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Abstract—1 Generalised Processor Sharing (GPS) is a well-
known ideal service policy designed to share the capacity of a
server among the input flows fairly: each backlogged flow receives
a pre-defined fraction of the total server capacity, according to
its weight. Several practical implementations of GPS have been
proposed, among which Deficit Round Robin (DRR) is widely
deployed since it can be implemented in a very efficient way.
The worst-case performance of DRR has been studied by several
papers, all of which assume that the shared server has a constant
rate. This paper studies DRR using Network Calculus, under
very general assumptions. Latency results that generalise all the
previous works are derived, and a residual service is derived
from DRR parameters. This residual service is shown to be as
good as or even better than previous studies when restricting it
to the same assumptions.

I. INTRODUCTION

Critical real-time systems are commonly made of several
real-time processing units exchanging information through a
network. Then, the global correctness of the systems relies
not only on the real-time performance of the processing units,
but also on the capacity to bound the delay introduced by the
network (aka Worst Case Traversal Time – WCTT). Since for
cost reasons (e.g., energy, weight, maintenance) this network is
often shared by several functions and/or several flows, methods
allowing to handle shared networks must be used to compute
WCTT bounds.

Network calculus [7] is such a theory, with a strong math-
ematical background, and some success stories: it has been
used to certify the A380 AFDX backbone [4].

One common criticism made to network calculus is its pes-
simism: it computes upper bounds on the delay, not the exact
worst-case delay. In fact, it has been shown that the pessimism
of the network calculus on common AFDX configuration was
not so high as people thought: about 16.5% [3]. Moreover,
people often restrict network calculus to (σ, ρ)-calculus, i.e.
a calculus were server only offer rate-latency capacity (βR,T
service curves in network calculus), and flows are constrained
by token buckets (γr,b arrival curves – see Section II for
details). However the theory allows other types of curves,
offering a better modelling of flows and then more realistic
bounds.

1This work has been partially funded by French ANR agency under project
id ANR-09-SEGI-009.

In particular, a recent work [14] has shown that network cal-
culus is both more general and as good as existing scheduling-
based analyses for the non-preemptive static priority policy
(NP-SP).

In this work, the Deficit Round Robin policy is analysed
through Network Calculus. The main contribution is a theorem
that allows per-flow service guarantees to be derived from an
aggregate service curve, provided that the latter is strict and
that flows share the system capacity using DRR. The above
modelling generalises all previous works, [16], [6], [9], where
latency modelling is done under more restrictive hypotheses
(chiefly, constant-rate server), and our results are also as good
as the existing ones under the same hypotheses.

After a first presentation of Network Calculus in Section II,
Section III presents the Deficit Round Robin algorithm , its
network calculus modelling and the residual service offered to
each flow. Section IV presents previous works, and compares
the accuracy of the different solutions. Section VI concludes
the paper.

II. NETWORK CALCULUS

Network Calculus analysis focuses on worst-case perfor-
mance in networks. The information about the system features
are stored in functions, such as arrival curves characterising the
traffic or service curves quantifying the service guaranteed at
the network nodes. These functions can be combined together
thanks to special network calculus operations, in order to
compute bounds on buffers size or delays.

A. Mathematical background: (min,+) dioid

Here are presented some operators of the (min,+) dioid
used by network calculus. Beyond usual operations like the
minimum or the addition of functions, network calculus makes
use of several classical operations which are the translations of
(+,×) filtering operations into the (min,+) setting, as well
as a few other transformations.

Network calculus mainly uses non-decreasing functions, and
related operators. Here are those used in this article.

• Set F: F denote the set of wide-sense increasing func-
tions f : R→ R ∪ {+∞} such that f(t) = 0 for t < 0.

• Function [ ]
+: x 7→ max(x, 0).
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• Flooring b·c and ceiling d·e: ∀x ∈ R
bxc ∈ N, bxc ≤ x < bxc+ 1
dxe ∈ N, dxe − 1 < x ≤ dxe

• The Vertical deviation: It is defined for two functions
f and g by v(f, g) = supt≥0 {f(t)− g(t)}

• The Horizontal deviation: It is defined
for two functions f and g by h(f, g) =
supt≥0 {inf {d ≥ 0 | f(t) ≤ g(t+ d)}}

• The Min-plus convolution: It is defined for two func-
tions f and g by (f ∗g)(t) = inf0≤s≤t {f(t− s) + g(s)}

• The Positive and non-decreasing upper closure: It is
defined for a function f by f ↑ (t) = [sup0≤s≤tf(s)]

+

To model flows constraint and service guarantees, network
calculus uses a set of usual parametrised curves, δd, λR, βR,T ,
γr,b, defined by:

δd(t) =

{
0 if t ≤ d
∞ otherwise

γr,b(t) =

{
rt+ b if t > 0

0 otherwise

λR(t) = Rt βR,T (t) = R[t− T ]+

νT,τ (t) = min

(
δ0,

⌈
t+ τ

T

⌉)

t

b

r

γr,b

T

R

βR,T

d

δd

1
T − τ

νT,τ

Fig. 1. Common curves

B. Network calculus: reality modelling
A network calculus model for a communication network

consists in the three following components:
1) A partition of the network into subsystems (often called

nodes) which may have different scales (from elemen-
tary hardware like a processor to large sub-networks).

2) A description of data flows, where each flow follows
a path through a specified sequence of subsystems and
where each flow is shaped by some arrival curve just
before entering the network.

3) A description of the behaviour of each subsystem, that is
service curves bounding the performance of each subsys-
tem, as well as service policies in case of multiplexing
(several flows entering the same subsystem and thus
sharing its service).

