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ABSTRACT
Sampling is a popular method for improving the scalability of 
analyzing massive datasets such as network traffic traces, web-
click traffic and other forms of transaction data. However, in some 
cases, existing simple sampling strategies fail to capture the 
underlying distribution of the data. In particular, for network 
traffic, sampling is influenced by heavy traffic from flash crowds 
and Denial of Service (DoS) attacks. In such cases, it reveals little 
information about the other smaller traffic patterns which may 
contain interesting yet important information about the traffic. We 
propose an adaptive sampling technique that utilizes a buffer of 
frequently seen patterns and a combination of sampling steps to 
build a hierarchical tree of traffic clusters. We show that this 
sampling technique ensures that smaller and newer patterns are 
represented in the cluster tree while satisfying the maximum 
sampling rate imposed by the resource constraints. This technique 
has two benefits: it preserves the underlying patterns of the data, 
and improves efficiency by reducing the sampling of records from 
known patterns. Through an empirical evaluation on a benchmark 
dataset, we demonstrate the accuracy of our system in detecting 
certain types of rare attacks that are otherwise not detected by 
systematic sampling. We also demonstrate the efficiency of our 
system in terms of reducing the number of sampled records in 
detecting frequent patterns.

Categories and Subject Descriptors
D.3.3 [Computer-Communication Networks]: Network 
Operations-Network monitoring 

General Terms
Algorithms, Management, Measurement, Performance

Keywords
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1. INTRODUCTION
There is a growing need to characterize network traffic data for a 
number of network management services. These include analysis 
of traffic volume, traffic dynamics, traffic mixture, and internet 
security. Often these characterization tasks require using some 
form of data mining technique such as frequent itemset mining [1]
and clustering [2, 3]. However, most of these techniques perform 
poorly when large amounts of data are required to be analyzed at 
or near network transmission speeds. Sampling is a popular 
technique for data reduction. An open problem in analyzing 
network traffic data is how to combine sampling with selection so 
that rare patterns in the traffic can be recognized. In this paper, we 
present a two-stage adaptive sampling scheme to address these 
problems.

Traditional approaches to sampling are often inadequate to 
capture the underlying distribution of the data. In particular, for 
network traffic, sampling is influenced by high volume traffic 
from flash crowds and Denial of Service (DoS) attacks. When a 
DoS attack is active, a naïve sampling technique would be biased 
towards the distribution of the DoS traffic. When used with a 
clustering algorithm, a naïve sampling scheme would be unable to 
capture smaller clusters since they will be sampled less than the 
DoS attack traffic. Our goal is to avoid wasting resources on 
clustering traffic patterns that have been already represented by 
large clusters.

Our approach is a two-stage sampling scheme. In the first stage, 
traffic is sampled at a higher rate relative to the overall sampling 
rate required by the user. This is followed by a selection stage 
where sampled traffic is systematically matched against a buffer of 
previously observed traffic patterns. Sampled traffic that matches 
a pattern in the buffer is then filtered through a second stage of 
sampling, so that only a subset of traffic of known patterns is 
passed to the clustering system. All traffic that did not match the 
buffer is passed to the clustering system as well.

A key advantage of this approach is that we can increase the 
proportion of computational resources that are spent on new or 
unusual traffic patterns. Note that we do not eliminate previously 
seen traffic, but only sample them at a lower rate, thus making our 
sampling more efficient in terms of the number of different 
patterns captured. Consequently, this approach enables us to 
identify smaller but still significant clusters more accurately than 
if traditional sampling approaches were employed. The key 
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contributions of this paper are: i) a novel two stage sampling 
scheme for use in resource-constrained traffic characterization, ii) 
a strategy for selecting the sampling rates in each sampling stage, 
and iii) an evaluation on a standard benchmark dataset which 
demonstrates that our scheme can achieve greater accuracy for 
smaller traffic clusters in comparison to traditional systematic 
sampling, without significantly degrading the identification of 
larger traffic patterns.

