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ABSTRACT 
Grid workflow is a complex and typical grid application, but 
owing to the highly dynamic feature of grid environments, 
resource unavailability is increasingly becoming severe and poses 
great challenges to grid workflow scheduling. Though fault 
recovery mechanism adopted in grid system guarantee the 
completion of jobs to some extent, but wasting system resources. 
To overcome the shortcoming, this paper proposes a Markov 
Chain based grid node availability prediction model which can 
efficiently predict grid nodes’ availability in the future without 
adding significant overhead. Based on this model, the paper 
presents a grid workflow scheduling based on reliability cost 
(RCGS). The performance evaluation results demonstrate that 
RCGS improves the dependability of workflow execution and 
success ratio of tasks with low reliability cost. 

Categories and Subject Descriptors 
C2.4 [Distributed Systems] 

General Terms: Design, Experimentation, Standardization 

Keywords: Grid computing, Workflow, Reliability cost, 
Markov chain. 

1. INTRODUCTION 
As a novel and promising technology, grid offers us a new vision, 
infrastructure and trend for the coordinated resource sharing, 
problem-solving and services orchestration in dynamic, multi-
institutional Virtual Organizations (VOs) by integrating various 
types of resources over Internet [1, 2]. Grid enables users to share 
all resources (computational resources, storage resources, 
communication resources, software resources, information 
resources, knowledge resources, etc.) and cooperate with others 
on the Internet. The advent of grid brings a bright future for 
scientific research, commerce and industry. Users, ranging from 
scientific researchers, workers, businessman to general customer, 
are utilizing grids to share, manage and process large data sets. 

Grid workflow is a complex and typical grid application, 
distinguishing from the traditional workflow in: (1) efficiently 
utilizing wide-area distributed resources; (2) cooperating among 

heterogeneous organizations; (3) solving computing-intensive and 
data-intensive tasks; and (4) making workflow more like service 
flow to exploit OGSA idea. Grid workflow provides an approach 
to complex and collaborative scientific researches, like high-
energy physics, geophysics, astronomy and bioinformatics. 

Currently, there are a number of tools supporting the description 
of workflow applications, such as: Petri Nets [22], UML (Unified 
Modeling Language) [23] and user-defined component. Graph-
based modeling is more preferred by users compared with 
language-based modeling. So, grid workflows are typically 
represented by means of a directed acyclic graph (DAG) [24]. 
Each node in the graph denotes an executable task. Each directed 
edge denotes a precedence constraint between two tasks. The sink 
node cannot start execution until the source node has finished and 
the required amount of data from the source node has been 
transferred to the sink node. 

Grid workflow can be seen as a collection of tasks that are 
processed on distributed resources in a well-defined order to 
accomplish a specific goal. The workflow scheduling problem is 
to allocate tasks onto resource nodes in such a way that 
precedence constraints are respected and the overall execution 
time is minimized, so it is a NP-complete problem, and many 
heuristics are proposed to obtain the optimal scheduling, such as 
min-min heuristic, max-min heuristic, sufferage heuristic [20]. 
However, due to the diverse failures and error conditions in grid 
environments, the unavailability of resource nodes is increasingly 
becoming severe and poses great challenges to grid workflow 
scheduling. For example, grid resources are mostly non-dedicated 
and can enter and depart without any prior notice. In addition, the 
change of resource local policy, the breakdown of software and 
hardware and the malfunction of network fabric can result in 
resource inaccessibility. Hence, jobs fail frequently and QoS can 
not be guaranteed. 

To address these issues, existing grid systems generally resort to 
fault recovery mechanism [2], such as checkpoint, retry and 
replication. Although relieving the challenges to some extent, this 
mechanism sacrifices system resources. For example, checkpoint 
policy requires extra disk space and network bandwidth to record 
the job running information, e.g. intermediate results and data for 
continuing job without starting from scratch. Retry strategy re-
schedules job at the same resource or other resource when job 
fails. Replication policy runs the job at multiple available 
resources. The fault recovery mechanism belongs to 
compensating methodology and can not prevent job failures in 
advance. To prevent the job failures proactively, the accurate 
information of temporal and spatial distribution of grid node 
availability in the future should be predicted. Thus, jobs can be 
scheduled onto resource node with long uptime instead of 
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upcoming failing nodes. So far, researchers mainly give attention 
to model and predict the characteristics of cluster nodes’ 
availability. With the rapid expanding of gird scale, grid 
integrates not only cluster resources, but also more wide-area 
personal resources which are mostly non-dedicated. Therefore, 
the characteristics of node unavailability in grid environment 
distinguish greatly from that in cluster environment. 

