
A Scalable Sampling Scheme for Clustering in Network
Traffic Analysis

Abdun Mahmood
Department of Computer Science and

Software Engineering
University of Melbourne

Melbourne, Australia

abdun@csse.unimelb.edu.au

Christopher Leckie
Department of Computer Science and

Software Engineering
University of Melbourne

Melbourne, Australia

caleckie@csse.unimelb.edu.au

Parampalli Udaya
Department of Computer Science and

Software Engineering
University of Melbourne

Melbourne, Australia

udaya@csse.unimelb.edu.au

ABSTRACT
Sampling is a popular method for improving the scalability of
analyzing massive datasets such as network traffic traces, web-
click traffic and other forms of transaction data. However, in some
cases, existing simple sampling strategies fail to capture the
underlying distribution of the data. In particular, for network
traffic, sampling is influenced by heavy traffic from flash crowds
and Denial of Service (DoS) attacks. In such cases, it reveals little
information about the other smaller traffic patterns which may
contain interesting yet important information about the traffic. We
propose an adaptive sampling technique that utilizes a buffer of
frequently seen patterns and a combination of sampling steps to
build a hierarchical tree of traffic clusters. We show that this
sampling technique ensures that smaller and newer patterns are
represented in the cluster tree while satisfying the maximum
sampling rate imposed by the resource constraints. This technique
has two benefits: it preserves the underlying patterns of the data,
and improves efficiency by reducing the sampling of records from
known patterns. Through an empirical evaluation on a benchmark
dataset, we demonstrate the accuracy of our system in detecting
certain types of rare attacks that are otherwise not detected by
systematic sampling. We also demonstrate the efficiency of our
system in terms of reducing the number of sampled records in
detecting frequent patterns.

Categories and Subject Descriptors
D.3.3 [Computer-Communication Networks]: Network
Operations-Network monitoring

General Terms
Algorithms, Management, Measurement, Performance

Keywords
adaptive sampling; network traffic analysis; clustering

1. INTRODUCTION
There is a growing need to characterize network traffic data for a
number of network management services. These include analysis
of traffic volume, traffic dynamics, traffic mixture, and internet
security. Often these characterization tasks require using some
form of data mining technique such as frequent itemset mining [1]
and clustering [2, 3]. However, most of these techniques perform
poorly when large amounts of data are required to be analyzed at
or near network transmission speeds. Sampling is a popular
technique for data reduction. An open problem in analyzing
network traffic data is how to combine sampling with selection so
that rare patterns in the traffic can be recognized. In this paper, we
present a two-stage adaptive sampling scheme to address these
problems.

Traditional approaches to sampling are often inadequate to
capture the underlying distribution of the data. In particular, for
network traffic, sampling is influenced by high volume traffic
from flash crowds and Denial of Service (DoS) attacks. When a
DoS attack is active, a naïve sampling technique would be biased
towards the distribution of the DoS traffic. When used with a
clustering algorithm, a naïve sampling scheme would be unable to
capture smaller clusters since they will be sampled less than the
DoS attack traffic. Our goal is to avoid wasting resources on
clustering traffic patterns that have been already represented by
large clusters.

Our approach is a two-stage sampling scheme. In the first stage,
traffic is sampled at a higher rate relative to the overall sampling
rate required by the user. This is followed by a selection stage
where sampled traffic is systematically matched against a buffer of
previously observed traffic patterns. Sampled traffic that matches
a pattern in the buffer is then filtered through a second stage of
sampling, so that only a subset of traffic of known patterns is
passed to the clustering system. All traffic that did not match the
buffer is passed to the clustering system as well.

A key advantage of this approach is that we can increase the
proportion of computational resources that are spent on new or
unusual traffic patterns. Note that we do not eliminate previously
seen traffic, but only sample them at a lower rate, thus making our
sampling more efficient in terms of the number of different
patterns captured. Consequently, this approach enables us to
identify smaller but still significant clusters more accurately than
if traditional sampling approaches were employed. The key

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
INFOSCALE’07, JUNE 6–8, 2007, Suzhou, China.
Copyright 2007 ACM 978-1-59593-757-5

fezzardi
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. INFOSCALE 2007, June 6-8, Suzhou, ChinaCopyright © 2007 ICST 978-1-59593-757-5 DOI 10.4108/infoscale.2007.930

contributions of this paper are: i) a novel two stage sampling
scheme for use in resource-constrained traffic characterization, ii)
a strategy for selecting the sampling rates in each sampling stage,
and iii) an evaluation on a standard benchmark dataset which
demonstrates that our scheme can achieve greater accuracy for
smaller traffic clusters in comparison to traditional systematic
sampling, without significantly degrading the identification of
larger traffic patterns.

