERFORMANCE METRICS 

Urban wireless sensor networks have been studied in a variety 
of city environment applications. A large number of sensor nodes 
can be distributed in various topologies. For security or 
environmental monitoring applications in urban area, one of the 
most convenient deployments is to distribute the sensor nodes 
along the roadways, for instance attaching them to the manhole 
cover [3], or the streetlights [4]. The sensor nodes are distributed 
along streets and avenues as in a geographic road map. Therefore, 
the network becomes a grid topology. To simplify the study case, 
we assume a regular grid topology as shown in Figure 1 as an 
example of this kind of UWSNs. We randomly pick a node to 
serve as the data sink and assume that the data processing center is 
located at that node. The distances between two adjacent nodes on 
the same row or column are the same. The objective is to achieve 
best network coverage meanwhile maximize the system lifetime 
under the power constraints.  

 
Figure 1. An example of the urban wireless sensor network. 

 
While there are many ways in which the performance of a 

routing protocol can be evaluated, we use the following metrics.  
 

• Fault tolerance 
    In dynamic environment of senor networks, some nodes may 
fail due to a variety of reasons including power depletion, circuit 
malfunction, processor failure, unreliable radio links, and etc. For 
fault tolerance study, sensor nodes are randomly selected as 
malfunctioned nodes with a certain probability. The aim of fault 
tolerance routing is to maintain the effective network coverage 
and undisrupted information retrieval from the field. In fault 
tolerant routing, the absolute node coverage, as the percentage of 
live nodes over the total number of nodes, is of less interest. It is 

more important to consider the actual coverage efficiency, the 
definition of which is given below. 
     Coverage efficiency of a network is defined as the number of 
active nodes over the number of live nodes. If there is no routing 
path from a live node to the sink, the live node is considered 
inactive.  
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where N is the total number of nodes, Nd is the number of 
malfunctioned nodes, and Np is the average number of partitioned 
live nodes in the network. 
 
• Energy efficiency 

Because of the power constraint in the UWSNs, an energy 
efficient routing protocol is required to prolong the system 
lifetime. In our study, we aim at minimizing the total power 
consumption for packet delivery during one data collection period. 
The power consumption involved in the data collection procedure 
can be divided into three categories: data transmission power, data 
reception power and data aggregation power. Because it is shown 
in [14] that the data reception power is  much less than the data 
transmission power, in this paper we neglect the energy needed 
during data reception procedure, as is done in other routing 
algorithms [15]. Also in practice, the energy consumption due to 
compression is significantly less than the data transmission power 
[16, 17]. We used packet overheads to represent the costs brought 
by data compressions. A simple power consumption model can be 
formularized on these assumptions for each data collection period:  
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Row 0 

Row 1 

Row 2 

Row 3 

Sink 

 Sensor node 

Column 0    Column 1   Column 2    Column3 

 Dead node 

Partitioned 
network 

where Ttrans is the total data transmission time, Pa is the antenna 
transmission power and d is the transmission distance. In our 
study, we assume a data sensing and collection task is conducted 
periodically for every node in the network. Thus the transmission 
time is proportional to the entire packets transferred during each 
data collection period. Considering a simple free-space path loss 
model, Pa is assumed to be proportional to the distance square 
between two communication nodes [7]. The theoretical analysis 
for power consumption is presented in Section 4. Because it is 
shown in [15] that the lifetime maximization problem in WSNs is 
NP-complete, the design of an on-line optimal routing protocol is 
not practical in reality. In Section 5, the energy consumptions of 
the proposed algorithms are compared with the global optimum 
solution obtained by the Dijkstra shortest path algorithm [18].  
 
• Latency 
    Data sensed by the sensor nodes are typically time sensitive 
especially in some hazard monitoring applications. So it is 
important to receive data in a timely manner. In our study, we use 
the maximum path length to evaluate the data latency, which 
indicates the maximum number of hops for a message to travel 
toward the sink.  