In this paper, we analyze the reliability of workflow execution in 
grid environment and propose a Markov Chain based grid node 
availability prediction model, which utilizes idle CPU cycles to 
predict node availability in the future without adding significant 
computational overhead. Furthermore, based on this model, the 
paper presents a novel grid workflow scheduling based on 
reliability cost (RCGS). Rational of RCGS is that it computes the 
reliability of node during task’s running time and then makes 
scheduling decision based on the reliability cost of task. Finally, 
performance evaluation is conducted to compare RCGS with 
other scheduling algorithms, and performance evaluation results 
demonstrate that RCGS improves the dependability of grid 
workflow execution and the success ratio of tasks execution, and 
accordingly decreases the makespan of workflow execution. 

The rest of the paper is organized as follows. Section 2 reviews 
the related work. Section 3 introduces the reliability analysis of 
DAG. Grid node availability prediction model is designed in 
section 4. Then, the grid workflow scheduling based on reliability 
cost is proposed in section 5. The performance evaluation is 
conducted in Section 6. Finally, we conclude and give some 
future work about our research in Section 7. 

2. RELATED WORK 
There is a vast amount of research work on grid workflow 
scheduling. Scheduling models usually adopt DAG. Scheduling 
strategies can be categorized into performance-driven, market-
driven and trust-driven [3]. 

Performance-driven strategy tries to submit jobs onto resources 
and achieve optimal performance for users and system (e.g. 
minimum job execution time and high throughput) [4, 5, 20]. 
Most heuristics for DAG scheduling on heterogeneous systems 
belong to the performance-driven strategy [26, 27, 28]. The work 
in [6, 7, 8] utilizes market-driven strategy during the job 
assignment. In the systems, bids are collected from eligible 
resource providers for each task. If the execution time satisfies 
user’s requirement, a bid with lower price will be chosen as the 
optimal bid. Recently, some research works have strived to 
address the scheduling problems with reliability optimization [9, 
10, 11, 12]. In CCOF project [9] and GridSec project [10, 11], 
trust-driven scheduling strategy is adopted to map jobs onto 
appropriate resources according to their trust levels. This strategy 
avoids selecting malicious nodes and non-reputable resources, and 
intends to increase the system reliability. However, it does not 
take the job completion prediction time into consideration. In [12], 
reliable scheduling adopts “Reliability Cost” as the indicator 
which considers how reliable a given system is when a group of 
tasks are assigned to it, but the failure rate of grid nodes and the 
communication links between them adopted in the reliability cost 
model is set experimentally. 

To support reliable job scheduling, more attention is paid to 
model the characteristics of node failure so as to measure the node 

reliability, but which mainly focuses on homogeneous computing 
environments [13, 14, 15]. The work in [13, 14, 15] investigates 
the error logs of cluster systems and concludes that the time 
between reboots of nodes is best modeled by a Weibull 
distribution with shape parameters of less than 1, implying that a 
node becomes more reliable the longer it has been operating. 
Based on the observed characteristic of node failure, researchers 
also design resources allocation strategy to improve service 
availability. However, due to the highly dynamic feature of grid 
environment, grid node failures are more stochastic than clusters. 
Hence, current models can not adapt well to grid environment. 

Recently, much efforts study the resource availability prediction 
in grid environment. In [16], machine availability in enterprise 
systems is analyzed, but the results are only meaningful for the 
considered application domain. The authors of [17] develop a 
multi-state availability model based on semi-Markov to predict 
future resource availability. However, the applications of FGCS 
in [17] are confined to be CPU-bound batch programs, which are 
sequential or comprise multiple tasks with little or no inter-task 
communication. So, FGCS is not suitable for grid workflow 
consisting of multiple tasks with much precedence and data 
dependence. 

3. RELIABILITY ANALYSIS OF DAG 
Directed acyclic graph (DAG) is an efficient model to represent 
grid workflow. A DAG G=<V, E, W> is a node-weighted and 
edge-weighted directed graph, where V=<u1, u2,…, un> is the set 
of nodes, with each node denoting a task, E⊆V×V is the weighted 
edge set that defines the precedence relationship among nodes in 
V. The weight on each edge, wij∈W, denotes the volume of data 
being transmitted from node ui to node uj. P={P1, P2,…, PM} 
represents the resources of a grid system. For each task ui∈V, T(ui) 
represents the execution time on each resource node: T(ui)={t1(i), 
t2(i),…, tM(i)}, where tj(i) represents the execution time of ui on Pj. 