The organization of the rest of this paper is as follows. Section 2
motivates the use of adaptive sampling in resource constrained
environments where there is a need to identify smaller but
potentially significant patterns and discusses related work. Section
3 gives the background of an efficient hierarchical clustering
algorithm that we have used in our experiments. Section 4
formally describes the problem and establishes its scope. Section
5 describes our adaptive sampling scheme and Section 6 analyzes
of our evaluation.

2. MOTIVATION AND RELATED WORK:
FROM ELEPHANTS TO MICE
Due to the growth in the bandwidth of networks, the volume of
network traffic data is often too large for analysis using traditional
data mining techniques [4]. In particular, it is difficult to collect,
store and analyze huge amounts of network traffic data.
Consequently, there is increasing interest in scalable solutions for
mining network traffic data. For example, system administrators
need to identify significant categories of traffic that are consuming
resources in the network, such as DoS attacks, flash crowd events
or peer-to-peer traffic.

Numerous approaches have been proposed for the problem of
clustering large traffic flows. Cormode et. al [5, 6] proposed
solutions to deal with heavy-hitters by using sketches and
summaries of network traffic. Estan et. al [1] developed a traffic
summarization technique called AutoFocus, which applies
frequent itemset mining to network flows. In our previous work
[2], we have developed a clustering technique to speed up the
summarization process of network data under constrained
memory. However, the common problem in all these techniques is
the lack of scalability as network bandwidth increases.

Although sampling is a popular solution for data mining and
statistical analysis of large datasets, such as network traffic flows,
traditional sampling techniques are often inadequate to capture the
underlying distributions [7]. For example, systematic sampling or
uniform random sampling is heavily biased by the density of the
dataset. Sampling a typical network trace containing a large
number of probes or DoS attack packets will dwarf the other
smaller attacks or interesting patterns. Uniform random sampling
has been previously used in the context of clustering techniques
[8] [9]. In applications demanding a very large amount of data,
sampling is an important and necessary technique to reduce the
volume of data [2]. Xu et. al [10] used random sampling to create
a “Relative Uncertainty” profile of network flows, which is then
used to characterize new flows using a frequent itemset mining
technique similar to AutoFocus [1]. The authors then use this
technique to create a behavioral pattern and block potential
“exploit traffic” [11] by constructing the Access Control Lists for
routers. Gonzalez and Paxson [12], also inspired by AutoFocus,

proposed packet level random sampling to detect heavy-hitters in
the network traffic.

It has been observed [7, 13] that a small number of heavy flows
account for a large amount of traffic. Similarly, Estan et. al [14]
claimed that it is infeasible to accurately measure all flows on
high speed links, however, keeping track of only a few large flows
(called “Elephants”) may be sufficient. They proposed a sample
and hold algorithm, which shares the common principle of
counting samples with Gibbons and Matias [15] but identifies
large flows using less memory. In [16, 17], sampling techniques
are proposed for clustering based on the density of the clusters.
Palmer et. al [16] developed an algorithm to find clusters under
the assumption of a Zipf distribution for the sizes of clusters.
Kollios et. al [17] proposed a variation of this technique using
kernel based density estimation. Unlike these previous works, our
emphasis is on the smaller flows that are often dominated by the
larger flows. For example, in uniform random sampling, every
record has an equal probability of being sampled [18]. In the case
of finding clusters for rare or infrequent classes of traffic, it is
often desirable that rare records are sampled with a higher
sampling rate than records belonging to frequent classes [19].

In summary, the main focus of traffic analysis techniques such as
[3, 13, 20] have been to focus on identifying the large traffic
flows (“Elephants”), while ignoring the large number of smaller
flows (“Mice”). However, many smaller clusters of flows can still
contain relevant information. For example, many types of large
traffic problems start out small, such as worm spread or
distributed DoS attacks. The open issue that we address is how to
develop a scalable data mining technique that can help to identify
smaller traffic patterns in a computationally efficient manner.

2.1 A Motivating Example - The 1998
DARPA dataset
In order to demonstrate the distribution of the sizes of traffic
patterns in networks, it is useful to examine a packet trace with
labeled patterns. Publicly available labeled traffic data are very
rare because of security and privacy concerns [20]. The Lincoln
Laboratory DARPA intrusion detection data repository [21] is one
of the largest publicly available traffic traces. For example, the
1998 DARPA traffic traces include 25 days of traffic data with
labeled attack information, collected from a purpose-built
network, following the behavior model of both normal users and
malicious users. In the absence of real life labeled data, these
traces provide us with a classified set of traffic patterns, which can
be used as the basis for evaluating methods to characterize
network traffic.