The organization of the rest of this paper is as follows. Section 2 
motivates the use of adaptive sampling in resource constrained 
environments where there is a need to identify smaller but 
potentially significant patterns and discusses related work. Section 
3 gives the background of an efficient hierarchical clustering 
algorithm that we have used in our experiments. Section 4 
formally describes the problem and establishes its scope. Section 
5 describes our adaptive sampling scheme and Section 6 analyzes 
of our evaluation.

2. MOTIVATION AND RELATED WORK: 
FROM ELEPHANTS TO MICE
Due to the growth in the bandwidth of networks, the volume of 
network traffic data is often too large for analysis using traditional 
data mining techniques [4]. In particular, it is difficult to collect, 
store and analyze huge amounts of network traffic data. 
Consequently, there is increasing interest in scalable solutions for 
mining network traffic data. For example, system administrators 
need to identify significant categories of traffic that are consuming 
resources in the network, such as DoS attacks, flash crowd events 
or peer-to-peer traffic.

Numerous approaches have been proposed for the problem of 
clustering large traffic flows. Cormode et. al [5, 6] proposed 
solutions to deal with heavy-hitters by using sketches and 
summaries of network traffic. Estan et. al [1] developed a traffic 
summarization technique called AutoFocus, which applies 
frequent itemset mining to network flows. In our previous work 
[2], we have developed a clustering technique to speed up the 
summarization process of network data under constrained 
memory. However, the common problem in all these techniques is 
the lack of scalability as network bandwidth increases.

Although sampling is a popular solution for data mining and 
statistical analysis of large datasets, such as network traffic flows, 
traditional sampling techniques are often inadequate to capture the 
underlying distributions [7]. For example, systematic sampling or 
uniform random sampling is heavily biased by the density of the 
dataset. Sampling a typical network trace containing a large 
number of probes or DoS attack packets will dwarf the other 
smaller attacks or interesting patterns. Uniform random sampling 
has been previously used in the context of clustering techniques 
[8] [9].  In applications demanding a very large amount of data, 
sampling is an important and necessary technique to reduce the 
volume of data [2]. Xu et. al [10] used random sampling to create 
a “Relative Uncertainty” profile of network flows, which is then 
used to characterize new flows using a frequent itemset mining 
technique similar to AutoFocus [1]. The authors then use this 
technique to create a behavioral pattern and block potential 
“exploit traffic” [11] by constructing the Access Control Lists for 
routers. Gonzalez and Paxson [12], also inspired by AutoFocus, 

proposed packet level random sampling to detect heavy-hitters in 
the network traffic.

It has been observed [7, 13] that a small number of heavy flows 
account for a large amount of traffic. Similarly, Estan et. al [14]
claimed that it is infeasible to accurately measure all flows on 
high speed links, however, keeping track of only a few large flows 
(called “Elephants”) may be sufficient. They proposed a sample 
and hold algorithm, which shares the common principle of 
counting samples with Gibbons and Matias [15] but identifies 
large flows using less memory. In [16, 17], sampling techniques 
are proposed for clustering based on the density of the clusters. 
Palmer et. al [16] developed an algorithm to find clusters under 
the assumption of a Zipf distribution for the sizes of clusters. 
Kollios et. al [17] proposed a variation of this technique using 
kernel based density estimation. Unlike these previous works, our 
emphasis is on the smaller flows that are often dominated by the 
larger flows. For example, in uniform random sampling, every 
record has an equal probability of being sampled [18]. In the case 
of finding clusters for rare or infrequent classes of traffic, it is 
often desirable that rare records are sampled with a higher 
sampling rate than records belonging to frequent classes [19]. 

In summary, the main focus of traffic analysis techniques such as 
[3, 13, 20] have been to focus on identifying the large traffic 
flows (“Elephants”), while ignoring the large number of smaller 
flows (“Mice”). However, many smaller clusters of flows can still 
contain relevant information. For example, many types of large 
traffic problems start out small, such as worm spread or 
distributed DoS attacks. The open issue that we address is how to 
develop a scalable data mining technique that can help to identify 
smaller traffic patterns in a computationally efficient manner.

