An Automatic Protocol Verification Framework
for the Development of Wireless Sensor Networks

Taehyun Kim Jaeho Kim

Sangshin Lee

llyeup Ahn Minan Song Kwangho Won

Korea Electronics Technology Institute
#68 Yatapdong Bundanggu
Seongnamsi Gyeonggido REPUBLIC OF KOREA
+82-31-789-7515

{thkim, jhkim, sslee, iyahn, mhsong, khwon}@keti.re.kr

ABSTRACT

In recent years, there are many active researche®Viceless
Sensor Networks (WSNs) as a way to collect diversetext

information around the world. A lot of new WSN probls have
been proposed and implemented for the various aijun fields
such as military, environmental, habitat monitorihgalth, home
and office, and other applications. When we compas&/SN

protocol stack using several layers which have hsmigned and
implemented individually, some uncertain proto@jdr modules
with malfunctions may cause the serious faultshairt own or

entire WSNs. Therefore, it is very important toifyefunctions

and interoperability of each layer as well as tkenaell-defined
protocol specifications. In this paper, we propaseautomatic
protocol verification framework for WSNs. The praeo

framework consists of a test procedure descript@amguage
written in XML and a test harness which executst ppeocedures.
We have implemented the proposed framework and itstal

verify some of our own WSN protocol layers. And oiest

framework has performed nicely. Therefore, we ththkt this

framework would make it possible for WSN protocelvédlopers
to verify protocols easily.

Categories and Subject Descriptors

B.8.1 [Performance and Reliability]: Reliability, Testing, and
Fault-Tolerance.

General Terms
Experimentation

Keywords
WSN, Test Automation, XML

1. INTRODUCTION

As a way to collect context information of real Webenvironment,
the Wireless Sensor Networks (WSNs) are in thelighte A lot

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or s
commercial advantage and that copies bear this notice and the at
full citation on the first page. To copy otherwise, to republish, to y

post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

TRIDENTCOM 2008, 17th— 20th Mar 2008, Innsbruck, Austria.
Copyright © 2011- 2012 ICST ISBN 978-963-9799-24-0

DOI 10.4108/icst.tridentcom.2008.3015

of versatile application specific WSN protocol g&are designed
and implemented to maximize the performance of Wahder
the restricted environment in terms of low powepagity, low
bandwidth, low computing power, and so on. Everutfiothere
are some famous sensor network protocols such
IEEE802.15.4[1], TinyOS[2] and ZigBee[3], there ali¢tle
generic sensor network protocols supporting dfedént kind of
applications. Because of these characteristics @&Ngy the
protocol designer should make lots of efforts teeroeme its
restriction. And it is too difficult to make an @etprotocol stack
which may have several layers such as PHY, MAC, NVARP
and so forth. In this reason, we are apt to adopbnly a layered
architecture but also some ready-made layers fritvers.

Because of the flexibility and extensibility of Ergd architecture,
it is possible to implement each protocol layeramsndependent
module. Due to the characteristic of functionahgarency, we
can compose a WSN protocol stack using severatrdawbich
have been designed and implemented individuallyt 8&ame
uncertain protocol layer modules with malfunctionay cause the
serious faults of their own or entire WSNs. Therefat is very
important to verify functions and interoperabildfeach layer.

In this paper, we propose a well defined test ptooe description
language and a test harness to make sure whethenpfemented
WSN protocol stack works properly or not. The tesicedure
description language is easily understandablet&staoperator as
well as the test harness. The test harness offraorework

interprets the given test procedure descriptionud@nt to run

test procedure step by step in the way of the pestedure

description.

We present in Section 2 detailed descriptions altbet XML

schema for the test procedure description langaagesection 3
overviews the WSN protocol stack verification framaek. The
mechanism for generating a part of test harnesgrgmo source
code is explained in section 4. And section 5 dspiow the
proposed test framework works on the test procedhitte case
study on ZigFest Spain 2006. Last three sectioasanclusions,
acknowledgments and references.