3. ROUTING ALGORITHMS 
3.1 Leveling algorithm 

We propose the leveling algorithm as an effective, low-
complexity routing technique for unpartitioned network. In this 
algorithm, each node is assigned with a level value that indicates 
the distance hops to the data sink. During the initial setup phase, 
the level values of all nodes are set as infinity. The data sink first 
initiates an RREQ message to its neighbor and indicates a level 

 



value of zero. The neighbor nodes receiving this message change 
their level value to 1 and send the RREQ message with a level 
value of 1. The same procedure quickly propagates through the 
entire network, similar to the initial route discovery as in AODV 
[19, 20]. The process is naturally analogous to the water flowing 
from the high elevation to lower level, thus we called it the 
leveling algorithm. Similar approach was proposed in the tree-
based TAG algorithm [21]. In the TAG algorithm, the values 
associated with its entire sub-tree are lost if a node is out of 
function, since each node has exactly one parent node for data 
forwarding. In the leveling algorithm, multiple paths may exist for 
a node to route data back to the sink node. Thus the stability of the 
network is potentially better.  

When some nodes become malfunctioned in the network, the 
leveling algorithm should be able to automatically update the 
routing paths by changing the level values of the affected sensors. 
The detailed procedure for the route maintenance in the adaptive 
leveling algorithm is listed below: 
1. Each node broadcasts the level value to its neighbors 

periodically.  
2. Each node keeps track of the validity of its own level. For 

any given node with level m, there should be at least one 
neighbor node whose level value is m-1 (except for the base 
station with zero value). If such a level broadcast is not 
overheard for a period of time, the node changes its level to 
infinity and enters the PANIC mode.  

3. In the PANIC mode, a node sends out a broadcast with the 
PANIC flag set.  

4. When a node overhears a broadcast with the PANIC flag set, 
it waits for a period of time before responding to it (this is 
necessary to make sure that its level is indeed valid). If the 
level of this node is valid, it broadcasts its level. 

5. When a valid level message is overheard, nodes in PANIC 
mode sets its own level based on the level value heard. If 
multiple levels are heard, the smallest one is chosen to insure 
the shortest path to the sink node.  

6. The same rule above is applied to every node repetitively 
until the network converges. The converging time and the 
route maintenance overhead are determined by the number of 
dead nodes as well as their locations in the network. 

    However, the leveling algorithm is limited to the unpartitioned 
networks. A partitioned network implies a certain area of the 
network that contains one or more live nodes but has no 
connection to the outside of the area as illustrated in Figure 1. 
When the leveling algorithm converges, the level values of all 
these isolated nodes turn into infinity that implies no valid path is 
available from these nodes to the data sink. It is imperative to 
develop an improved algorithm that can overcome such scenario. 

3.2 Power extension algorithm 
    A heuristic approach to solve the partitioned network problem 
is to increase the transmission power and to extend the 
communication range of the nodes as needed. As in the urban grid 
network showed in Figure 1, a live node with level value m should 
have at least one immediate neighbor with the level value of m-1. 
If a node detects that there is no next hop node available due to 
node failure, a straightforward approach is to increase its 
transmission power to extend the communication range. Due to 
the concern of energy consumption, the power increase is limited 
to four times of the minimum transmission power in this paper 
that result in a doubled communication range according to the 
simple path loss model [7]. Equivalently, it provides the 

additional ability for the active nodes to skip any single 
malfunctioned node along the routing path.  After each power 
extension, the local path update is necessary to connect other 
nodes in the partitioned area to the sink node through active 
routing paths.  
     In practice, the route maintenance procedure is initiated from 
the data sink with a zero level value. If there is no next hop 
available among the directly connected neighbor nodes, power 
extension is requested. Consequently, local routing path update is 
performed immediately after each power extension. These two 
procedures are executed alternatively while the routing path 
maintenance propagates through the entire network. For validation 
purpose, the same process is repeated and the node level value is 
updated if a shorter path is available. It is worth to mention that 
this power extension technique is a greedy algorithm that 
converges quickly. It guarantees that all reachable nodes will be 
connected upon completion of the algorithm. However, the 
updated routing path does not necessarily reflect the lowest power 
consumption and minimum number of hops from each node to the 
data sink. 