System reliability is defined as the probability that system will 
not fail during the running time of tasks. Considering a grid 
system with M resource nodes, P={P1, P2,…, PM}, and a DAG 
containing n nodes, V=<u1, u2,…, un>. Let xij be a binary number 
that denotes whether task ui is assigned to Pj or not. Let sij be the 
probability of resource node Pj not to fail during the running time 
of task ui on Pj. So, the probability of the system not to fail is: 
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+∑ ∑  denotes the execution latency of 

task ui, the time that task ui spends to fetch the needed data from 
its preceded nodes before execution. SLj represents the scheduling 
length of resource node Pj. When xij is small, 
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In order to maximize Pr, we need to minimize: 
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According to the above analysis, we define the reliability cost Rij 
of successful execution of task ui on resource node Pj as follow: 

Pr ( ) 1
(1 )( ( ) ( ) )

M

ij ij j pi pk kj j
p ec i k

R s t i w x D SL
∈ =

= − + +∑ ∑      (4) 

Correspondingly, RC is defined to be the reliability cost of 
successful execution of workflow DAG V on grid system P as 
follow: 

1 1

N M

ij ij
i j

RC x R
= =

= ∑∑     (5) 

Thus, to improve the reliability of workflow execution, we need 
to minimize RC. The lower RC is, the higher the reliability. 

4. GRID NODE AVAILABILITY 
PREDICTION 
In the section, a Markov Chain (MC) based grid node availability 
prediction model is designed, and we adopt Time To Failure (TTF) 
of nodes as the metric of node availability. 

4.1 Markov Model 
Markov model is usually utilized to model stochastic processes in 
many application fields. Discrete-time Markov chain (DTMC) is a 
process that consists of a finite number of states M(S1, S2,…, Sm) 
and M×M known state transition matrix P. In matrix P, Pij is the 
probability of moving from state Si to state Sj [18]. 

DTMC can be used to predict the state occurrence probability in 
the future. Suppose at time k, system state is Si (1≤i≤M) and the 
distribution of Si is Pk(Si)=ei, where ei is 1×M row vector, the 
value at location i is 1, and others is 0. Thus, we can predict the 
distribution of Si at time k+1 as: 

Pk+1(Si)=Pk(Si)P=eiP    (6) 

At time k+2, the distribution of Si is:  

Pk+2(Si)=Pk+1(Si)P=eiP2    (7) 

At time k+n, the distribution of Si is: 

Pk+n(Si)=Pk+n-1(Si)P=eiPn    (8) 

So, with DTMC, we can obtain the distribution of state Si at this 
time and next time, and therefore we can get the occurrence 
probability of each state at each time. 

4.2 MC Based Node Availability Prediction 
Model 
Resource nodes and network are volatile and failures can occur at 
any time in grid environment. As a result, TTF of nodes at each 
time is stochastic. So Markov model can be used to model the 
stochastic process of nodes’ TTF. In the prediction model, TTF is 
the system state: M(S1, S2,…, Sm). P is M×M state transition 
matrix. 

In the Markov model described above, the state set M and state 
transition matrix P are invariable. The dynamic nature of grid 
requires large storage space for M and P, which makes the model 
complex and unpractical for grid system. In order to address this 
issue, we present an adaptive MC based grid node TTF prediction 
model which can dynamically amend M and P. 

When a resource node fails, a new TTF is produced (called 
TTFnew). Then M would be traversed. If there exists state Si whose 
absolute difference value and TTFnew is less than the specified 
value, Si would be modified to be the average of Si and TTFnew 
and the number of state transition would be increased by 1. If 
there does not exist this state, new state Sm+1 would be created. At 
the same time, P would be emended correspondingly as follow: 

ij
ij

ik
K

n
P

n
=
∑

     (9) 

where nij represents the transition number from state i to state j at 
K failures. ∑Knik denotes the all state transition number of K 
failures. The pseudo-code of state M and matrix P amendment 
algorithm is illustrated in Algorithm 1 below: 

Algorithm 1: State M and matrix P amendment algorithm 
Input: New TTF at time k, M, P 
Output: New M and new P 
Step 1: Amending state space M 

