
Grid Workflow Scheduling based on Reliability Cost
Yongcai Tao, Hai Jin, Xuanhua Shi

Cluster and Grid Computing Lab
Services Computing Technology and System Lab

Huazhong University of Science and Technology, Wuhan, 430074, China
hjin@hust.edu.cn

ABSTRACT
Grid workflow is a complex and typical grid application, but
owing to the highly dynamic feature of grid environments,
resource unavailability is increasingly becoming severe and poses
great challenges to grid workflow scheduling. Though fault
recovery mechanism adopted in grid system guarantee the
completion of jobs to some extent, but wasting system resources.
To overcome the shortcoming, this paper proposes a Markov
Chain based grid node availability prediction model which can
efficiently predict grid nodes’ availability in the future without
adding significant overhead. Based on this model, the paper
presents a grid workflow scheduling based on reliability cost
(RCGS). The performance evaluation results demonstrate that
RCGS improves the dependability of workflow execution and
success ratio of tasks with low reliability cost.

Categories and Subject Descriptors
C2.4 [Distributed Systems]

General Terms: Design, Experimentation, Standardization

Keywords: Grid computing, Workflow, Reliability cost,
Markov chain.

1. INTRODUCTION
As a novel and promising technology, grid offers us a new vision,
infrastructure and trend for the coordinated resource sharing,
problem-solving and services orchestration in dynamic, multi-
institutional Virtual Organizations (VOs) by integrating various
types of resources over Internet [1, 2]. Grid enables users to share
all resources (computational resources, storage resources,
communication resources, software resources, information
resources, knowledge resources, etc.) and cooperate with others
on the Internet. The advent of grid brings a bright future for
scientific research, commerce and industry. Users, ranging from
scientific researchers, workers, businessman to general customer,
are utilizing grids to share, manage and process large data sets.

Grid workflow is a complex and typical grid application,
distinguishing from the traditional workflow in: (1) efficiently
utilizing wide-area distributed resources; (2) cooperating among

heterogeneous organizations; (3) solving computing-intensive and
data-intensive tasks; and (4) making workflow more like service
flow to exploit OGSA idea. Grid workflow provides an approach
to complex and collaborative scientific researches, like high-
energy physics, geophysics, astronomy and bioinformatics.

Currently, there are a number of tools supporting the description
of workflow applications, such as: Petri Nets [22], UML (Unified
Modeling Language) [23] and user-defined component. Graph-
based modeling is more preferred by users compared with
language-based modeling. So, grid workflows are typically
represented by means of a directed acyclic graph (DAG) [24].
Each node in the graph denotes an executable task. Each directed
edge denotes a precedence constraint between two tasks. The sink
node cannot start execution until the source node has finished and
the required amount of data from the source node has been
transferred to the sink node.

Grid workflow can be seen as a collection of tasks that are
processed on distributed resources in a well-defined order to
accomplish a specific goal. The workflow scheduling problem is
to allocate tasks onto resource nodes in such a way that
precedence constraints are respected and the overall execution
time is minimized, so it is a NP-complete problem, and many
heuristics are proposed to obtain the optimal scheduling, such as
min-min heuristic, max-min heuristic, sufferage heuristic [20].
However, due to the diverse failures and error conditions in grid
environments, the unavailability of resource nodes is increasingly
becoming severe and poses great challenges to grid workflow
scheduling. For example, grid resources are mostly non-dedicated
and can enter and depart without any prior notice. In addition, the
change of resource local policy, the breakdown of software and
hardware and the malfunction of network fabric can result in
resource inaccessibility. Hence, jobs fail frequently and QoS can
not be guaranteed.

To address these issues, existing grid systems generally resort to
fault recovery mechanism [2], such as checkpoint, retry and
replication. Although relieving the challenges to some extent, this
mechanism sacrifices system resources. For example, checkpoint
policy requires extra disk space and network bandwidth to record
the job running information, e.g. intermediate results and data for
continuing job without starting from scratch. Retry strategy re-
schedules job at the same resource or other resource when job
fails. Replication policy runs the job at multiple available
resources. The fault recovery mechanism belongs to
compensating methodology and can not prevent job failures in
advance. To prevent the job failures proactively, the accurate
information of temporal and spatial distribution of grid node
availability in the future should be predicted. Thus, jobs can be
scheduled onto resource node with long uptime instead of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Infoscale’07, June 6–8, 2007, Suzhou, China.
Copyright 2007 ACM 1-58113-000-0/00/0004…$5.00.

fezzardi
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
INFOSCALE 2007, June 6-8, Suzhou, China
Copyright © 2007 ICST 978-1-59593-757-5
DOI 10.4108/infoscale.2007.895

upcoming failing nodes. So far, researchers mainly give attention
to model and predict the characteristics of cluster nodes’
availability. With the rapid expanding of gird scale, grid
integrates not only cluster resources, but also more wide-area
personal resources which are mostly non-dedicated. Therefore,
the characteristics of node unavailability in grid environment
distinguish greatly from that in cluster environment.