It is interesting to note that although there may be many different
types of attacks present in a dataset, the overwhelming majority of
attacks (by the number of flows involved) are caused by Denial of
Service (Neptune 8%, smurf 13%) and Probe (satan 2%,
portsweep 1%). The other attacks types are User-to-Local (U2R)
and Root-to-Local (R2L). More information about these
categories and the attacks they represent can be found in [22].
Table 1 shows the top 10 attacks and their categories. This gives us
a picture of the relative frequency of different attacks in terms of
the number of flows involved in the attack and their categories.
Clearly, the most flow intensive attack categories are DoS and
Probe.

TABLE 1 TOP 10 ATTACKS WITH FREQUENCY FROM DAY 1-25 OF THE

1998 DARPA TRACES

Attack
Category Flows Attacks

DoS 1526628 Neptune
DoS 249609 Smurf

Probe 32632 Satan
Probe 15406 Ipsweep
Probe 10504 Portsweep
DoS 10045 Pod

Probe 2356 Nmap
DoS 2172 Teardrop
DoS 1766 Warezclient
DoS 1281 Back

Any attempt to cluster flow records from traces such as these will
be hampered by the volume of data to be analyzed. Moreover, if
traditional sampling is used, most of the sampled records will still
come from the top 5 to 10 traffic patterns as shown in Table 1.
Many of the smaller, but still significant patterns will be
overlooked at low sampling rates. To illustrate this problem,
consider the distribution of the sizes of clusters found as a result
of clustering network traffic flows using an existing clustering
tool [2], which we describe in more detail later. We can see from
Figure 1, that there is a noticeable degree of separation between
the sizes of the larger clusters and the sizes of the smaller clusters,
indicating the nature of the network traffic representing a heavy-
tailed distribution. Thus, low rate sampling schemes will miss a
significant proportion of the traffic patterns on this network. Our
goal is to improve the scalability of clustering techniques for
characterizing network traffic patterns, so that we have a better
chance of identifying these smaller traffic patterns with
constrained computational resources.

3. BACKGROUND: THE ECHIDNA
ALGORITHM FOR CLUSTERING
NETWORK TRAFFIC DATA
The scalability problem we address in this paper is relevant to any
clustering algorithm, such as frequent itemset and partition-based
clustering algorithms. However, in this paper we focus on using a
hierarchical clustering algorithm called Echidna [2], which we
have previously developed for clustering network traffic data. In
this section we briefly describe the basic functionality of Echidna.

Our approach to finding multidimensional clusters of network
data builds on the BIRCH framework [3], which is a clustering
algorithm that uses a Cluster Feature (CF) to represent a cluster
of records in the form of a vector <n, LS, SS>, where n is the
number of records in the cluster, LS is the linear sum and SS is the
square sum of the attributes of the records. Clusters are built using
a hierarchical tree called a Cluster Feature Tree (CF-Tree) to
summarize the input records.

The tree is built in an agglomerative hierarchical manner (see
Figure 2). Each leaf node consists of L clusters, where each
cluster is represented by its CF record. These CF records can
themselves be clustered at the non-leaf nodes. Figure 2 shows a
CF-Tree.

Echidna modifies the BIRCH framework for clustering in order to
exploit the hierarchical structure of network traffic attributes, such
as IP addresses.

Frequency Graph of Top 35 clusters

0

500

1000

1500

2000

2500

3000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Clusters

R
ec

o
rd

s
in

 C
lu

st
er

Figure 1 Distribution of cluster sizes as a result of clustering
Dataset 6 (Week 4, Day 1) of the 1998 DARPA traces using the

Echidna clustering tool [2].

The input data is extracted from network traffic as 6-tuple records
<SrcIP, DstIP, Protocol, SrcPort, DstPort, bytes>, where SrcIP,
DstIP are hierarchical attributes, bytes is numerical and the rest
are categorical attributes.

CF1

child1

CF3

child3

CF2

child2

CF6

child6

CCFF TTrreeee

CF1

child1

CF3

child3

CF2

child2

CF5

child5

CF1 CF2 CF6prev next CF1 CF2 CF4prev next

B = Maximum number of CF
records in a non-leaf node
L = Maximum number of CF
records in a leaf nodeRoot

Non-leaf node

Leaf node Leaf node

T= Threshold Radius of a sub-cluster

Figure 2 Cluster Feature Tree

Echidna takes each record and iteratively builds a hierarchical tree
of clusters called a CF-Tree. In order to support these different
types of attributes, Echidna provides an integrated approach to
distance calculations, which incorporate distance functions for
numerical, hierarchical and categorical attributes. In particular,
Echidna can find clusters that represent a generalization of
attribute values, such as a subnet that corresponds to a set of IP
addresses. This provides a natural representation for describing a
generalized pattern of network flows as a cluster.