While i <= size of M do  
       If ⎢Si-TTFnew⎢<=specified value then 

           
2

i new
i

S TTFS +
← ; 

           nki ++; 
           break; 
       Endif 
       insert a new state Sm+1 into M; 
       nk(i+1) = 1; 
       dimension of P increases by 1; 

Endwhile 
Step 2: Amending matrix P 

For i=1 to the row size of P do  
      N=0; 
      For j=1 to the column size of P do 
          N = N + nij; 
      Endfor 
      For j=1 to the column size of P do 

          
ij

ij

n
P

N
← ; 

      Endfor 
Endfor 

5. RELIABLE SCHEDULING OF GRID 
WORKFLOW 
Scheduling DAGs in grid environment mainly exploits heuristics 
based on list scheduling and grouping scheduling. In list 
scheduling, a weight is assigned to each node and edge of DAG 
and these weights are used to prioritize the nodes. Then, task 
nodes in DAG are subsequently assigned to grid resource in this 
order. Whereas grouping scheduling groups the tasks according to 



the weights of nodes and edges, and tasks in same group are 
independent of each other and can be scheduled independently. 
Based on the listing and grouping scheduling, we presents a novel 
workflow scheduling based on reliability cost (RCGS). 

5.1 Grid Workflow Scheduling based on 
Reliability Cost (RCGS) 
RCGS consists of three phases: ranking, grouping, and scheduling 
independent tasks within each group. First, a weight is assigned to 
each node and edge of DAG. This is based on averaging all 
possible values of the cost of node (or edge) on each resource (or 
combination of resources). With this weight, upward ranking is 
computed and each node of DAG is assigned a rank value. The 
rank value of node i, ranki, is recursively defined as follow: 

max ( )
i

i i ij jSucc
rank W W rank

∀∈
= + +   (10) 

where Wi is the weight of node i, Succi is the set of immediate 
successors of node i and Wij is the weight of the edge connecting 
nodes i and j. 

Second, nodes of DAG are sorted in descending order by their 
rank value. With this order, they are divided into different groups 
as follows. The first node (e.g., the node with the highest rank 
value) is added to a group numbered 0. If successive nodes in 
descending order by their rank value are independent with all the 
nodes already assigned to the group (namely, there is no 
dependence between them in the DAG), they are placed in the 
same group. Reversely, if there is dependence, a new group will 
be created and the new group’s number is the current group’s 
number increased by one, and then the node with the smallest 
rank value is the member of the new group. Again, subsequent 
task nodes will be assigned to different groups. The final outcome 
is a set of ordered groups. 

Third, according to the ascending order of groups’ number, the 
independent tasks within each group are scheduled using different 
heuristics, such as max-min heuristic, min-min heuristic. In 
RCGS, the independent tasks in each group are scheduled with 
consideration of the reliability of resource nodes and tasks’ 
execution time. Namely, the task would be tried to be scheduled 
to the resource node on which task has the lowest reliability cost 
while satisfying QoS requirements (e.g. completion time), which 
enhancing the reliability of task execution. 

The algorithm of RCGS is shown in Algorithm 2. Although 
RCGS may seem similar to the hybrid heuristic in [19], there is a 
fundamental difference. Hybrid heuristic aims to minimize the 
makespan of DAG during scheduling independent tasks, whereas, 
RCGS targets to improve the probability of successful execution 
of DAG, and correspondingly shortens the makespan. 

Algorithm 2: RCGS algorithm 
Input:  DAG, P (set of grid resource) 
Output: Scheduling set of tasks/resource nodes. 
Step 1: Assign a weight to each node and edge of DAG 

For each task i in DAG do 

        
1

( )
M

j
j

i

t i
W

M
==
∑

; 

Endfor 
    For each edge in DAG do 

         2

( )

2

M M
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Endfor 
Step 2: Computing the rank value of nodes of DAG 
    For each task i in DAG do 
          max ( )

i
i i ij jSucc

rank W W rank
∀∈

= + + ; 

          R[ ] ← sorting ranki in descending order; 
Endfor 

Step 3: Grouping the nodes of DAG 
G0 = {}; i = 0; k = 0; 
While R[k] ≠ ∅ do 

If ∃ dependence between R[k] and ∀ uj (uj∈Gi) then 
             i++; 
             creating Gi = { }; 
       Endif 
       Gi = { } ←R[k]; 

k++; 
Endwhile 

Step 4: Scheduling independent tasks in each group 
    scheduling tasks in ascending order; 

5.2 Scheduling Independent Tasks in Each 
Group 
Existing heuristics are developed at the assumption that resources 
are dedicated and no fails occur, not considering the reliability of 
resource nodes. In this sub-section, based on the availability 
prediction of grid resource nodes, a reliable scheduling algorithm 
is proposed. 