In this paper, we analyze the reliability of workflow execution in
grid environment and propose a Markov Chain based grid node
availability prediction model, which utilizes idle CPU cycles to
predict node availability in the future without adding significant
computational overhead. Furthermore, based on this model, the
paper presents a novel grid workflow scheduling based on
reliability cost (RCGS). Rational of RCGS is that it computes the
reliability of node during task’s running time and then makes
scheduling decision based on the reliability cost of task. Finally,
performance evaluation is conducted to compare RCGS with
other scheduling algorithms, and performance evaluation results
demonstrate that RCGS improves the dependability of grid
workflow execution and the success ratio of tasks execution, and
accordingly decreases the makespan of workflow execution.

The rest of the paper is organized as follows. Section 2 reviews
the related work. Section 3 introduces the reliability analysis of
DAG. Grid node availability prediction model is designed in
section 4. Then, the grid workflow scheduling based on reliability
cost is proposed in section 5. The performance evaluation is
conducted in Section 6. Finally, we conclude and give some
future work about our research in Section 7.

2. RELATED WORK
There is a vast amount of research work on grid workflow
scheduling. Scheduling models usually adopt DAG. Scheduling
strategies can be categorized into performance-driven, market-
driven and trust-driven [3].

Performance-driven strategy tries to submit jobs onto resources
and achieve optimal performance for users and system (e.g.
minimum job execution time and high throughput) [4, 5, 20].
Most heuristics for DAG scheduling on heterogeneous systems
belong to the performance-driven strategy [26, 27, 28]. The work
in [6, 7, 8] utilizes market-driven strategy during the job
assignment. In the systems, bids are collected from eligible
resource providers for each task. If the execution time satisfies
user’s requirement, a bid with lower price will be chosen as the
optimal bid. Recently, some research works have strived to
address the scheduling problems with reliability optimization [9,
10, 11, 12]. In CCOF project [9] and GridSec project [10, 11],
trust-driven scheduling strategy is adopted to map jobs onto
appropriate resources according to their trust levels. This strategy
avoids selecting malicious nodes and non-reputable resources, and
intends to increase the system reliability. However, it does not
take the job completion prediction time into consideration. In [12],
reliable scheduling adopts “Reliability Cost” as the indicator
which considers how reliable a given system is when a group of
tasks are assigned to it, but the failure rate of grid nodes and the
communication links between them adopted in the reliability cost
model is set experimentally.

To support reliable job scheduling, more attention is paid to
model the characteristics of node failure so as to measure the node

reliability, but which mainly focuses on homogeneous computing
environments [13, 14, 15]. The work in [13, 14, 15] investigates
the error logs of cluster systems and concludes that the time
between reboots of nodes is best modeled by a Weibull
distribution with shape parameters of less than 1, implying that a
node becomes more reliable the longer it has been operating.
Based on the observed characteristic of node failure, researchers
also design resources allocation strategy to improve service
availability. However, due to the highly dynamic feature of grid
environment, grid node failures are more stochastic than clusters.
Hence, current models can not adapt well to grid environment.

Recently, much efforts study the resource availability prediction
in grid environment. In [16], machine availability in enterprise
systems is analyzed, but the results are only meaningful for the
considered application domain. The authors of [17] develop a
multi-state availability model based on semi-Markov to predict
future resource availability. However, the applications of FGCS
in [17] are confined to be CPU-bound batch programs, which are
sequential or comprise multiple tasks with little or no inter-task
communication. So, FGCS is not suitable for grid workflow
consisting of multiple tasks with much precedence and data
dependence.

3. RELIABILITY ANALYSIS OF DAG
Directed acyclic graph (DAG) is an efficient model to represent
grid workflow. A DAG G=<V, E, W> is a node-weighted and
edge-weighted directed graph, where V=<u1, u2,…, un> is the set
of nodes, with each node denoting a task, E⊆V×V is the weighted
edge set that defines the precedence relationship among nodes in
V. The weight on each edge, wij∈W, denotes the volume of data
being transmitted from node ui to node uj. P={P1, P2,…, PM}
represents the resources of a grid system. For each task ui∈V, T(ui)
represents the execution time on each resource node: T(ui)={t1(i),
t2(i),…, tM(i)}, where tj(i) represents the execution time of ui on Pj.