Each cluster Cm is represented by a cluster feature vector that

contains sufficient statistics to calculate the centroid mc and

radius ρm of the cluster. Each data record R, corresponding to a 6-
tuple traffic flow record, is inserted by comparing R to the closest
cluster starting from the root along a path P to a leaf node. At the
leaf node, the data record R is inserted into the closest Cm and the
radius ρm of the updated cluster is calculated. If ρm > T, where T
is a threshold value in the range [0,1], and if the number of CF
entries in the node is less than a maximum value, then R is
inserted into the node as a new cluster. If a node has no more

space for a new CF entry, then the node is split to create a new
node and the path to the root is updated recursively.

The clusters at each level represent a generalized set of traffic
flows, which can be used to describe the traffic flows in the
network. Since there is redundant information between different
levels, the summary report should contain only those nodes of any
level having significant additional information compared to their
descendant levels. We define significant nodes in terms of the
number of records, and the ratio of Average Intra-Cluster distance
and Maximum Intra-cluster distance measures that intuitively pick
those nodes that contain a heterogeneous set of clusters. Details of
this can be found in [2].

Since the total number of attributes and their range of values are
fixed, we can consider that the cost of distance calculation
between a record and a cluster is also constant. In a height-
balanced CF-Tree with branching factor B and m nodes, logB m
comparisons are required for each record to be inserted into the
closest leaf cluster. For N records the insertion time is bounded by

))log1(*(mBNO B .

In the rest this paper, we use Echidna as the underlying clustering
tool for finding network traffic patterns, and we examine the
problem of how to improve the scalability of this tool by using
adaptive sampling. Note that we focus on Echidna for testing
purposes; our proposed sampling scheme is applicable to a wide
range of clustering techniques.

3.1 Problem Statement
We are given as input a sequence of flow records that have been
extracted from a network traffic stream, where each flow record is
a 5-tuple <SrcIP, DstIP, Protocol, SrcPort, DstPort>.

Our goal is to cluster these flow records into a set of generalized
flows which represent significant patterns in the underlying traffic
stream. Note that clustering is a resource constrained problem if
the network traffic stream to be clustered is from a high speed
network. Clustering is both CPU bounded, in terms of the
maximum rate at which we can update clusters, and memory
bounded, in terms of the maximum number of flows that can be
kept in memory. In this context, if the arrival rate of new flow
records exceeds the maximum rate at which we can update
clusters with a new record, then we need to use some form of
sampling in order to satisfy these resource constrains. Please see
[7] for more discussion on the necessity of sampling for analyzing
high speed network traffic.

Traditional approaches to sampling network traffic include
systematic, simple random and stratified random sampling [4].
These approaches have the effect of sampling flow records from
each underlying cluster at the same rate.

In practice, however, the distribution of the sizes of the
underlying clusters corresponding to the significant flows in the
traffic is heavy-tailed [7], i.e., many clusters contain only a small
number of flows, while a few clusters contain many flows.

If traditional sampling techniques are applied in this case, then
there will be a penalty in terms of the ability to accurately
discover the smaller clusters. This is due to an observation by
Guha et al. [8] and Kollios et al. [17], who noted that a minimum
number of points (i.e., flows) need to be sampled from each
cluster in order for those clusters to be recognized by the

clustering algorithm. Consequently, if the sampling rate is too
low, then there is a high probability that an insufficient number of
flows will be sampled from a small cluster.

Suppose there are M classes of data among N records, where,
M<N. For systematic sampling or random sampling, the
probability of sampling an individual record for cluster Cm is

S
N

N
P m

m (1)

where, Nm is the number of records from class Cm and S is the
Sampling Rate, 10 S .

Our goal is to develop a sampling scheme such that frequent
clusters are sampled at a lower rate SL¸ while rare clusters are
sampled at a higher rate SH > SL. In this way, we aim to increase
the probability that a sufficient number of records are sampled
from smaller clusters.

The key problem that needs to be addressed in this context is how
to recognize, during sampling, whether an input record belongs to
a rare or frequent cluster, given that the clusters are not all known
a priori. In the next section, we describe the two-stage adaptive
sampling scheme that we have proposed to address this problem.

4. A TWO-STAGE ADAPTIVE SAMPLING
SCHEME FOR CLUSTERING NETWORK
TRAFFIC
The architecture of our two-stage sampling scheme is shown in
Figure 3. In the first stage, input records are sampled using
uniform random sampling, with a sampling probability P1. Once a
record has been selected as a result of the first sampling stage, we
need to identify whether it belongs to one of the frequently
occurring traffic patterns that have been already been identified in
the traffic trace. This is achieved by matching the record R against
a buffer B of frequently occurring traffic patterns. If the record R
does not match any frequent pattern in B, then R is considered as a
new or less frequent pattern, and is passed directly to the Echidna
clustering algorithm for inclusion into the cluster tree. In contrast,
if R matches a frequent pattern in the buffer B, then R is
considered to be less informative, since it already matches a
known frequent pattern. Consequently, in that case, R would be
passed to a second sampling stage where it would be sampled
using uniform random sampling with sampling probability P2. If
the record R passes this second stage of sampling, it is passed to
Echidna, otherwise it is discarded. The effect of the second
sampling stage is to reduce the rate at which known, frequent
patterns are clustered, so that computational resources can be
focused on characterizing the new or less frequent patterns.