3.3 Local optimization algorithm 
    As mentioned in the previous subsection, the above routing 
algorithms may not necessarily lead to an optimum solution of the 
power consumption and latency. This is because during the 
routing discovery and maintenance procedures, these algorithms 
only aim at the network connectivity. Figure 2 (a) shows an 
example with the routing paths discovered by the leveling 
algorithm with numbers representing the level values of nodes. 
This network topology can be transformed into to a tree-based 
structure. In this example, two paths are explored to route eight 
sensor nodes back to the data sink with a maximum latency of 7 
hops.  Intuitively, if we allow the diagonal power extension from 
node 7 to node 1, node 7 can be routed to data sink within 2 hops 
instead of 7 hops. Hence, the level value for it is changed to 2, as 
shown in Figure 2 (b). Similarly to previous algorithm, local 
routing path update is executed after each power extension.  Both 
total power consumption and system latency are reduced.  
     In this optimization algorithm, we aim at minimizing the 
power consumption by breaking the long path into separate short 
paths. This is achieved by power extension in a fully connected 
network. However, the transmission power is proportional to the 
squared distance between two nodes. The criterion for power 
extension becomes extremely important. The optimum power 
efficient solution can be achieved based on the global information 
of the network, which requires the restoration of the link state and 
topology information of the entire network at each node, as 
proposed in [22]. In these table-driven routing protocols, the 
global information is updated periodically and the routing is 
updated by individual node based on Dijkstra shortest path 
algorithm. The high computation and communication costs of this  
scheme prevent it being a practical solution to our problem. In this 
paper, a simple criterion for power extension is presented as in 
equation (3), which is explained in details in Section 4.  
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compression ratio that is calculated as the compressed data size 
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over original data size. Each data can be compressed at most 
times before data distortion happens. is the distance ratio 

calculated as the power extension range over the original range of 
the examining node. If equation (3) is true, the transmission power 
is extended by this node to generate a shorter path to the sink node. 
The principle here is that each node checks its own power 
preservation status based on the level values of nearby nodes. If 
power preservation is observed by one node, it extends its power 
level to build a shorter path back to the data sink. After that, local 
path update is performed for all affected nodes. Because only the 
nodes within certain range (within two hops in our study) are 
involved in this optimization procedure, it is called a local 
optimization scheme. Without global information of entire 
network, this scheme may not guarantee the power preservation 
for the entire network. Interestingly, the results from the 
theoretical analysis in Section 4 and the software simulations in 
Section 5 demonstrate that our local optimization scheme can 
achieve a near optimum performance on power consumptions  as 
well as better network latency performance at certain 
malfunctioned node ratios. Most importantly, the implementation 
of this scheme is much more cost efficient compared with the 
aforementioned table-driven routing protocols.  

ck dr

 
Figure 2. Local optimization algorithm and tree-based 

representation. 
      
    Although more power will be consumed by the power extended 
node, the total power consumption and latency performances of 
the entire network can benefit from this scheme as analyzed in 
Section 4. The initial power distribution of the sensor nodes can 
be differentiated based on the importance of individual node. This 
problem will be addressed in our future work.  

4. ANALYSIS OF PROPOSED ROUTING 
ALGORITHMS 
    We analyze the power consumption during one data collection 
period of the proposed schemes in this Section. We begin by 
deriving the total transmission time for the leveling algorithm, 
which leads to the power consumption by the power model in 
equation (2). Then the analysis of the power extension and local 
optimization algorithms is discussed based on the leveling 
algorithm. We first state our assumptions and introduce some 
notations used throughout the analysis.  