2. The Test Procedure Description Language

In software engineering, a test suite is a collecf test cases
that are intended to be used as input to a softpesgram to

show that it has some specified set of behaviors.

as

peri
Callout

peri
Typewriter
TRIDENTCOM 2008, 17th–20th Mar 2008, Innsbruck, Austria.

Copyright © 2011–2012 ICST ISBN 978-963-9799-24-0

DOI 10.4108/icst.tridentcom.2008.3015

peri
Typewriter

peri
Typewriter

B attribuies
I roll
title

H sitrbutes

_ || typeld
DataTypes B-(—H,DataType GG iiarType |

L= applicationType

Commandlist &)=, Command £

Triod

E afinbufes

, TestG ruup

B affribufes

B atfribuies
B affribuies name
name type
code isArray
_options
i ParameterType £} maxL ength

B sitribufes
commandType
command

B affribufes

name

el o

B value

B affribufes=

! e sene loopCount

L astiteraon 0y
SRR : !
" P

1.7

Figure 1. The schema for the test suite descriptiolanguage

A test suite often also contains detailed instordior goals for
each collection of test cases and information oa $ystem
configuration to be used during testing.

In this section, we present how you can write & peecedure
description language using XML. The XML has therhichical
structure that is good for us to define test ssytematically and
it is relatively immune to changes in technologydese of its
platform-independent characteristics. Above alle thiggest
strength of the XML based test suite descriptiarglaage lies in
extensibility. The test operator can extend sorl)élements
as occasion demands. Figure 1 illustrates wholectstre of the
XML based test suite description language.

2.1 The TestSuite element

The “TestSuite” element is the root element of tiwt procedure
description XML document that consists of a “Datpdy’

element, a “CommandList” element and one or momestGroup”

elements. And this element has the “title” attréownd “role”

attribute. The ‘“title” attribute offers advisoryfarmation about
the whole Test Suite and “role” attribute specifie¢e of this

sensor node on the test scenario.

2.2 “DataTypes” and “CommandList”

element

The “DataTypes” element and “CommandList” elemerd a
container element that contains “DataType” elemaantd
“Command” element respectively. These elementgatorthe
basic information to be used by source code gemrerat

2.2.1 DataType element

To prevent a mistaken interpretation of the commarebsage
frames between the Test Application and the TesveDrthe
“DataType” element defines platform neutral datpetyand its
mapping to the Test Application and the target Ws®Nsor node
platform. This way we can get a more portable seaaode.

The “DataType” element has three attributes. Theypid”
attribute specifies the ID of a platform neutraledgype definition
and the value of the “applicationType” element &ddverType”
attribute determines the data type which transldated each
platform.

2.2.2 “Command” element

The “Command” element can be used to define therfante
message frame format and the message handler doncti
prototypes. This element can contain the two aftteb and zero
or more “ParameterType” element. The “name” atteband the
“code” element specifies the human readable nardettam code
value respectively, and “ParameterType” elemenindsfdetailed
parameter information of this command.

2.2.3 “ParameterType” element

The “ParameterType” element contains informaticat tfescribes
the data structure of a parameter of the contaif@gmmand”
element. This element can have six attributes.e Tiame”
attribute and “type” attribute identify the namedadiata type of
this parameter. The value of the “name” attribmtest be unique
within containing “Command” element and the valuk tbe
“type” attribute must refer “DataType” element. ThsArray”
attribute specifies whether this parameter is aayadata or not
and the value of the “maxLength” attribute meangimam array
length when the value of the “isArray” attribute uets to
“TRUE.”

2.3 “TestGroup” element

The “TestGroup” element allows several associatedt TTases
classify into small groups and attach a tag to egolups. This
element can have one or more “TestCase” element and
“description” attribute. The value of the “destigm” attribute is

a brief description of the small group.