There are two key research challenges in the design of this two
stage sampling scheme. The first challenge is how to select the
sampling probabilities P1 and P2 given the constraint on the
maximum throughput or overall sampling rate of the clustering
algorithm, assigned by the user. The second challenge is how to
populate and match entries in the buffer which describe known
frequent patterns in the traffic. We describe our approach to each
of these problems in the subsections that follow.

Figure 3 Two-stage Adaptive Sampling Scheme

4.1 Assignment of Sampling Probabilities
Given our two-stage sampling scheme as described above, we
require a strategy for selecting the sampling probabilities P1 and
P2. Let SR denote overall sampling ratio of the two-stage sampling
scheme, i.e., the proportion of the original input records that are
passed to the Echidna clustering subsystem. We can derive an
expression for SR in terms of the initial sampling probability P1,
the sampling probability of the second stage P2, and the
proportion of records that match an entry in the buffer, which we
denote as X:

)]1([21 XXPPSR (1)

Note that SR is the bound on the throughput of the clustering
subsystem, and the match ratio X can be measured based on the
observed frequency with which records match the buffer contents.
Consequently, the two probability values P1 and P2 need to be
further constrained.

In principle, if the match ratio X is large, then a large proportion
of the traffic contains known, frequently occurring patterns. In
that situation, we can afford to discard a large proportion of these
recurring records, i.e., P2 should be small. Conversely, if few
records match the buffer, X is small, hence we need to retain a
larger proportion of these records, i.e., P2 should be large. We can
formulate this intuition using the constraint

XP 12 (3)

From the above two equations we can derive an expression for P1

as

21 1 X

SR
P

 (4)

If we wish to be more aggressive in filtering records that match
the buffer, we can constrain P2 as 1,)1(2 iXP i and derive

P1 accordingly. In that case, high values of the match ratio X
would result in a lower sampling rate P2 for the known, frequent
patterns. The following Figure 4 shows different options for
setting P2 using three different functions

4.2 Management of the Buffer of Known
Frequent Patterns
The role of the buffer in our two-stage sampling scheme is to
provide a cache of known, frequent patterns in the network traffic.
If a sampled input record R matches an entry Bi (i=1,…,m) in B,
then it is of less interest to the clustering process. Key challenges
in the design of the buffer are how to represent entries in the
buffer and how to populate these entries in the buffer.

Each entry in the buffer corresponds to a leaf level node from the
hierarchical cluster tree maintained by Echidna. Such a cluster
corresponds to a generalized flow record, which may correspond
to a source or destination IP sub-network, or a range of source or
destination ports.

Second stage probability as a function of Match
Ratio X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Match Ratio X

S
ec

o
n

d
 s

ta
g

e
p

ro
b

ab
ili

ty

1-x

(1-x)^2

(1-x)^3

Figure 4 Constraint on second stage sampling probability P2
as a function of the match ratio X

We consider that a sampled input record R matches a buffer entry
Bi if each attribute of R belongs to the range of values represented
by the corresponding attribute in Bi. In order to find the similarity
between R and Bi, the Euclidean distance metric d(R, Bi) is used.
As explained in Section 3, a traffic record is represented by a
vector containing several types of variables or attributes. In the
case of matching an IP address against a cluster entry, this only
requires a match against the prefix of the two IP addresses.
Similarly, in the case of a port this only requires testing whether
both the ports are in the “low” or “high” ranges. Thus, the
computational overhead of matching records against entries in the
buffer is low and bounded by)(1TdmPO , where d is the number of

dimensions of R (in our case it is 5), m is the number of entries in
the buffer, P1 is the sampling rate of the first stage, and T is the
total traffic.

The entries in B are populated by extracting the m largest leaf
nodes from the hierarchical cluster tree. While this is a
straightforward process, we still have to address the issue of
bootstrapping the system, given that the cluster tree needs to be
generated before we can populate the buffer. We solve this by first
clustering a sample of the traffic, without using the second
sampling stage, i.e., this is equivalent to using our two-stage
scheme with an empty buffer. The clustering process allows us to
identify dominant flows in the traffic automatically. These
dominant flows can then be extracted from the leaves of the

Input Record R

No

Sample it with
Probability P1

Echidna Cluster Algorithm

Does R match any
Cluster in Buffer B?