2.1 A Motivating Example - The 1998 
DARPA dataset
In order to demonstrate the distribution of the sizes of traffic 
patterns in networks, it is useful to examine a packet trace with 
labeled patterns. Publicly available labeled traffic data are very 
rare because of security and privacy concerns [20]. The Lincoln 
Laboratory DARPA intrusion detection data repository [21] is one 
of the largest publicly available traffic traces. For example, the 
1998 DARPA traffic traces include 25 days of traffic data with 
labeled attack information, collected from a purpose-built 
network, following the behavior model of both normal users and 
malicious users. In the absence of real life labeled data, these 
traces provide us with a classified set of traffic patterns, which can 
be used as the basis for evaluating methods to characterize 
network traffic.

It is interesting to note that although there may be many different 
types of attacks present in a dataset, the overwhelming majority of 
attacks (by the number of flows involved) are caused by Denial of 
Service (Neptune 8%, smurf 13%) and Probe (satan 2%, 
portsweep 1%). The other attacks types are User-to-Local (U2R) 
and Root-to-Local (R2L). More information about these 
categories and the attacks they represent can be found in [22]. 
Table 1 shows the top 10 attacks and their categories. This gives us 
a picture of the relative frequency of different attacks in terms of 
the number of flows involved in the attack and their categories. 
Clearly, the most flow intensive attack categories are DoS and 
Probe.



TABLE 1 TOP 10 ATTACKS WITH FREQUENCY FROM DAY 1-25 OF THE 

1998 DARPA TRACES

Attack 
Category Flows Attacks

DoS 1526628 Neptune
DoS 249609 Smurf

Probe 32632 Satan
Probe 15406 Ipsweep
Probe 10504 Portsweep
DoS 10045 Pod

Probe 2356 Nmap
DoS 2172 Teardrop
DoS 1766 Warezclient
DoS 1281 Back

Any attempt to cluster flow records from traces such as these will 
be hampered by the volume of data to be analyzed. Moreover, if 
traditional sampling is used, most of the sampled records will still 
come from the top 5 to 10 traffic patterns as shown in Table 1. 
Many of the smaller, but still significant patterns will be 
overlooked at low sampling rates. To illustrate this problem, 
consider the distribution of the sizes of clusters found as a result 
of clustering network traffic flows using an existing clustering 
tool [2], which we describe in more detail later. We can see from 
Figure 1, that there is a noticeable degree of separation between 
the sizes of the larger clusters and the sizes of the smaller clusters, 
indicating the nature of the network traffic representing a heavy-
tailed distribution. Thus, low rate sampling schemes will miss a 
significant proportion of the traffic patterns on this network. Our 
goal is to improve the scalability of clustering techniques for 
characterizing network traffic patterns, so that we have a better 
chance of identifying these smaller traffic patterns with 
constrained computational resources.

3. BACKGROUND: THE ECHIDNA 
ALGORITHM FOR CLUSTERING 
NETWORK TRAFFIC DATA
The scalability problem we address in this paper is relevant to any 
clustering algorithm, such as frequent itemset and partition-based 
clustering algorithms. However, in this paper we focus on using a 
hierarchical clustering algorithm called Echidna [2], which we 
have previously developed for clustering network traffic data. In 
this section we briefly describe the basic functionality of Echidna.

Our approach to finding multidimensional clusters of network 
data builds on the BIRCH framework [3], which is a clustering
algorithm that uses a Cluster Feature (CF) to represent a cluster 
of records in the form of a vector <n, LS, SS>, where n is the 
number of records in the cluster, LS is the linear sum and SS is the 
square sum of the attributes of the records. Clusters are built using 
a hierarchical tree called a Cluster Feature Tree (CF-Tree) to 
summarize the input records. 