2.4 “TestCase” element

In software engineering, a test case is a set aflitons or
variables under which a tester will determine reguirement or
use case upon an application is partially or fslhyisfied. The
“TestCase” element is used to define a test caséTestCase”
element has a “description” element which offersvisaty
information about this test case, and one or mdestAction”
element or “Testlteration” element.

2.5 “TestAction” element

The “TestAction” element defines a standard funttio support
the containing test case. In other words, it hataitbd

information to execute an action which cannot badéd into

smaller than. Information for test action compsisereference to
the “Command” element and actual parameter liglatss dynamic
setting on runtime.

When the Test Execution Engine component
“TestAction” element, it makes command messagedrand send
through the Sensor Node Interface Adaptor component

2.6 “Testlteration” element

If you want to repeat any test action or groupest tactions, then
use the “Testlteration” element. The “Testlterati element
wraps one or more “TestAction” elements to execapeetitively.
The total number of test repetition is specifiedtiy value of the
“loopCount” attribute.

3. WSN Stack Verification Framework

The proposed WSN stack verification framework iscftware
framework which performs WSN protocol stack testgedure for
the target WSN protocol stack or a WSN protocotlstiayer
using test suite document written in XML. This framork has
two software blocks. One block is “Test Applicatiowhich

operates on a personal computer environments anattter is
“Test Driver” which operates on a sensor node. s€h@o blocks

communicate with each other to exchange messages an

commands going on test procedure. The frameworkigeo
diverse channels that commonly used wired commtinita
methods for example RS232, RS485, USB and Ethefftet.
system architecture of the test framework is deglicin Figure 2.

Figure 2. WSN Stack Verification Framework Architecure

meets athe Test Framework.

3.1 The Test Application block

The Test Application block is a Graphic User Iraed (GUI)
application running on a personal computer. Thiscl is
responsible for interacting with user and drivihg &xecution of
each step of the selected test case described dn bédded test
description document. The Graphic User Interfacenmunent
allows the test operator to select the test cadetexecuted and
to change test parameter values of the test actibish belongs
to the selected test cases. The primary functiorthef Test
Execution Engine component is to parse and intetpeetest case
definitions that are part of the test procedure cdpSon
document. Even when these Test Cases involve tse Sigte
Processor, Message Generator and Test Result Booces
components, the interpretation of the Test Casesnider the
control of the Test Execution Engine.

The Sensor Node Interface Adapter component gleagflity to
The APIs of the Sensor Naderface
Adapter component are separate from communicatiamrel
specific mechanism.

3.2 The Test Driver block

The Test Driver represents the higher layer for tist target
WSN protocol stack. It receives command messagm fi@st
Application and event notifications from the WSNofercol stack,
and issues the SAP request primitives which marlhge/WVSN
protocol stack and send RF messages.

The command message from the Test Application ttrollO
Interface of the Test Driver will be routed to tMlessage Handler
component by the Message Dispatcher. Then, the ddess
Handler updates settings that are managed by tgbeHiayer
Simulator or issues SAP primitive of the test taM§SN protocol
stack.

4. Interface Source Generator

In the Test Development step of the test procéss Test driver
source code can be generated automatically usengdhrce code
generator from a test suite document. In this i@ectthe

underlying principles are depicted to generate @®ucode.
Figure 3 shows a part of the test suite documentnple that
helps to describe our source code generation puoesd

<?xml version="1.0" encoding="UTF-8"?>
<xtaf:TestSuite ... >
<xtaf:DataTypes>

<xtaf:CommandList>

<xtaf:Command xtaf:name="set_data_payload"

1

2

3

4 -

5 </xtaf:DataTypes>
6

7

8

9 xtaf:code="14">

10 <xtaf:ParameterType xtaf:name="payloazk'si
11 xtaf:type="int" xtafisArray="lee"/>

12 <xtaf:ParameterType xtaf:name="payload"
13 xtaf:itype="hexa" xtafisArray=Uig"

14 xtaf:maxLength="100"/>

15 </xtaf:Command>

16

17 </xtaf:CommandList>

18

19 </xtaf:TestSuite>

Figure 3. Example of the test suite document

4.1 Test driver header file

The test driver header file provides some defingi@asy to port
generated source code to the target sensor noderpla It
consists of constant definition, message handlestopype
definition and etc.