System reliability is defined as the probability that system will
not fail during the running time of tasks. Considering a grid
system with M resource nodes, P={P1, P2,…, PM}, and a DAG
containing n nodes, V=<u1, u2,…, un>. Let xij be a binary number
that denotes whether task ui is assigned to Pj or not. Let sij be the
probability of resource node Pj not to fail during the running time
of task ui on Pj. So, the probability of the system not to fail is:

Pr () 1

(() ())

1 1

Pr ()

M

ij j pi pk kj j
p ec i k

x t i w x D SLM N

ij
j i

s ∈ =

+ +

= =

∑ ∑
=∏∏ (1)

where
Pr () 1

())
M

pi pk kj j
p ec i k

w x D SL
∈ =

+∑ ∑ denotes the execution latency of

task ui, the time that task ui spends to fetch the needed data from
its preceded nodes before execution. SLj represents the scheduling
length of resource node Pj. When xij is small,

Pr () 1

(1) (() ())

1 1

Pr ()

M

ij ij j pi pk kj j
p ec i k

s x t i w x D SLM N

j i

e ∈ =

− − + +

= =

∑ ∑
≈∏∏ (2)

In order to maximize Pr, we need to minimize:

1 1 Pr () 1

(1) (() ())
M N M

ij ij j pi pk kj j
j i p ec i k

s x t i w x D SL
= = ∈ =

− + +∑∑ ∑ ∑ (3)

According to the above analysis, we define the reliability cost Rij
of successful execution of task ui on resource node Pj as follow:

Pr () 1
(1)(() ())

M

ij ij j pi pk kj j
p ec i k

R s t i w x D SL
∈ =

= − + +∑ ∑ (4)

Correspondingly, RC is defined to be the reliability cost of
successful execution of workflow DAG V on grid system P as
follow:

1 1

N M

ij ij
i j

RC x R
= =

= ∑∑ (5)

Thus, to improve the reliability of workflow execution, we need
to minimize RC. The lower RC is, the higher the reliability.

4. GRID NODE AVAILABILITY
PREDICTION
In the section, a Markov Chain (MC) based grid node availability
prediction model is designed, and we adopt Time To Failure (TTF)
of nodes as the metric of node availability.

4.1 Markov Model
Markov model is usually utilized to model stochastic processes in
many application fields. Discrete-time Markov chain (DTMC) is a
process that consists of a finite number of states M(S1, S2,…, Sm)
and M×M known state transition matrix P. In matrix P, Pij is the
probability of moving from state Si to state Sj [18].

DTMC can be used to predict the state occurrence probability in
the future. Suppose at time k, system state is Si (1≤i≤M) and the
distribution of Si is Pk(Si)=ei, where ei is 1×M row vector, the
value at location i is 1, and others is 0. Thus, we can predict the
distribution of Si at time k+1 as:

Pk+1(Si)=Pk(Si)P=eiP (6)

At time k+2, the distribution of Si is:

Pk+2(Si)=Pk+1(Si)P=eiP2 (7)

At time k+n, the distribution of Si is:

Pk+n(Si)=Pk+n-1(Si)P=eiPn (8)

So, with DTMC, we can obtain the distribution of state Si at this
time and next time, and therefore we can get the occurrence
probability of each state at each time.

4.2 MC Based Node Availability Prediction
Model
Resource nodes and network are volatile and failures can occur at
any time in grid environment. As a result, TTF of nodes at each
time is stochastic. So Markov model can be used to model the
stochastic process of nodes’ TTF. In the prediction model, TTF is
the system state: M(S1, S2,…, Sm). P is M×M state transition
matrix.

In the Markov model described above, the state set M and state
transition matrix P are invariable. The dynamic nature of grid
requires large storage space for M and P, which makes the model
complex and unpractical for grid system. In order to address this
issue, we present an adaptive MC based grid node TTF prediction
model which can dynamically amend M and P.