The tree is built in an agglomerative hierarchical manner (see 
Figure 2). Each leaf node consists of L clusters, where each 
cluster is represented by its CF record. These CF records can 
themselves be clustered at the non-leaf nodes. Figure 2 shows a 
CF-Tree.

Echidna modifies the BIRCH framework for clustering in order to 
exploit the hierarchical structure of network traffic attributes, such 
as IP addresses.

Frequency Graph of Top 35 clusters

0

500

1000

1500

2000

2500

3000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Clusters

R
ec

o
rd

s 
in

 C
lu

st
er

Figure 1 Distribution of cluster sizes as a result of clustering 
Dataset 6 (Week 4, Day 1) of the 1998 DARPA traces using the 

Echidna clustering tool [2].

The input data is extracted from network traffic as 6-tuple records 
<SrcIP, DstIP, Protocol, SrcPort, DstPort, bytes>, where SrcIP, 
DstIP are hierarchical attributes, bytes is numerical and the rest 
are categorical attributes.
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Figure 2 Cluster Feature Tree

Echidna takes each record and iteratively builds a hierarchical tree 
of clusters called a CF-Tree. In order to support these different 
types of attributes, Echidna provides an integrated approach to 
distance calculations, which incorporate distance functions for 
numerical, hierarchical and categorical attributes. In particular, 
Echidna can find clusters that represent a generalization of 
attribute values, such as a subnet that corresponds to a set of IP 
addresses. This provides a natural representation for describing a 
generalized pattern of network flows as a cluster.

Each cluster Cm is represented by a cluster feature vector that 

contains sufficient statistics to calculate the centroid mc  and 

radius ρm of the cluster. Each data record R, corresponding to a 6-
tuple traffic flow record, is inserted by comparing R to the closest 
cluster starting from the root along a path P to a leaf node. At the 
leaf node, the data record R is inserted into the closest Cm and the 
radius ρm of the updated cluster is calculated. If ρm > T, where T
is a threshold value in the range [0,1], and if the number of CF 
entries in the node is less than a maximum value, then R is 
inserted into the node as a new cluster. If a node has no more 



space for a new CF entry, then the node is split to create a new 
node and the path to the root is updated recursively.

The clusters at each level represent a generalized set of traffic 
flows, which can be used to describe the traffic flows in the
network. Since there is redundant information between different 
levels, the summary report should contain only those nodes of any 
level having significant additional information compared to their 
descendant levels. We define significant nodes in terms of the 
number of records, and the ratio of Average Intra-Cluster distance 
and Maximum Intra-cluster distance measures that intuitively pick 
those nodes that contain a heterogeneous set of clusters. Details of 
this can be found in [2].

Since the total number of attributes and their range of values are 
fixed, we can consider that the cost of distance calculation 
between a record and a cluster is also constant. In a height-
balanced CF-Tree with branching factor B and m nodes, logB m
comparisons are required for each record to be inserted into the 
closest leaf cluster. For N records the insertion time is bounded by 

))log1(*( mBNO B .

In the rest this paper, we use Echidna as the underlying clustering 
tool for finding network traffic patterns, and we examine the 
problem of how to improve the scalability of this tool by using 
adaptive sampling. Note that we focus on Echidna for testing 
purposes; our proposed sampling scheme is applicable to a wide 
range of clustering techniques.

3.1 Problem Statement
We are given as input a sequence of flow records that have been 
extracted from a network traffic stream, where each flow record is 
a 5-tuple <SrcIP, DstIP, Protocol, SrcPort, DstPort>.

Our goal is to cluster these flow records into a set of generalized 
flows which represent significant patterns in the underlying traffic 
stream. Note that clustering is a resource constrained problem if 
the network traffic stream to be clustered is from a high speed 
network. Clustering is both CPU bounded, in terms of the 
maximum rate at which we can update clusters, and memory 
bounded, in terms of the maximum number of flows that can be 
kept in memory. In this context, if the arrival rate of new flow 
records exceeds the maximum rate at which we can update 
clusters with a new record, then we need to use some form of 
sampling in order to satisfy these resource constrains. Please see 
[7] for more discussion on the necessity of sampling for analyzing 
high speed network traffic.