Figure 4 presents culled lines from the generatsi driver
header file.

1 #define CMD_SET_DATA PAYLOAD 14

2

3 void call_set_data_payload(uint8_t payload_size, nt8uit
4 payload[]);

Figure 4. Generated Test driver header file

4.2 Message dispatcher source file

Message dispatcher parses the command messagehfeotest
application and routes command to the message érandlhe
facture below illustrates how the message dispatpheses and
routes the command. The Message dispatcher makiebles for
message handler parameter and calls the corresgpnussage
handler with these variables.

1 bool_t messageDispatcher(
2 uint8_t * buffer, uint8_t nLength)
3 {
4 ..
5 switch(buffer[nldx ++])
6
7 case CMD_SET_DATA_PAYLOAD:
8
9 uint8_t payload_size = buffer[nldx ++];
10
11 uint8_t nLen = buffer[nldx ++];
12 uint8_t payload[100];
13 for(aryldx=0; aryldx < nLen; aryldx ++)
14 payload[aryldx] = buffer[nldx++];
15 uint8_t payloadLength = buffer[nldx++];
16
17 call_set_data_payload(payload_size, payloa
18
19 return TRUE;
20 }
21 break;
22 ..
23
24 default:
25 return FALSE;
26 break;
27 '}
28
29 return FALSE;
30 }

Figure 5. Generated Message dispatcher source file

4.3 Message handler skeleton source file

The last job for test developer is implementing thessage
handler. The test developer just put the prograaybnto the
message handler skeleton code generated by sowde c
generator. The program body must include the featto control

WSN protocol stack or to send RF message throusthtaeget
WSN protocol stack.

1 void call_set_data_payload(uint8_t payload_size, nt8uit
2 payload])

3 {

4 // TODO: Add your command handler code here

5}

Figure 6. Generated Message handler source file

5. Test Framework application

This section depicts how this test framework camyyglied to test
procedure with case study on ZigFest Spain 200& nvselde the
best use of this test framework to test interopétalieatures of
our IEEE 802.15.4 Wireless Medium Access ControlAQ)
protocol stack in ZigFest Spain 2006 (April 25-2006).

5.1 Test suite design

5.1.1 Test command definition

To make test suite document, we derived commahddis result
of analysis IEEE 802.15.4 MAC specification andg®est Level
1 Interoperability Test Procedures” document.

Table 1. Examples of the Test Action command list

Category Command Description

Config-
urations

set_device_type
set mac_address
set_short_address
set_pan_id
set_channel
set_beacon_order
set_superframe_order
set_beacon_payload
set_data_payload
set_assigning

device address

MAC properties
setting

Network
properties setting

NWK
simulation

layer

RESET.request
SCAN.request
ASSOCIATE.request
DISASSOCIATE.request
POLL.request
START.request
SYNC.request
GTS.request
DATA.request

Primitives MLME

MCPS

The configuration part commands used to set theegalfor
calling primitives later, and the primitive partmamands used to
call the MAC primitives.

5.1.2 Test Group and Test Case definition

In this case, all of the test cases to test intnadglity features
were given by ZigBee Alliance. So we just tranglatee test
documents into XML scripting language.