Yes

Yes

Sample it with
Probability P2

cluster tree and used to populate the buffer B. In the current
system, this is done once per packet trace. An issue for further
research is how to incrementally update the buffer in non-
stationary environments.

Recalling our observation in Figure 1, there are a few big clusters
containing a large proportion of records compared to many small
clusters containing small proportions of records. Thus, we expect
that a relatively small buffer will be able to match a large
proportion of the records sampled by the first stage of our scheme.
This means that P2 will be small, which reduces the proportion of
computational resources that are applied to clustering known,
frequent patterns in the data.

5. EVALUATION
There is a tradeoff between sampling and accuracy. In
applications such as networking it is not possible to accumulate,
as well as analyze, the gigabytes of network traffic data generated
everyday. Instead, our aim is to filter out some of the repetitive
patterns of flows while focusing on the less frequent patterns. In
order to evaluate our two-stage sampling scheme, we have
conducted an empirical evaluation in terms of a) the effect of
sampling on overall accuracy, b) the effect of adaptive sampling
on the detection of low volume traffic patterns, and c) the
computational efficiency of adaptive sampling compared to
traditional systematic sampling.

As the basis for our evaluation, we required a dataset containing
known traffic patterns. We have used the 1998 DARPA Intrusion
Detection dataset [23], as discussed in Section 2.1, to provide a
set of packet traces containing known labeled patterns. From the
dataset 25 days of traffic traces from Week 3 to Week 7 were used
in the experiments. As a basis for comparison with our two-stage
adaptive sampling scheme we use systematic sampling [16, 19,

24, 25], which chooses records at an equal interval TSRI
where SR is the sampling ratio and T is the total number of
records. In the following subsections, all evaluations were
performed on a time shared dual 2.8GHz Xeon processor machine
with 4 GB RAM running SunOS 5.9. The implementation of our
algorithm was in Java version 1.5.

5.1 Effect of Sampling Scheme on Accuracy
While sampling saves computational resources, it has the potential
to reduce the accuracy of clustering, since many examples or
patterns are excluded in the learning process. In this section, we
study the effect of reducing the sampling rate on the overall
accuracy of our adaptive sampling scheme.

From the labeled traffic traces we identify the records as either
belonging to an attack instance or as an instance of normal traffic.
We measure accuracy by clustering the DARPA packet trace files,
and measuring the number of sampled attack records that map into
a cluster containing a majority of attack records. In this context, a
True Positive (TP) is an attack record in the trace that maps into a
cluster containing a majority of attack records. A False Negative
(FN) is a known attack in the trace that, when inserted into the
cluster tree, maps into a cluster that contains a majority of normal
records. Similarly, a false positive is a normal record that maps
into a majority attack cluster. A confusion matrix describing these
parameters is shown in Table 2.

Table 2 Confusion metrics to evaluate attack classification

Predicted connection label
(majority class of matching cluster)

Actual connection
label of record

Normal Attack

Normal True Negative (TN) False Positive (FP)
Attack False Negative (FN) True Positive (TP)
We can summarize the overall accuracy in terms of Precision and
Recall as follows.

Precision =
FPTP

TP

reflects the number of true attacks detected by Echidna as a
proportion of the total number of attacks reported. Similarly,

Recall =
FNTP

TP

reflects the number of true attack records detected by Echidna as a
proportion of the total number of attack records present in the
dataset used for clustering.

The effect on Precision and Recall of varying the sampling ratio
SR in our two-stage adaptive sampling scheme is shown in Figure
7 and Figure 8. The results show the mean Precision and Recall
values across the 25 trace files, along with error bars
corresponding to ±1 standard deviations. We show how Precision
and Recall vary as the sampling ratio SR varies from 0.05 to 0.5.
We can see that both Precision and Recall are around 80% and
above. Moreover, there was no significant effect on the overall
Precision and Recall as the sampling ratio was decreased. Thus,
using our two-stage sampling scheme, we can achieve the same
overall accuracy for lower SR settings using fewer computational
resources.

5.2 Effect of Adaptive Sampling on Accuracy
of Detecting Low Frequency Patterns
While the previous subsection demonstrates that there is no
overall degradation in accuracy as a result of our adaptive
sampling scheme, we also wanted to examine whether our scheme
could improve the accuracy of clustering smaller flow patterns
present in the packet traces. We analyzed the number of rare
attack instances that were detected using our sampling scheme in
comparison to systematic sampling.

In particular we studied the number of instances of these rare
attacks that were detected as the sampling rate SR decreased from
0.25 to 0.12. Figure 7 and Figure 8 show the number of rare
attack instances detected using each sampling technique for
sampling rates SR=0.25 and SR=0.12 respectively. We compare
the number of different attacks detected using adaptive and
systematic sampling for sampling rates 0.12 and 0.25.