When a resource node fails, a new TTF is produced (called
TTFnew). Then M would be traversed. If there exists state Si whose
absolute difference value and TTFnew is less than the specified
value, Si would be modified to be the average of Si and TTFnew
and the number of state transition would be increased by 1. If
there does not exist this state, new state Sm+1 would be created. At
the same time, P would be emended correspondingly as follow:

ij
ij

ik
K

n
P

n
=
∑

 (9)

where nij represents the transition number from state i to state j at
K failures. ∑Knik denotes the all state transition number of K
failures. The pseudo-code of state M and matrix P amendment
algorithm is illustrated in Algorithm 1 below:

Algorithm 1: State M and matrix P amendment algorithm
Input: New TTF at time k, M, P
Output: New M and new P
Step 1: Amending state space M

While i <= size of M do
 If ⎢Si-TTFnew⎢<=specified value then

2

i new
i

S TTFS +
← ;

 nki ++;
 break;
 Endif
 insert a new state Sm+1 into M;
 nk(i+1) = 1;
 dimension of P increases by 1;

Endwhile
Step 2: Amending matrix P

For i=1 to the row size of P do
 N=0;
 For j=1 to the column size of P do
 N = N + nij;
 Endfor
 For j=1 to the column size of P do

ij

ij

n
P

N
← ;

 Endfor
Endfor

5. RELIABLE SCHEDULING OF GRID
WORKFLOW
Scheduling DAGs in grid environment mainly exploits heuristics
based on list scheduling and grouping scheduling. In list
scheduling, a weight is assigned to each node and edge of DAG
and these weights are used to prioritize the nodes. Then, task
nodes in DAG are subsequently assigned to grid resource in this
order. Whereas grouping scheduling groups the tasks according to

the weights of nodes and edges, and tasks in same group are
independent of each other and can be scheduled independently.
Based on the listing and grouping scheduling, we presents a novel
workflow scheduling based on reliability cost (RCGS).

5.1 Grid Workflow Scheduling based on
Reliability Cost (RCGS)
RCGS consists of three phases: ranking, grouping, and scheduling
independent tasks within each group. First, a weight is assigned to
each node and edge of DAG. This is based on averaging all
possible values of the cost of node (or edge) on each resource (or
combination of resources). With this weight, upward ranking is
computed and each node of DAG is assigned a rank value. The
rank value of node i, ranki, is recursively defined as follow:

max ()
i

i i ij jSucc
rank W W rank

∀∈
= + + (10)

where Wi is the weight of node i, Succi is the set of immediate
successors of node i and Wij is the weight of the edge connecting
nodes i and j.

Second, nodes of DAG are sorted in descending order by their
rank value. With this order, they are divided into different groups
as follows. The first node (e.g., the node with the highest rank
value) is added to a group numbered 0. If successive nodes in
descending order by their rank value are independent with all the
nodes already assigned to the group (namely, there is no
dependence between them in the DAG), they are placed in the
same group. Reversely, if there is dependence, a new group will
be created and the new group’s number is the current group’s
number increased by one, and then the node with the smallest
rank value is the member of the new group. Again, subsequent
task nodes will be assigned to different groups. The final outcome
is a set of ordered groups.

Third, according to the ascending order of groups’ number, the
independent tasks within each group are scheduled using different
heuristics, such as max-min heuristic, min-min heuristic. In
RCGS, the independent tasks in each group are scheduled with
consideration of the reliability of resource nodes and tasks’
execution time. Namely, the task would be tried to be scheduled
to the resource node on which task has the lowest reliability cost
while satisfying QoS requirements (e.g. completion time), which
enhancing the reliability of task execution.

The algorithm of RCGS is shown in Algorithm 2. Although
RCGS may seem similar to the hybrid heuristic in [19], there is a
fundamental difference. Hybrid heuristic aims to minimize the
makespan of DAG during scheduling independent tasks, whereas,
RCGS targets to improve the probability of successful execution
of DAG, and correspondingly shortens the makespan.

Algorithm 2: RCGS algorithm
Input: DAG, P (set of grid resource)
Output: Scheduling set of tasks/resource nodes.
Step 1: Assign a weight to each node and edge of DAG

For each task i in DAG do

1

()
M

j
j

i

t i
W

M
==
∑

;

Endfor
 For each edge in DAG do

 2

()

2

M M

ij ij
i f j l

ij
M

k w
W

C
= =

×
=

×

∑∑
;

Endfor
Step 2: Computing the rank value of nodes of DAG
 For each task i in DAG do
 max ()

i
i i ij jSucc

rank W W rank
∀∈

= + + ;

 R[] ← sorting ranki in descending order;
Endfor

Step 3: Grouping the nodes of DAG
G0 = {}; i = 0; k = 0;
While R[k] ≠ ∅ do

If ∃ dependence between R[k] and ∀ uj (uj∈Gi) then
 i++;
 creating Gi = { };
 Endif
 Gi = { } ←R[k];

k++;
Endwhile

Step 4: Scheduling independent tasks in each group
 scheduling tasks in ascending order;

5.2 Scheduling Independent Tasks in Each
Group
Existing heuristics are developed at the assumption that resources
are dedicated and no fails occur, not considering the reliability of
resource nodes. In this sub-section, based on the availability
prediction of grid resource nodes, a reliable scheduling algorithm
is proposed.