5.2 Run the test suite
To run the test suite, test operators only exectulbes test
application and load the test suite document to dfigou need to

& ZigFest Test tool as coordir

Open Save

4 ~| Reset Execute Start

change parameters,
Application GUI.

change the parameter values esh T

= @ Test suite for beacon mode coordinator
% 4.2 Active scan
=0 4.3 Active scan - leading to a beacon notification

% 4.4 Passive scan
= (0 4.5 Passive scan - leading to a beacon notification
= (3 4.6 Orphan scan - not associated

4.8 Orphan scan - associated
9 Disassociate - initiated by the device

oeD

3 Data transmission - initiated by the device

o

oeD

7 Bidirectional data - sync and track

@ 4.3.1 Active scan when the PAN coordinator uses a short address
B 4.3.2 Active scan when the PAN coordinator uses its extended address

10 Disassociate - initiated by the coordinator and poll from device
1 Disassociate - initiated by the coordinator and sync once from device
2 Disassociate - initiated by the coordinator and sync and track by devic

5 Data transmission - initiated by the coordinator and sync once from de

@
1
Qa1
= (1 4,14 Data transmission - initiated by the coordinator and poll from device
@ 4.1
16 Data transmission - initiated by the coordinator and sync and track by
4.1

— [Action List
Type | Command &
CMD set_chariel
CMD set_beacon_order
CMD set_superframe_order
cMD
MLME RESE

Set foad
MLME START recuest v
<

Parameters

Narme [Type | Value [
pavioad_size int 2
payload hexa OxFEED

>

==

Figure 7. Test Application GUI

6. Conclusions

The main contribution of this paper is the proposéla test
procedure description language and framework fdayer of

WSNs protocol stack. The test suite descriptiomglage based
on XML to define test conditions and test proceduire formal

way and gives information to generate source codexchanging
messages and commands between test applicatioresindriver.

The test framework is a great help to verify camess of the
WSN protocol stack automatically.

We have shown that an application of our propcs&asible by
putting it into interoperability test for verifying IEEE 802.15.4
MAC protocol implementation on ZigFest Spain 20@ir test
framework would make it possible for us to verifyA® protocol

stack implementations without Network layer protcgs a higher
layer of the target MAC layer. We dispute that tbst framework
allows for inspecting WSN protocol stack impleméiotas on

development stage step by step and building mdrastoWSN

applications.

We plan to improve the performance of test framéwby
promising extension of the automated test and coimdpitest
result from several test frameworks to extend céiieb of our
frameworks. The collected test result data fromertban one test
frameworks helps to make decision whether the taWy&N
protocol stack is interoperable or not. It is pbksifor the test
framework to collect the test result data from ¢heolleagues by
means of connecting a group of the test applicatiointhe test
frameworks.

7. ACKNOWLEDGMENTS

This research is partially supported by the ub@must Computing
and Network (UCN) Project, the Ministry of Infornat and

Communication (MIC) 21st Century Frontier R&D Pragr in
Korea. And this work is also partially supportedtbe Medium-
term Strategic Technology Development Program fdnioe the
Ministry of Commerce, Industry and Energy(MOCIE,rKa).

8. REFERENCES

[1] IEEE 802.15.4 Wireless Medium Access Control (MA&@y
Physical Layer (PHY) Specifications for Low-Rateréless
Personal Area Networks (LR-WPANS),
http://www.ieee802.0rg/15/pub/TG4.html

[2] TinyOS, http://www.tinyos.net
[3] zigBee Alliance, http://www.zigbee.org

[4] J. Beutel, M. Dyer, R. Lim, C. Plessl, M. Wohrle, Micel
and L. Thiele, “Automated Wireless Sensor Network
Testing”. Proc. 4th International Conference onvideked
Sensing Systems (INSS 2007), IEEE, PiscatawayJiNE,
2007, page 303.

[5] lan F. Smith, “Test automation for embedded prosluct
2004.06

[6] TaeHyun Kim, SangShin Lee, JaeHo Kim, llYeup Ahn,
MinHwan Song, KwangHo Won, “Design of XML based
interface definition language between embeddedcdeamnd
host server”, The 9th Conference on Next Generation
Communication Software (NCS 2006), KICS, Pyoungghan
Republic of Korea, November, 2006

[7] WB3C XML specification, http://www.w3.0rg/TR/REC-xml