In the case of SR=0.25, our two-stage adaptive sampling scheme
performed as well or better than systematic sampling in 17 of the
18 attack types detected. In particular, there were three types of
attacks (land, loadmodule, and warez) detected using our
sampling scheme, which were not detected at all using systematic
sampling.

Figure 5 Precision values of Echidna using Adaptive Sampling

Figure 6 Recall values of Echidna using Adaptive Sampling

Moreover, as the sampling ratio SR decreased to SR=0.12, the
difference in performance between two-stage adaptive sampling
and systematic sampling was greater, with a larger number of
attack instances detected by our scheme in comparison to
systematic sampling. In both cases, adaptive sampling was able to
detect some rare attack instances that were not detected by
systematic sampling, i.e., eject, land, loadmodule, multihop, and
warez (see Figure 8).

This provides evidence to demonstrate that at low sampling rates,
our adaptive sampling scheme can achieve greater accuracy in
detecting rare traffic patterns compared to traditional systematic
sampling. This is consistent with our expectation that the adaptive
scheme should achieve greater accuracy for rare patterns by
diverting resources from known, high frequency traffic patterns.

5.3 Computational Efficiency
The introduction of the buffer matching process adds additional
computational overhead to the two-stage adaptive sampling. In
this section, our aim is to measure the scale of this overhead.

In order to measure this overhead, we have applied both our two-
stage adaptive sampling and systematic sampling to packet trace
files of different lengths. As a basis for comparison, both schemes
have the same overall sampling rate, and the buffer is already
populated with records. In this way, we can isolate the overhead
due to the buffer lookup process. The computation time required
by each scheme is shown in Figure 9.

Comparison of detection of attacks SR=0.25

0 1 2 3 4 5 6

back
eject

ffb
format

ftp-write
ipsweep

land
loadmodul

multihop
neptune

nmap
pod

portsweep
rootkit
satan
smurf

teardrop
warez

warezclient

A
tt

ac
ks

Instances

Adaptive Sampling

Systematic

Figure 7 Comparison of attack types for Sampling Rate 0.25

Comparison of detection of attacks SR=0.12

0 1 2 3 4 5 6

back
eject

ffb
format

ftp-write
ipsweep

land
loadmodul

multihop
neptune

nmap
pod

portsweep
rootkit
satan
smurf

teardrop
warez

warezclient

A
tt

ac
ks

Instances

Adaptive Sampling

Systematic

Number of
attack
instances
uniquely
identified by

Adaptive
Sampling:12

Systematic
Sampling: 3

Figure 8 Comparison of attack types for Sampling Rate 0.12

In all but six of the cases, the overhead caused by buffer matching
is no more than 30% and for 15 out of 25 instances the overhead
is less than 20%.

Overall, both techniques scale linearly as the size of the packet
trace to be clustered increases. Thus, there is only a small penalty
for introducing the buffer into our sampling scheme, while it
provides an advantage in terms of improving the detection
accuracy of the clustering algorithm for less frequent traffic
patterns. Since, our current implementation of the buffer
management scheme has not been optimized for efficiency, we
expect that this overhead can be reduced further by using more
efficient indexing schemes

Number of
attack instances
uniquely
identified by

Adaptive
Sampling: 6

Systematic
Sampling: 1

Training time comparison

0

200

400

600

800

1000

1200

0 100000 200000 300000 400000 500000 600000

Number of records

T
im

e
 (

s
)

Systematic Adaptive

Figure 9 Run time of Adaptive Vs Systematic sampling

6. CONCLUSION
In this paper we have presented a scalable two-stage adaptive
sampling scheme to characterize network traffic flows using a
clustering algorithm. The sampling technique can be used to
identify smaller and rare traffic patterns due to a heavy-tailed
distribution of pattern sizes. Our main contributions are how to
use and manage a buffer of known frequent patterns to prioritize
sampled traffic, and how to adjust the sampling probabilities
according to a user provided sampling rate.

We have shown experimentally on a standard benchmark dataset
that the accuracy of the underlying clustering algorithm does not
deteriorate significantly when the sampling rate is reduced using
our sampling scheme. Furthermore, experiments with attack
detection have demonstrated that our two-stage adaptive sampling
scheme identified rare patterns and attacks that were not identified
using systematic sampling. For future research, we are interested
in studying the effect of varying the buffer size on training time,
as well as developing strategies for how to dynamically update the
buffer as changes are observed in the underlying traffic patterns.