Traditional approaches to sampling network traffic include 
systematic, simple random and stratified random sampling [4]. 
These approaches have the effect of sampling flow records from 
each underlying cluster at the same rate.

In practice, however, the distribution of the sizes of the 
underlying clusters corresponding to the significant flows in the 
traffic is heavy-tailed [7], i.e., many clusters contain only a small 
number of flows, while a few clusters contain many flows.

If traditional sampling techniques are applied in this case, then 
there will be a penalty in terms of the ability to accurately 
discover the smaller clusters. This is due to an observation by 
Guha et al. [8] and Kollios et al. [17], who noted that a minimum 
number of points (i.e., flows) need to be sampled from each 
cluster in order for those clusters to be recognized by the 

clustering algorithm. Consequently, if the sampling rate is too 
low, then there is a high probability that an insufficient number of 
flows will be sampled from a small cluster.

Suppose there are M classes of data among N records, where, 
M<N. For systematic sampling or random sampling, the 
probability of sampling an individual record for cluster Cm is

S
N

N
P m

m  (1)

where, Nm is the number of records from class Cm and S is the 
Sampling Rate, 10  S .

Our goal is to develop a sampling scheme such that frequent 
clusters are sampled at a lower rate SL¸ while rare clusters are 
sampled at a higher rate SH > SL. In this way, we aim to increase 
the probability that a sufficient number of records are sampled 
from smaller clusters.

The key problem that needs to be addressed in this context is how 
to recognize, during sampling, whether an input record belongs to 
a rare or frequent cluster, given that the clusters are not all known 
a priori. In the next section, we describe the two-stage adaptive 
sampling scheme that we have proposed to address this problem.

4. A TWO-STAGE ADAPTIVE SAMPLING 
SCHEME FOR CLUSTERING NETWORK 
TRAFFIC
The architecture of our two-stage sampling scheme is shown in 
Figure 3. In the first stage, input records are sampled using 
uniform random sampling, with a sampling probability P1. Once a 
record has been selected as a result of the first sampling stage, we 
need to identify whether it belongs to one of the frequently 
occurring traffic patterns that have been already been identified in 
the traffic trace. This is achieved by matching the record R against 
a buffer B of frequently occurring traffic patterns. If the record R
does not match any frequent pattern in B, then R is considered as a 
new or less frequent pattern, and is passed directly to the Echidna 
clustering algorithm for inclusion into the cluster tree. In contrast, 
if R matches a frequent pattern in the buffer B, then R is 
considered to be less informative, since it already matches a 
known frequent pattern. Consequently, in that case, R would be 
passed to a second sampling stage where it would be sampled 
using uniform random sampling with sampling probability P2. If 
the record R passes this second stage of sampling, it is passed to 
Echidna, otherwise it is discarded. The effect of the second 
sampling stage is to reduce the rate at which known, frequent 
patterns are clustered, so that computational resources can be 
focused on characterizing the new or less frequent patterns.

There are two key research challenges in the design of this two 
stage sampling scheme. The first challenge is how to select the 
sampling probabilities P1 and P2 given the constraint on the 
maximum throughput or overall sampling rate of the clustering 
algorithm, assigned by the user. The second challenge is how to 
populate and match entries in the buffer which describe known 
frequent patterns in the traffic. We describe our approach to each 
of these problems in the subsections that follow.



Figure 3 Two-stage Adaptive Sampling Scheme

4.1 Assignment of Sampling Probabilities
Given our two-stage sampling scheme as described above, we 
require a strategy for selecting the sampling probabilities P1 and 
P2. Let SR denote overall sampling ratio of the two-stage sampling 
scheme, i.e., the proportion of the original input records that are 
passed to the Echidna clustering subsystem. We can derive an 
expression for SR in terms of the initial sampling probability P1, 
the sampling probability of the second stage P2, and the 
proportion of records that match an entry in the buffer, which we 
denote as X:

)]1([ 21 XXPPSR  (1)

Note that SR is the bound on the throughput of the clustering 
subsystem, and the match ratio X can be measured based on the 
observed frequency with which records match the buffer contents. 
Consequently, the two probability values P1 and P2 need to be 
further constrained.