We assume each sensor carries out the same amount of sensing 
tasks and every node generates the same size of data at the same 

rate. The total sensed data during one period is therefore SdataN. 
We also assume that every node only transmits once during each 
data collection period. It is worth to mention that the data 
transmission time Ttrans is defined as the summation of the 
transmission time of every node. Some notations are defined in 
Table 1.  

 
Table 1. List of analysis notations 

Symbol Definition 
N Total number of working sensors 
L Maximum level in the networks 
Li Level value of node i, assuming the data sink has the 

level value of 0 
Ni Number of nodes at level i 

Sdata Number of bits of information generated by each 
working sensor per sampling time period.  

Ho Number of bits of a packet header 
Smax Maximum payload length of a packet. Generally, 

Smax  S≥ data
rc Compression ratio due to data fusion. This is the 

ratio of aggregating similar results into a more 
compact packet. rc  1 ≤

kc Maximum number of compressions for one data unit 
rt Data transfer rate for every node in the network 

(bits/sec) 
Mi Average number of packets at level i  

Mpacket Total number of packets during one data collection 
period 

To Total transmission overhead in bits 
tio Transmission overhead for node i  
Tf Total traffic in the network during one data 

collection period 
Ttrans Total transmission time during one data collection 

period 
Etrans Total energy consumption during one data collection 

period 
Pa Antenna transmission power for one-hop minimum 

distance between two sensors  

4.1 Energy consumption for leveling algorithm 
    In leveling algorithm, all nodes transmit data to their directly 
connected neighbor. Thus the transmission power for all nodes is 
the same. For a sensor at level Li, the payload Sdata is compressed 
min(kc, Li-1) times along the path to the data sink. The first-level 
does not perform data compression, because no data aggregation 
is possible. 

For the leveling method, the data transmission time is 
determined by the number of levels L, the information generation 
rate at every sensor node Sdata, and the number of nodes on each 
level Ni, where  

                                                                        (4) ∑
=

=
L

i
iNN

1
The total traffic transferred in the network is, 

                                   (5) o

L

i

ik
cdataif TrSNT c +=∑

=

−

1

)1,min(

where To is total transmission overhead due to data aggregation 
and packet generation. No data aggregation occurs until the data 
are forwarded once. The average data traffic for a node at level i 
is, 
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Thus given the maximum packet payload length Smax, the 
number of packets per node at level i is,  
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where the ⎡  function finds the least integer greater than x.  
The total number of packets transferred in the network is, 
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Therefore, the total transmission overhead is, 
                                                             (9) packetoo MHT ⋅=
By substituting it to equation (5), we can get the total data 

transmission time is, 
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Therefore the energy consumption for the leveling algorithm is 
given as in equation (11): 
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4.2 Energy consumption for power extension 
algorithm 
     As discussed in Section 3, the power extension algorithm aims 
at improving the network connectivity by extending the 
transmission range. Thus the transmission distances for each node 
might be different. We use di to denote the transmission distance 
for node i. The total energy for this algorithm is calculated by 
summation the energy consumed by individual node.  
     The data traffic for node i can be derived as:  
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where ni,j is the number of nodes with level j that transmit data 
through node i. The packet overhead for node i is calculated as:  
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     Thus the energy consumed by node i is:  
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      Here we use  to indicate the specific power level for 
different nodes. The total energy consumption for the power 
extension algorithm is:  
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     If for every node we have di equals to d, it can be proved that 
equations (11) and (15) are equivalent. This indicates that in an 
unpartitioned network, the energy consumed by the leveling and 
power extension algorithms are the same, which verifies the 
algorithm description in Section 3. For a partitioned network, the 
power extension scheme has a better network coverage 
performance at a cost of higher energy consumption.  

4.3 Energy consumption for local optimization 
algorithm 
     To reduce the energy consumption and maximum latency, the 
local optimization algorithms is proposed based on the routing 
paths discovered by the power extension algorithm. Because the 
power extension level maintains the same (up to two hops), these 
two algorithms result in the same network coverage performance. 
The energy consumption for the local optimization algorithm can 
be derived the same as in the power extension algorithm shown in 
equation (15).  