The reliable scheduling algorithm consists of two steps. At the
first step, independent tasks are sorted in descending order by
their average completion time on all resource nodes. The
completion time of task i includes the execution time and the
transfer time for needed data as follow:

()
i i ki

k Parents i
MFT W W

∈

= + ∑ (11)

At the second step, according to the descending order of the
average completion time of tasks, the task with highest average
completion time is chosen. The completion time of task i on
resource node j is computed as follow:

Pr () 1

() ()
M

ij j pi pk kj
p ec i k

FT t i w x D
∈ =

= + ∑ ∑ (12)

Then, using the prediction model in Section 4, the reliability of
resource node j during the running time of task i is predicted as
follows. Assume that the state of resource node j is Sq at time tq,
we can predict its state distribution at time tq+1: (Pq1 Pq2 … PqM).
Sk (1≤k≤m) denotes the TTF of resource node j. In order to
guarantee the reliable execution of task i on resource node j, the
following condition should be satisfied, Sk−(Tnow−STj)>FTij. Here,
Tnow denotes the current time and STij represents the startup time

of node j. So, the reliability of successful execution of task i on
resource node j can be obtained as follow:

1

M

k qk
k x

ij M

k qk
k

S P
r

S P

=

=

=
∑

∑

Sk−(Tnow−STj)>FTij (13)

Accordingly, its reliability cost can be computed:

Rij=(1-rij)×(FTij+SLij) (14)

The specific scheduling process is shown in Algorithm 3.

Algorithm 3: Scheduling independent tasks
Input: A set of tasks, a set of resource nodes.
Output: Scheduling set of tasks/resource nodes.
Step 1: Sorting task nodes

For each task i do

()

i i ki
k Parents i

MFT W W
∈

= + ∑ ;

Endfor
T[] ← task nodes in descending order by their average
predicted completion time on all resource nodes;

Step 2: Scheduling tasks
For task T[i] do

 For each resource node j do

Pr () 1

() ()
M

ij j pi pk kj
p ec i k

FT t i w x D
∈ =

= + ∑ ∑ ;

1

M

k qk
k x

ij M

k qk
k

S P
r

S P

=

=

=
∑

∑
; // Sk−(Tnow−STj)>FTij

 Rij=(1-rij)×(FTij+SLij);
Endfor

 T[i] ← resource node j with lowest Rij value
Endfor

6. PERFORMANCE EVALUATION

6.1 The Settings
In order to evaluate the performance of RCGS for scheduling
DAGs proposed in the paper, we compare it with HEFT [25] and
Hybrid min-min heuristic in terms of reliability cost, makespan of
DAG and success ratio of tasks [20]. The experiments are carried
out in a real grid environment. The testbed includes two sites, one
is at Cluster and Grid Computing Lab (CGCL) at Wuhan, China,
and the other is at National Hydro Electric Energy Simulation
Laboratory (NHEESL) at Wuhan, China. There is a 16 nodes
cluster linked by 100Mbps switched Ethernet in CGCL, each
node is equipped with Pentium ΙΙΙ processor at 1GHz and 512MB
memory, and the operating system is Red Hat Linux 9.0. There is
a 12 nodes cluster linked by 100Mbps switched Ethernet in
NHEESL, each is composed of IA 64 processor at 1.3GHz and
2GB memory, and the operating system is Red Hat Linux 9.0.

The testbed is composed of four nodes in CGCL and four nodes in
NHEESL. The prototype of RCGS is implemented with JAVA.
The grid platforms are deployed with ChinaGrid Support
Platform (CGSP) [21]. We collect the running log of these six
grid platforms for three months and use them to create MC based
node availability prediction model to predict grid nodes’
availability in the future. The two scheduling algorithms are as
follows:

 HEFT: Heterogeneous Earliest-Finish-Time [25]. HEFT
covers two major phases: a task prioritizing phase for
computing the priorities of all tasks and a resource selection
phase for selecting the tasks in the order of their priorities
and scheduling each selected task on its “best” resource,
which minimizes the task’s finish time. It selects the task
with the highest upward rank at each step. The selected task
is then assigned to the resource which minimizes its earliest
finish time with an insertion-based approach. The upward
rank of a task is the length of the critical path (i.e., the
longest path) from the task to an exit task, including the
computation cost of the task.