7. ACKNOWLEDGMENTS
We thank the MIT Lincoln Laboratory for providing the DARPA
Intrusion Detection Evaluation traces.

8. REFERENCES
[1] Estan, C., S. Savage, and G. Varghese. Automatically
Inferring Patterns of Resource Consumption in Network Traffic.
In Proceedings of the ACM SIGCOMM Conference. 2003. pp.
137-148.
[2] Mahmood, A.N., C. Leckie, and P. Udaya. Echidna: Efficient
Clustering of Hierarchical Data for Network Traffic Analysis. In
Networking. 2006. pp. 1092-1098.
[3] Zhang, T., R. Ramakrishnan, and M. Livny. BIRCH: An
Efficient Data Clustering Method for Very Large Databases. In
Proceedings of 1996 ACM SIGMOD. 1996. pp. 103-114.
[4] Claffy, K., G. Polyzos, and H. Braun, Application of
Sampling Methodologies to Network Traffic Characterization.
ACM SIGCOMM Computer Communication Review, 1993. 23(4):
pp. 194-203.
[5] Cormode, G., et al. Diamond in the Rough: Finding
Hierarchical Heavy Hitters in Multi-Dimensional Data. In
Proceedings of ACM SIGMOD. 2004. pp. 155-166.

[6] Cormode, G., et al. Finding Hierarchical Heavy Hitters in
Data Streams. In Proceedings of VLDB. 2003. pp. 464-475.
[7] Duffield, N., C. Lund, and M. Thorup. Charging From
Sampled Network Usage. In Proceedings of the 1st ACM
SIGCOMM Workshop on Internet Measurement. 2001. pp. 245-
256.
[8] Guha, S., R. Rastogi, and K. Shim. CURE: An Efficient
Clustering Algorithm for Large Databases. In Proceedings of
1998 ACM SIGMOD. 1998. pp. 73-84.
[9] Ng, R. and J. Han. Efficient and Effective Clustering Methods
for Spatial Data Mining. In Proceedings of VLDB. 1994. pp. 144-
155.
[10] Xu, K., Z. Zhang, and S. Bhattacharyya. Profiling Internet
Backbone Traffic: Behavior Models and Applications. In
Proceedings of the 2005 Conference on Applications,
Technologies, Architectures, and Protocols for Cmputer
Communications. 2005. pp. 169-180.
[11] Xu, K., Z. Zhang, and S. Bhattacharyya. Reducing
Unwanted Traffic in a Backbone Network. In Proceedings of
Steps to Reducing Unwanted Traffic on the Internet Workshop
(SRUTI). 2005. pp. 9-15.
[12] Gonzalez, J. and V. Paxson. Enhancing Network Intrusion
Detection with Integrated Sampling and Filtering. In Proceedings
of RAID. 2006. pp. 272-289.
[13] Feldmann, A., et al., Deriving Traffic Demands for
Operational IP Networks: Methodology and Experience.
IEEE/ACM Transactions on Networking, 2001. 9(3): pp. 265-279.
[14] Estan, C. and G. Varghese, New Directions in Traffic
Measurement and Accounting: Focusing on the Elephants,
Ignoring the Mice. ACM Transactions on Computer Systems,
2003. 21(3): pp. 270-313.
[15] Gibbons, P. and Y. Matias. New Sampling-based Summary
Statistics for Improving Approximate Query Answers. In
Proceedings of 1998 ACM SIGMOD. 1998. pp. 331-342.
[16] Palmer, C. and C. Faloutsos. Density Biased Sampling: an
Improved Method for Data Mining and Clustering. In
Proceedings of 2000 ACM SIGMOD. 2000. pp. 82-92.
[17] Kollios, G., et al. An Efficient Approximation Scheme for
Data Mining Tasks. In Proceedings of IEEE Int. Conf. on Data
Engineering (ICDE’01). 2001. pp. 453-462.
[18] Thompson, S., Sampling. New York. 1992: John Wiley and
Sons.
[19] Thompson, S. and G. Seber, Adaptive Sampling. 1996, New
York: John Wiley and Sons.
[20] Mahoney, M. and P. Chan. An Analysis of the 1999
DARPA/Lincoln Laboratory Evaluation Data for Network
Anomaly Detection. In Proceedings of RAID. 2003. pp. 220-237.
[21] MIT Lincoln Lab DARPA Intrusion Detection Datasets.
http://www.ll.mit.edu/IST/ideval/data/data_index.htm
[22] Kendall, K., A Database of Computer Attacks for the
Evaluation of Intrusion Detection Systems. 1999, Massachusetts
Institute Of Technology.
[23] MIT Lincoln Lab 1998 DARPA Intrusion Detection Dataset.
http://www.ll.mit.edu/IST/ideval/data/1998/1998_data_index.htm
[24] Cochran, W., Sampling techniques. New York, 1977.
[25] Krishnaiah, P. and C. Rao, Handbook of Statistics 6:
Sampling. 1988: North-Holland.