In principle, if the match ratio X is large, then a large proportion 
of the traffic contains known, frequently occurring patterns. In 
that situation, we can afford to discard a large proportion of these 
recurring records, i.e., P2 should be small. Conversely, if few 
records match the buffer, X is small, hence we need to retain a 
larger proportion of these records, i.e., P2 should be large. We can 
formulate this intuition using the constraint

XP 12 (3)

From the above two equations we can derive an expression for P1

as

21 1 X

SR
P


 (4)

If we wish to be more aggressive in filtering records that match 
the buffer, we can constrain P2 as 1,)1(2  iXP i  and derive 

P1 accordingly. In that case, high values of the match ratio X
would result in a lower sampling rate P2 for the known, frequent 
patterns. The following Figure 4 shows different options for 
setting P2 using three different functions

4.2 Management of the Buffer of Known 
Frequent Patterns
The role of the buffer in our two-stage sampling scheme is to 
provide a cache of known, frequent patterns in the network traffic. 
If a sampled input record R matches an entry Bi (i=1,…,m) in B, 
then it is of less interest to the clustering process. Key challenges 
in the design of the buffer are how to represent entries in the 
buffer and how to populate these entries in the buffer.

Each entry in the buffer corresponds to a leaf level node from the 
hierarchical cluster tree maintained by Echidna. Such a cluster 
corresponds to a generalized flow record, which may correspond 
to a source or destination IP sub-network, or a range of source or 
destination ports.
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Figure 4 Constraint on second stage sampling probability P2 
as a function of the match ratio X

We consider that a sampled input record R matches a buffer entry 
Bi if each attribute of R belongs to the range of values represented 
by the corresponding attribute in Bi. In order to find the similarity 
between R and Bi, the Euclidean distance metric d(R, Bi) is used. 
As explained in Section 3, a traffic record is represented by a 
vector containing several types of variables or attributes. In the 
case of matching an IP address against a cluster entry, this only 
requires a match against the prefix of the two IP addresses. 
Similarly, in the case of a port this only requires testing whether 
both the ports are in the “low” or “high” ranges.  Thus, the 
computational overhead of matching records against entries in the 
buffer is low and bounded by )( 1TdmPO , where d is the number of 

dimensions of R (in our case it is 5), m is the number of entries in 
the buffer, P1 is the sampling rate of the first stage, and T is the 
total traffic.

The entries in B are populated by extracting the m largest leaf 
nodes from the hierarchical cluster tree. While this is a 
straightforward process, we still have to address the issue of 
bootstrapping the system, given that the cluster tree needs to be 
generated before we can populate the buffer. We solve this by first 
clustering a sample of the traffic, without using the second 
sampling stage, i.e., this is equivalent to using our two-stage 
scheme with an empty buffer. The clustering process allows us to 
identify dominant flows in the traffic automatically. These 
dominant flows can then be extracted from the leaves of the 

Input Record R
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Sample it with 
Probability P1

Echidna Cluster Algorithm

Does R match any 
Cluster in Buffer B?

Yes

Yes

Sample it with 
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cluster tree and used to populate the buffer B. In the current 
system, this is done once per packet trace. An issue for further 
research is how to incrementally update the buffer in non-
stationary environments.

Recalling our observation in Figure 1, there are a few big clusters 
containing a large proportion of records compared to many small 
clusters containing small proportions of records. Thus, we expect 
that a relatively small buffer will be able to match a large 
proportion of the records sampled by the first stage of our scheme. 
This means that P2 will be small, which reduces the proportion of 
computational resources that are applied to clustering known, 
frequent patterns in the data.