 Min-min heuristic: Min-min heuristic has two scheduling
steps. In the first step, for each job, the resource having the
minimum predicted completion time is found. In the second
step, the job having the minimum predicted completion time
value is chosen to be scheduled. This is done iteratively
until all the jobs have been mapped. Min-min heuristic is
widely adopted in grid job scheduling system.

Performance is evaluated using two different types of DAGs:
random (generated as explained in [26]), Laplace commonly used
in other similar studies (see [27, 28]). In each case, we randomly
generate 10 DAGs, each DAG consists of from 10 to 100 tasks,
and they are scheduled to different heterogeneous resources
mentioned above. For each task in the DAGs, the estimated
execution time on each different machine is randomly generated
from a uniform distribution in the interval of 50 to 100 time units,
while the communication-to-computation ratio (CCR) is also
randomly chosen from the interval 0.1 to 1.

6.2 Performance Evaluation Results
Figure 1 and Figure 2 show the reliability cost of three scheduling
algorithms. The reliability cost of DAG is computed according to
Formula 5. From the results, RCGS outperforms HEFT and Min-
min heuristic. This is mainly because that both HEFT and Min-
min heuristic aim to select the resource node on which task has
lowest finish time, whereas, RCGS tries to schedule tasks to the
resource node with lowest reliability cost while satisfying tasks’
QoS requirements (e.g. completion time, cost).

Figure 3 and Figure 4 show the comparison of makespan of DAG
between RCGS and HEFT and Min-min heuristic. RCGS
performs better and HEFT is poor, especially while the number of
tasks of DAG increases. In HEFT, the rank value of task i is
defined to be the longest path from task i to exit task. HEFT does
not consider the topology of resource node and transfer load
between resource nodes, so it can not dynamically reflect the
change of DAG during scheduling. In RCGS, although the rank
value of task is also defined statically at the beginning, but it
considers the communication cost between resource nodes. Min-
min heuristic is similar to RCGS. However, like HEFT, it also

does not consider the reliability of resource nodes while
scheduling independent tasks. So, when the number of tasks of
DAG increases, tasks would fail frequently while adopting HEFT
and Min-min heuristic scheduling and re-scheduling them would
result in the longer makespan of DAG.

0

200

400

600

800

1000

1200

1400

1600

1800

10 20 30 40 50 60 70 80 90 100

Number of nodes in DAG

R
e
li
a
b
il
i
t
y
c
o
st

RCGS Min-min HEFT

Figure 1. Reliability cost of three scheduling
algorithms on random DAGs

0

200

400

600

800

1000

1200

1400

1600

1800

10 20 30 40 50 60 70 80 90 100

Number of nodes in DAG

R
e
l
i
a
b
i
l
i
t
y

c
o
s
t

RCGS Min-min HEFT

Figure 2. Reliability cost of three scheduling
algorithms on Laplace DAGs

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

10 20 30 40 50 60 70 80 90 100

Number of nodes in DAG

M
a
k
e
s
p
a
n

(
S
e
c
)

RCGS Min-min HEFT

Figure 3. Makespan of DAG of three scheduling
algorithms on random DAGs

Figure 5 and Figure 6 show the success ratio of task execution of
DAG by adopting RCGS, HEFT and Min-min heuristic
algorithms. As shown in Figures 5 and 6, there is little difference
in success ratio of jobs of three algorithms when the number of
jobs of DAGs is low. However, with the increasing of the number
of jobs of DAGs, RCGS improves the success ratio of task about
10 percent higher than HEFT and Min-min heuristic algorithms.