 
Figure 3. Local optimization algorithm analysis. (a) Local 

network topology after leveling algorithm. (b) Branch pruning 
topology. (c) Network topology after local optimization. 

 
     In order to compare the energy consumptions between these 
two algorithms, we notice that the network topology is able to be 
partitioned into different local networks based on the routing 
paths. Figure 3 (a) shows an example of this local network. We 
further assume that the level changing inside the local network 
won’t affect any node outside of the local network, which can 
simplify the analysis without lost of generality. By this 
assumption, the brunches in the local network can be pruned to 
the main path as shown in Figure 3 (b). This is valid because the 

 



total data passing through the node 6 or 7 in (a) remain the same 
after the local optimization. Then the problem becomes to 
compare the energy consumptions of the network topology shown 
in Figure 3 (b) and (c) under the condition in equation (3).     
    Because of network convergence, the number of nodes that are 
affected by the local optimization is:  
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where is the change of level value at the power extension node.  LΔ
     The energy consumptions to send each sensed packet Sdata back 
to the data sink are compared. Only the nodes affected by the 
local optimization are needed to be considered. The energy for the 
original topology shown in Figure 3 (b) is:  
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where  denotes the affected 
nodes in the local network.  

nnnLi kki <≤−−= 0,1

     After the local optimization, the level value for the affected 
nodes changes to:  
                            (18) nnnLLi kki <≤−+Δ−=′ 0,1
The energy consumption for each sensed data is derived as:  
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     Because the level value after local optimization for all affected 
nodes is smaller than the original level value, the packet overhead 

is always less than . We first analysis the case when oit ′ iot 1=cr , 
which means no data aggregation is performed. Along with the 
condition in equation (3), it is straight forward to show that the 
energy consumed after local optimization is less than that of the 
original algorithm:  
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      Thus the total energy consumption is reduced by the local 
optimization algorithm. It is observed that at high data 
compression ratios (experimentally ), our local 
optimization algorithm can efficiently reduce the power 
consumption and the system latency. The simulation result in 
Figure 4 shows the percentage of energy preservation for the local 
optimization algorithm compared with the power extension 
algorithm, which supports the above analysis. It also shows that 
the maximum performance improvement can be achieved at about 
15% malfunctioned nodes under the simulation parameters used in 
Section 5.  

9.0≥cr

 
Figure 4. Energy preservation ratio for the local optimization 
algorithm compared with the power extension algorithm at 

different kc and rc. 

5.   SIMULATION RESULTS 
     We evaluate the performances of the proposed routing 
algorithms through software simulations. We investigate the fault 
tolerant, energy efficiency and network latency through the static 
simulations. In the static simulation, the percentage of 
malfunctioned nodes is given before simulation begins. The 
network coverage efficiency, average energy consumption and 
packet latency versus different percentages of malfunctioned 
nodes are compared among the proposed algorithms. The 
optimum energy solution obtained by Dijkstra algorithm is also 
simulated in comparison with the proposed algorithms.  
     The setup of out urban wireless sensor network is shown as in 
Figure 1, with 4 rows and 4 columns and a total of 112 sensor 
nodes. The case with a single data sink is considered and the 
location of the data sink is randomly selected. The transmission 
distance for the leveling algorithm is one hop, and the power 
extension range is up to two hops in the other algorithms. The 
simulation code for all algorithms is developed in Matlab. We 
assume that the data measured at each sensor is in the form of 
equal-sized packets. The system specifications throughout our 
simulations are listed in Table 2. From these system parameters, it 
can be calculated that the energy consumption for one package to 
be forwarded one hop is 0.1 mJ.  