5. EVALUATION
There is a tradeoff between sampling and accuracy. In 
applications such as networking it is not possible to accumulate, 
as well as analyze, the gigabytes of network traffic data generated 
everyday. Instead, our aim is to filter out some of the repetitive 
patterns of flows while focusing on the less frequent patterns. In 
order to evaluate our two-stage sampling scheme, we have 
conducted an empirical evaluation in terms of a) the effect of 
sampling on overall accuracy, b) the effect of adaptive sampling 
on the detection of low volume traffic patterns, and c) the 
computational efficiency of adaptive sampling compared to 
traditional systematic sampling.

As the basis for our evaluation, we required a dataset containing 
known traffic patterns. We have used the 1998 DARPA Intrusion 
Detection dataset [23], as discussed in Section 2.1, to provide a 
set of packet traces containing known labeled patterns. From the 
dataset 25 days of traffic traces from Week 3 to Week 7 were used 
in the experiments. As a basis for comparison with our two-stage 
adaptive sampling scheme we use systematic sampling [16, 19, 

24, 25], which chooses records at an equal interval TSRI 
where SR is the sampling ratio and T is the total number of 
records. In the following subsections, all evaluations were 
performed on a time shared dual 2.8GHz Xeon processor machine 
with 4 GB RAM running SunOS 5.9. The implementation of our 
algorithm was in Java version 1.5.

5.1 Effect of Sampling Scheme on Accuracy
While sampling saves computational resources, it has the potential 
to reduce the accuracy of clustering, since many examples or 
patterns are excluded in the learning process. In this section, we 
study the effect of reducing the sampling rate on the overall 
accuracy of our adaptive sampling scheme.

From the labeled traffic traces we identify the records as either 
belonging to an attack instance or as an instance of normal traffic. 
We measure accuracy by clustering the DARPA packet trace files, 
and measuring the number of sampled attack records that map into 
a cluster containing a majority of attack records. In this context, a 
True Positive (TP) is an attack record in the trace that maps into a 
cluster containing a majority of attack records. A False Negative 
(FN) is a known attack in the trace that, when inserted into the 
cluster tree, maps into a cluster that contains a majority of normal 
records. Similarly, a false positive is a normal record that maps 
into a majority attack cluster. A confusion matrix describing these 
parameters is shown in Table 2.

Table 2 Confusion metrics to evaluate attack classification

Predicted connection label
(majority class of matching cluster)

Actual connection 
label of record

Normal Attack

Normal True Negative (TN) False Positive (FP)
Attack False Negative (FN) True Positive (TP)
We can summarize the overall accuracy in terms of Precision and 
Recall as follows.

Precision =
FPTP

TP



reflects the number of true attacks detected by Echidna as a 
proportion of the total number of attacks reported. Similarly,

Recall =
FNTP

TP



reflects the number of true attack records detected by Echidna as a 
proportion of the total number of attack records present in the 
dataset used for clustering.

The effect on Precision and Recall of varying the sampling ratio 
SR in our two-stage adaptive sampling scheme is shown in Figure 
7 and Figure 8.  The results show the mean Precision and Recall 
values across the 25 trace files, along with error bars 
corresponding to ±1 standard deviations. We show how Precision 
and Recall vary as the sampling ratio SR varies from 0.05 to 0.5. 
We can see that both Precision and Recall are around 80% and 
above. Moreover, there was no significant effect on the overall 
Precision and Recall as the sampling ratio was decreased. Thus, 
using our two-stage sampling scheme, we can achieve the same 
overall accuracy for lower SR settings using fewer computational 
resources.

5.2 Effect of Adaptive Sampling on Accuracy
of Detecting Low Frequency Patterns
While the previous subsection demonstrates that there is no 
overall degradation in accuracy as a result of our adaptive 
sampling scheme, we also wanted to examine whether our scheme 
could improve the accuracy of clustering smaller flow patterns 
present in the packet traces. We analyzed the number of rare 
attack instances that were detected using our sampling scheme in 
comparison to systematic sampling.