This phenomenon can be explained by the fact that RCGS,
exploiting reliability cost as the main scheduling metric, tries to
schedule tasks to the reliable resource nodes. HEFT and Min-min
heuristic do not take into account resource nodes’ reliability while
scheduling so that the resources, to which tasks are assigned, are
prone to fail and the failure ratio of tasks is high.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10 20 30 40 50 60 70 80 90 100

Number of nodes in DAG

M
a
k
e
s
p
a
n

(
S
e
c
)

RCGS Min-min HEFT

Figure 4. Makespan of DAG of three scheduling
algorithms on Laplace DAGs

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

Number of nodes in DAG

S
u
c
c
e
s
s

r
a
t
i
o

RCGS Min-min HEFT

Figure 5. Success ratio of task execution of three
scheduling algorithms on random DAGs

0

10

20

30

40

50
60

70
80

90

100

1 2 3 4 5 6 7 8 9 10

Number of nodes in DAG

S
u
c
c
e
s
s

r
a
t
i
o

RCGS Min-min HEFT

Figure 6. Success ratio of task execution of three
scheduling algorithms on Laplace DAGs

7. CONCLUSION AND FUTURE WORK
The resources in grid environment are generally provided
voluntarily and their availability fluctuates highly. Due to
unexpected resource unavailability, grid jobs frequently fail. In

this paper, the reliability cost of DAG is analyzed. A MC based
grid node availability prediction model is designed. Based on this
model, a grid workflow scheduling based on reliability cost is
presented, which considers both the reliability of resource nodes
and tasks’ completion time, providing fault-avoidance capability
for grid workflow. Performance evaluation results prove that
RCGS lowers the reliability cost and makespan of DAG, and
improves the success ratio of tasks.

As our future work, we plan to perfect the node availability
prediction model and further study reliable scheduling for grid
workflow.

8. ACKNOWLEDGEMENTS
This paper is supported by Nation Science Foundation of China
under grant No.90412010 and 60603058.

9. REFERENCES
[1] Foster, I. and Kesselman, C. The Grid: Blueprint for a New

Computing Infrastructure. 2nd edition, Morgan Kaufmann,
November 2003.

[2] Hwang, S. and Kesselman, C. Grid Workflow: A Flexible
Failure Handling Framework for the Grid. In Proc. of twelfth
IEEE International Symposium on High Performance
Distributed Computing (HPDC-12), IEEE Computer Society
Press, Los Alamitos, CA, USA, June 22-24, 2003, Seattle,
Washington, USA, pp.126-137.

[3] Krauter, K., Buyya, R., and Maheswaran, M. A Taxonomy
and Survey of Grid Resource Management Systems for
Distributed Computing. Software Practice and Experience,
32(2):135-164, February 2002.

[4] Cooper, K., Dasgupata, A., and Kennedy, K., eds. New Grid
Scheduling and Rescheduling Methods in the GrADS Project.
NSF Next Generation Software Workshop, International
Parallel and Distributed Processing Symposium, Santa Fe,
IEEE CS Press, Los Alamitos, CA, USA, April 2004.

[5] Cao, J., Jarvis, S. A., Saini, S., and Nudd, G. R. GridFlow:
Workflow Management for Grid Computing. In Proc. of 3rd
International Symposium on Cluster Computing and the Grid
(CCGrid), Tokyo, Japan, IEEE Computer Society Press, Los
Alamitos, May 12-15, 2003.

[6] Buyya, R., Murshed, M., Abramson, D., and Venugopal, S.
Scheduling Parameter Sweep Applications on Global Grids:
A Deadline and Budget Constrained Cost-Time Optimisation
Algorithm. Software: Practice and Experience (SPE) Journal,
35(5):491.512, April 2005.

[7] Sandholm, T. and Lai, K. Market-Based Resource Allocation
using Price Prediction in a High Performance Computing
Grid for Scientific Applications. In Proc. of Fifteenth IEEE
International Symposium on High Performance Distributed
Computing (HPDC-15), IEEE Computer Society, June 19-23,
2006, Paris, France, pp.132-143.

[8] Venugopal, S., Buyya, R., and Winton, L. A Grid Service
Broker for Scheduling Distributed Data-Oriented
Applications on Global Grids. In Proc. of 2nd International
Workshop on Middleware for Grid Computing (Middleware
2004), Toronto, Ontario, Canada, ACM Press, New York,
NY, USA, October 18, 2004.

[9] Zhao, S. Y. and Lo, V. Result Verification and Trust-based
Scheduling in Open Peer-to-Peer Cycle Sharing Systems.
Technical Report, University of Oregon, USA, 2005.

[10] Song, S. S. and Hwang, K. Security Binding for Trusted Job
Outsourcing in Open Computational Grids. IEEE
Transactions on Parallel and Distributed Systems (TPDS),
submitted May 2004, revised Dec. 2004.