The reliable scheduling algorithm consists of two steps. At the 
first step, independent tasks are sorted in descending order by 
their average completion time on all resource nodes. The 
completion time of task i includes the execution time and the 
transfer time for needed data as follow: 

( )
i i ki

k Parents i
MFT W W

∈

= + ∑    (11) 

At the second step, according to the descending order of the 
average completion time of tasks, the task with highest average 
completion time is chosen. The completion time of task i on 
resource node j is computed as follow: 

Pr ( ) 1

( ) ( )
M

ij j pi pk kj
p ec i k

FT t i w x D
∈ =
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Then, using the prediction model in Section 4, the reliability of 
resource node j during the running time of task i is predicted as 
follows. Assume that the state of resource node j is Sq at time tq, 
we can predict its state distribution at time tq+1: (Pq1 Pq2 … PqM). 
Sk (1≤k≤m) denotes the TTF of resource node j. In order to 
guarantee the reliable execution of task i on resource node j, the 
following condition should be satisfied, Sk−(Tnow−STj)>FTij. Here, 
Tnow denotes the current time and STij represents the startup time 



of node j. So, the reliability of successful execution of task i on 
resource node j can be obtained as follow: 

1
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k qk
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Sk−(Tnow−STj)>FTij     (13) 

Accordingly, its reliability cost can be computed: 

Rij=(1-rij)×(FTij+SLij)    (14) 

The specific scheduling process is shown in Algorithm 3. 

Algorithm 3: Scheduling independent tasks 
Input:  A set of tasks, a set of resource nodes. 
Output: Scheduling set of tasks/resource nodes. 
Step 1: Sorting task nodes  

For each task i do 

       
( )

i i ki
k Parents i

MFT W W
∈

= + ∑ ; 

Endfor 
T[] ← task nodes in descending order by their average 
predicted completion time on all resource nodes; 

Step 2: Scheduling tasks  
For task T[i] do 

       For each resource node j do 

           
Pr ( ) 1
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M

ij j pi pk kj
p ec i k
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∈ =
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S P

=

=

=
∑
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;     // Sk−(Tnow−STj)>FTij 

            Rij=(1-rij)×(FTij+SLij); 
Endfor 

       T[i] ← resource node j with lowest Rij value 
Endfor 

6. PERFORMANCE EVALUATION 

6.1 The Settings 
In order to evaluate the performance of RCGS for scheduling 
DAGs proposed in the paper, we compare it with HEFT [25] and 
Hybrid min-min heuristic in terms of reliability cost, makespan of 
DAG and success ratio of tasks [20]. The experiments are carried 
out in a real grid environment. The testbed includes two sites, one 
is at Cluster and Grid Computing Lab (CGCL) at Wuhan, China, 
and the other is at National Hydro Electric Energy Simulation 
Laboratory (NHEESL) at Wuhan, China. There is a 16 nodes 
cluster linked by 100Mbps switched Ethernet in CGCL, each 
node is equipped with Pentium ΙΙΙ processor at 1GHz and 512MB 
memory, and the operating system is Red Hat Linux 9.0. There is 
a 12 nodes cluster linked by 100Mbps switched Ethernet in 
NHEESL, each is composed of IA 64 processor at 1.3GHz and 
2GB memory, and the operating system is Red Hat Linux 9.0. 

The testbed is composed of four nodes in CGCL and four nodes in 
NHEESL. The prototype of RCGS is implemented with JAVA. 
The grid platforms are deployed with ChinaGrid Support 
Platform (CGSP) [21]. We collect the running log of these six 
grid platforms for three months and use them to create MC based 
node availability prediction model to predict grid nodes’ 
availability in the future. The two scheduling algorithms are as 
follows: 

 HEFT: Heterogeneous Earliest-Finish-Time [25]. HEFT 
covers two major phases: a task prioritizing phase for 
computing the priorities of all tasks and a resource selection 
phase for selecting the tasks in the order of their priorities 
and scheduling each selected task on its “best” resource, 
which minimizes the task’s finish time. It selects the task 
with the highest upward rank at each step. The selected task 
is then assigned to the resource which minimizes its earliest 
finish time with an insertion-based approach. The upward 
rank of a task is the length of the critical path (i.e., the 
longest path) from the task to an exit task, including the 
computation cost of the task. 