In particular we studied the number of instances of these rare 
attacks that were detected as the sampling rate SR decreased from 
0.25 to 0.12. Figure 7 and Figure 8 show the number of rare 
attack instances detected using each sampling technique for 
sampling rates SR=0.25 and SR=0.12 respectively. We compare 
the number of different attacks detected using adaptive and 
systematic sampling for sampling rates 0.12 and 0.25.

In the case of SR=0.25, our two-stage adaptive sampling scheme 
performed as well or better than systematic sampling in 17 of the 
18 attack types detected. In particular, there were three types of 
attacks (land, loadmodule, and warez) detected using our 
sampling scheme, which were not detected at all using systematic 
sampling.



Figure 5 Precision values of Echidna using Adaptive Sampling

Figure 6 Recall values of Echidna using Adaptive Sampling

Moreover, as the sampling ratio SR decreased to SR=0.12, the 
difference in performance between two-stage adaptive sampling 
and systematic sampling was greater, with a larger number of 
attack instances detected by our scheme in comparison to 
systematic sampling. In both cases, adaptive sampling was able to 
detect some rare attack instances that were not detected by 
systematic sampling, i.e., eject, land, loadmodule, multihop, and 
warez (see Figure 8).

This provides evidence to demonstrate that at low sampling rates, 
our adaptive sampling scheme can achieve greater accuracy in 
detecting rare traffic patterns compared to traditional systematic 
sampling. This is consistent with our expectation that the adaptive 
scheme should achieve greater accuracy for rare patterns by 
diverting resources from known, high frequency traffic patterns.

5.3 Computational Efficiency
The introduction of the buffer matching process adds additional 
computational overhead to the two-stage adaptive sampling. In 
this section, our aim is to measure the scale of this overhead.

In order to measure this overhead, we have applied both our two-
stage adaptive sampling and systematic sampling to packet trace 
files of different lengths. As a basis for comparison, both schemes 
have the same overall sampling rate, and the buffer is already 
populated with records. In this way, we can isolate the overhead 
due to the buffer lookup process. The computation time required 
by each scheme is shown in Figure 9.

Comparison of detection of attacks SR=0.25
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Figure 7 Comparison of attack types for Sampling Rate 0.25

Comparison of detection of attacks SR=0.12
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Figure 8 Comparison of attack types for Sampling Rate 0.12

In all but six of the cases, the overhead caused by buffer matching 
is no more than 30% and for 15 out of 25 instances the overhead 
is less than 20%.

Overall, both techniques scale linearly as the size of the packet 
trace to be clustered increases. Thus, there is only a small penalty 
for introducing the buffer into our sampling scheme, while it 
provides an advantage in terms of improving the detection 
accuracy of the clustering algorithm for less frequent traffic 
patterns. Since, our current implementation of the buffer 
management scheme has not been optimized for efficiency, we 
expect that this overhead can be reduced further by using more 
efficient indexing schemes
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6. CONCLUSION
In this paper we have presented a scalable two-stage adaptive 
sampling scheme to characterize network traffic flows using a
clustering algorithm. The sampling technique can be used to 
identify smaller and rare traffic patterns due to a heavy-tailed 
distribution of pattern sizes. Our main contributions are how to 
use and manage a buffer of known frequent patterns to prioritize 
sampled traffic, and how to adjust the sampling probabilities 
according to a user provided sampling rate.

We have shown experimentally on a standard benchmark dataset 
that the accuracy of the underlying clustering algorithm does not 
deteriorate significantly when the sampling rate is reduced using 
our sampling scheme. Furthermore, experiments with attack 
detection have demonstrated that our two-stage adaptive sampling 
scheme identified rare patterns and attacks that were not identified 
using systematic sampling. For future research, we are interested 
in studying the effect of varying the buffer size on training time, 
as well as developing strategies for how to dynamically update the 
buffer as changes are observed in the underlying traffic patterns.
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