[11] Song, S. S., Kwok, Y. K., and Hwang, K. Trusted Job
Scheduling in Open Computational Grids: Security-Driven
Heuristics and A Fast Genetic Algorithm. In Proc. of 19th
IEEE International Parallel & Distributed Processing
Symposium (IPDPS’05), Denver, CO, USA., IEEE
Computer Society Press, Los Alamitos, CA, USA, April 4-8,
2005.

[12] He, Y., Shao, Z., Xiao, B., Zhuge, Q., and Sha, E. Reliability
Driven Task Scheduling for Heterogeneous Systems. In Proc.
of The Fifteenth IASTED International Conference on
Parallel and Distributed Computing and Systems, Vol.1, 465-
470, 11/2003.

[13] Sahoo, R., Sivasubramaniam, A., Squillante, M., and Zhang,
Y. Failure data analysis of a large-scale heterogeneous server
environment. In Proc. of International Conference on
Dependable Systems and Networks (DSN), Florence, Italy,
2004.

[14] Heath, T., Martin, R., and Nguyen, T. D. Improving cluster
availability using workstation validation. In Proc. of ACM
SIGMETRICS 2002, Marina Del Rey, CA, 2002.

[15] Sahoo, R., Oliner, A. J., Rish, I., Gupta, M., Moreira, J. E.,
and Ma, S. Critical event prediction for proactive
management in large-scale computing clusters. In Proc. of
the ACM SIGKDD, pp.426-435, August 2003.

[16] Brevik, J., Nurmi, D., and Wolski, R. Automatic methods for
predicting machine availability in desktop grid and peer-to-
peer systems. In Proc. of CCGrid’04, pp.190-199, 2004.

[17] Ren, X. J., Lee, S., Eigenmann, R., and Bagchi, S. Resource
Failure Prediction in Fine-Grained Cycle Sharing Systems.
In Proc. of Fifteenth IEEE International Symposium on High
Performance Distributed Computing (HPDC-15), IEEE
Computer Society, June 19-23, 2006, Paris, France, pp.93-
104.

[18] Gilks, W. R., Richardson S., and Spiegelhalter, D. J. A.
Introducing Markov chain Monte Carlo. pp.1-19, In Markov
Chain Monte Carlo in Practice, Chapman & Hall, London.

[19] Sakellariou, R. and Zhao, H. A hybrid heuristic for dag
scheduling on heterogeneous systems. In Proc. of 13th
Heterogeneous Computing Workshop (HCW-2004), Santa
Fe, New Mexico, USA, 2004.

[20] Mandal, A., Kennedy, K., Koelbel, C., Marin, G., Mellor-
Crummey, J., Liu, B., and Johnsson, L. Scheduling strategies
for mapping application workflows onto the grid. In Proc. of
fourteenth IEEE International Symposium on High
Performance Distributed Computing (HPDC-14), IEEE
Computer Society, July 24-27 2005, Research Triangle Park,
North Carolina, USA, pp.125-134.

[21] http://www.chinagrid.edu.cn/CGSP/

[22] Petri, C. A. Kommunikation mit Automaten. PhD Thesis,
Institut für instrumentelle Mathematik, Bonn, 1962

[23] Object Management Group, Unified Modeling Language
(UML), http://www.uml.org/

[24] Altintas, I., Birnbaum, A., Baldridge, K., Sudholt, W., Miller,
M., Amoreira, C., Potier, Y., and Ludaescher, B. A.
Framework for the Design and Reuse of Grid Workflows. In
Proc. of International Workshop on Scientific Applications
on Grid Computing (SAG'04), LNCS 3458, Springer, 2005.

[25] Topcuoglu, H., Hariri, S., and Wu, M. Performance-effective
and low-complexity task scheduling for heterogeneous
computing. IEEE Transactions on Parallel and Distributed
Systems, 13(3):260–274, March 2002.

[26] Zhao, H. and Sakellarion, R. An experimental investigation
into the rank function of the heterogeneous earliest finish
time scheduling algorithm. In Proc. of Euro-Par 2003.
Springer-Verlag, LNCS 2790, 2003.

[27] Sakellariou, R. and Zhao, H. A low-cost rescheduling policy
for efficient mapping of workflows on grid systems.
Scientific Programming, 12(4), December 2004, pp.253-262.

[28] Sakellariou, R. and Zhao, H. A Hybrid Heuristic for DAG
Scheduling on Heterogeneous Systems. In Proceedings of
13th Heterogeneous Computing Workshop (HCW 2004), 26-
30 April 2004, Santa Fe, New Mexico, USA.