 Min-min heuristic: Min-min heuristic has two scheduling 
steps. In the first step, for each job, the resource having the 
minimum predicted completion time is found. In the second 
step, the job having the minimum predicted completion time 
value is chosen to be scheduled. This is done iteratively 
until all the jobs have been mapped. Min-min heuristic is 
widely adopted in grid job scheduling system. 

Performance is evaluated using two different types of DAGs: 
random (generated as explained in [26]), Laplace commonly used 
in other similar studies (see [27, 28]). In each case, we randomly 
generate 10 DAGs, each DAG consists of from 10 to 100 tasks, 
and they are scheduled to different heterogeneous resources 
mentioned above. For each task in the DAGs, the estimated 
execution time on each different machine is randomly generated 
from a uniform distribution in the interval of 50 to 100 time units, 
while the communication-to-computation ratio (CCR) is also 
randomly chosen from the interval 0.1 to 1. 

6.2 Performance Evaluation Results 
Figure 1 and Figure 2 show the reliability cost of three scheduling 
algorithms. The reliability cost of DAG is computed according to 
Formula 5. From the results, RCGS outperforms HEFT and Min-
min heuristic. This is mainly because that both HEFT and Min-
min heuristic aim to select the resource node on which task has 
lowest finish time, whereas, RCGS tries to schedule tasks to the 
resource node with lowest reliability cost while satisfying tasks’ 
QoS requirements (e.g. completion time, cost). 

Figure 3 and Figure 4 show the comparison of makespan of DAG 
between RCGS and HEFT and Min-min heuristic. RCGS 
performs better and HEFT is poor, especially while the number of 
tasks of DAG increases. In HEFT, the rank value of task i is 
defined to be the longest path from task i to exit task. HEFT does 
not consider the topology of resource node and transfer load 
between resource nodes, so it can not dynamically reflect the 
change of DAG during scheduling. In RCGS, although the rank 
value of task is also defined statically at the beginning, but it 
considers the communication cost between resource nodes. Min-
min heuristic is similar to RCGS. However, like HEFT, it also 



does not consider the reliability of resource nodes while 
scheduling independent tasks. So, when the number of tasks of 
DAG increases, tasks would fail frequently while adopting HEFT 
and Min-min heuristic scheduling and re-scheduling them would 
result in the longer makespan of DAG. 
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Figure 1.  Reliability cost of three scheduling 
algorithms on random DAGs 
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Figure 2.  Reliability cost of three scheduling 
algorithms on Laplace DAGs 
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Figure 3. Makespan of DAG of three scheduling 
algorithms on random DAGs 

Figure 5 and Figure 6 show the success ratio of task execution of 
DAG by adopting RCGS, HEFT and Min-min heuristic 
algorithms. As shown in Figures 5 and 6, there is little difference 
in success ratio of jobs of three algorithms when the number of 
jobs of DAGs is low. However, with the increasing of the number 
of jobs of DAGs, RCGS improves the success ratio of task about 
10 percent higher than HEFT and Min-min heuristic algorithms. 

This phenomenon can be explained by the fact that RCGS, 
exploiting reliability cost as the main scheduling metric, tries to 
schedule tasks to the reliable resource nodes. HEFT and Min-min 
heuristic do not take into account resource nodes’ reliability while 
scheduling so that the resources, to which tasks are assigned, are 
prone to fail and the failure ratio of tasks is high. 
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Figure 4. Makespan of DAG of three scheduling 
algorithms on Laplace DAGs 
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Figure 5. Success ratio of task execution of three 
scheduling algorithms on random DAGs 
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Figure 6. Success ratio of task execution of three 
scheduling algorithms on Laplace DAGs 

7. CONCLUSION AND FUTURE WORK 
The resources in grid environment are generally provided 
voluntarily and their availability fluctuates highly. Due to 
unexpected resource unavailability, grid jobs frequently fail. In 



this paper, the reliability cost of DAG is analyzed. A MC based 
grid node availability prediction model is designed. Based on this 
model, a grid workflow scheduling based on reliability cost is 
presented, which considers both the reliability of resource nodes 
and tasks’ completion time, providing fault-avoidance capability 
for grid workflow. Performance evaluation results prove that 
RCGS lowers the reliability cost and makespan of DAG, and 
improves the success ratio of tasks. 

As our future work, we plan to perfect the node availability 
prediction model and further study reliable scheduling for grid 
workflow. 
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