Table 2. Experiment setup parameters 
Symbol Value 

N 112 sensor nodes 
rc 0.9 
kc 10  
Pa 32 mW 
rt 38.4 kbps 

Sdata 15 bytes (120 bits) 
Ho 12 bit 

 
     In the static simulations, the locations of the malfunctioned 
nodes are randomly selected. Figure 5 shows that the probability 
for network partitioning increases as the number of malfunctioned 
nodes grows for all three algorithm. Because the local 
optimization algorithm has the same power extension range as the 
power extension algorithm, the fault tolerant performances of 
these two algorithms are identical. Result of the leveling 
algorithm shows the probability of network partition reaches 99% 

 



with only 10% malfunctioned nodes. While the other two 
algorithm reach the same probability at about 45% malfunctioned 
nodes. Thus the power extension-based algorithms show 
significant improvement to avoid the network partitioning.  
 

 
Figure 5. Probability of network partitioning VS. percentage 

of malfunctioned nodes. 
      
    The coverage efficiency of the network is also simulated in 
Figure 6 to illustrate the fault tolerant performances. It can be 
observed that at 25% dead nodes, the leveling algorithm only 
reaches 20% network coverage. While by extending the 
transmission power, the other two algorithms can achieve more 
than 95% network coverage.  

 
Figure 6. Coverage efficiency VS. percentage of malfunctioned 

nodes. 
 
     The energy efficiency performance for the proposed algorithms 
is also simulated in the static environment. Here we evaluate the 
average energy consumed by each connected node during one 
data collection period. The simulation results are shown in Figure 
7. In this simulation, the optimum energy solution is calculated by 
the Dijkstra algorithm, which also allows up to 2 hops 
transmission range as in the power extension and local 
optimization algorithms. These three algorithms can, therefore, 
achieve the same fault tolerant performance. 

 
Figure 7. Average energy consumption for each connected 

node in one data collection period VS. percentage of 
malfunctioned nodes. 

     
    The results show that at low malfunctioned node ratios, the 
local optimization algorithm out performs both leveling and 
power extension algorithms in terms of energy efficiency. When 
the number of malfuncitoned nodes increases (greater than 10%), 
the average energy consumption for the leveling algorithm 
decreases quickly. This is because as the network partitioning 
increases, the network coverage is reduced dramatically in the 
leveling algorithm. For the other three algorithms, more power is 
consumed to improve the fault tolerant performance. The 
optimum energy solution is most energy efficient among them. 
But the computational complexity and the requirement of the 
global network information prevents it as a practical solution for 
sensor networks. Figure 7 shows that the local optimization 
algorithm can achieve a near optimum solution with much lower 
computational complexity and no global information requirement. 
     Figure 8 compares the network latency of these routing 
algorithms. Because of network partitioning, at high percentage of 
malfunctioned nodes, latency for the leveling algorithm is much 
smaller than the other algorithms. The proposed local 
optimization algorithm is able to reduce the network latency at 
low malfunctioned node ratios when compared to the power 
extension algorithm.  

 
Figure 8. Network latency VS. percentage of malfunctioned 

nodes. 

 



6.   CONCLUSION 
This paper presents a heuristic study on fault tolerant and 

energy efficient routing algorithms for wireless sensor networks in 
street-based urban environment. Firstly, the leveling algorithm is 
presented as an effective routing protocol for unpartitioned 
networks. Secondly, the energy extension scheme is provided to 
solve the network partitioning problems. Lastly, a local 
optimization algorithm is proposed to improve the energy 
efficiency for routing discovery and maintenance. The fault 
tolerance simulations show that the proposed algorithms can 
significantly improve the network coverage in partitioned 
networks and reduce the network partitioning rate. The average 
energy consumption and the packet latency are also simulated and 
compared between these algorithms. It shows that the local 
optimization algorithm can achieve near optimal energy 
consumption performance at low computational complexity and 
no global network information requirement. For future work, the 
initial energy distribution among the sensor nodes and the system 
lifetime will be investigated for the proposed algorithms.  
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