In network calculus, flows are modelled by cumulative
functions R ∈ F : R(t) counts the total amount of data
generated by the flow up to time t.

The servers are just relations between some input and output
flow (S ∈ F × F). Then (R,R′) ∈ S, denoted R

S−→ R′,

R

R’

h(R,R’)

v(R,R’)

t

d(t)
b(t)

Fig. 2. Backlog and delay

means that a server S receives an input flow, R(t), and delivers
the data after a variable delay. We have inequality R′ ≤ R,
meaning that data goes out after being entered. System S
might be, for example, a single buffer served at a constant rate,
a complex communication node, or even a complete network.

The backlog is the amount of bits that are held inside the
system; if the system is a single buffer, it is the queue length.
In contrast, if the system is more complex, then the backlog is
the number of bits “in transit”, assuming that we can observe
input and output simultaneously [7]. For a system where R is
the input and R′ the output, the backlog at time t is b(t) =
R(t)−R′(t). Obviously, b(t) ≤ v(R,R′).

A backlogged period is an interval during which the backlog
is non null. If t is an instant within a backlogged period, the
backlogged period has started at StBl(t) defined by:

StBl(t) = sup {u ≤ t | R′(u) = R(u)} (1)

A maximal backlog period is an interval I such that if it
exists a backlog period I ′ such that I ⊆ I ′, then, I = I ′.

The virtual delay2 at a time t, d(t), is the delay that a bit
entered at time t will wait before exiting the system, and it is
defined as:

d(t) = inf {τ ≥ 0 | R(t) ≤ R′(t+ τ)} (2)

Obviously d(t) ≤ h(R,R′).
These notions are illustrated in Figure 2.

C. Network calculus: contract modelling

To provide guarantees for data flows, some traffic contracts
on the traffics and the services in the network are needed. For
this purpose, network calculus provides the concepts of arrival
curve and service curve.

2Some authors makes the distinction that this definition implies a FIFO
scheduling. The point of view in this paper is that, when considering a single
flow, this is the only reasonable definition. Other definitions of delay imply to
be able to distinguish different kinds of bits in a flows, i.e. to have different
aggregated flows, as will be presented in Section II-D



Fig. 3. Servers.

a) Arrival curve: A flow R ∈ F is constrained by α ∈ F
if and only if for all s ≤ t: R(t)−R(s) ≤ α(t−s). We also say
that R has α as an arrival curve/ This condition is equivalent
to R ≤ R ∗ α.

Function γr,b models the token-bucket contract: the flow can
send a burst of size b, and has a long-term rate r. Function
sνT,τ models a sporadic flow with packets of maximal size s,
a pseudo-period T and a jitter τ .

b) Service curve: The behaviour of a server is modelled
through the concept of service curve, modelling some guaran-
tees on the service provided to flows.

The literature offers several definitions for different types of
service guarantees. [1] proposes a comparative study of service
guarantees. Consider a system R

S−→ R′, i.e. a server S with
input R and output R′ (Figure 3).

Server S offers a simple (or weak) service curve β if and
only if, for all pair R S−→ R, R′ ≥ R ∗ β.

We say that a system S offers a strict service curve β if,
for all pair R S−→ R′, during any backlogged period )t, s], we
have R′(s)−R′(t) ≥ β(s− t).

There is a hierarchy between these service notions. A strict
service curve is also a simple service curve. As discussed in
Section II-D, the two definitions exhibit different with respect
to decomposition of residual service.

Let us now present the main network calculus results:
Theorem 1 (Backlog and delay bound): Assume a flow,

constrained by an arrival curve α, traverses a system that offers
a service curve β:

The backlog b(t) for all t satisfies: b(t) ≤ v(α, β).
The virtual delay d(t) for all t satisfies: d(t) ≤ h(α, β).

D. Aggregation and residual service

In general, servers do not provide service to a single flow,
rather they share their capacity among a set of flows. The
server definition has to be generalised to multiple-input /
multiple-output servers: S ∈ Fn × Fn, (R1, . . . , Rn)

S−→
(R′1, . . . , R

′
n). And the capacity of the server is shared by

several flows.
The projection on the i-th flow defines the residual server

Si: Ri
Si−→ R′i. The notions of delay, backlog and backlogged

period can the be defined per flow, considering the residual
server. Server S is “Ri backlogged” at time t iff R′i(t) >
Ri(t).

Modelling aggregation and residual service is an important
issue in network calculus. Aggregation means that the service
is shared by different flows: for example, if a server S offers
an aggregated simple service of curve β to two flows R1

and R2 , it means that it offers this service to the flow
R = R1+R2 (i.e. R′1+R

′
2 ≥ (R1+R2)∗β), but the repartition

R
2

1
R R

1
’

R
2
’

R
2

S
2

R
2
’

S

Fig. 4. Residual server and residual service

of the service among the flows depends on the server policy
(common policies are FIFO [10], static priorities [5], [1], P-
GPS/WFQ [15], DRR [16]).

The global idea, in network calculus, is to consider the
residual server Si, and to derive a residual service (simple
or strict) of curve βi offered by this server.

An important issue is the tightness: in network calculus, a
residual service is said to be tight if it allows one to compute
the worst-case delay, i.e. an attainable upper bound, rather
than a pessimistic, overrated upper bound on the delay.

When dealing with aggregation and residual service, the
type of service curve plays a crucial role: some results require
that the service curve be strict, others may be obtained
assuming simple service curves3. The residual service curve
can itself be simple or strict. This is of importance in the case
of more than two flows, since a residual service curve can
itself be shared by aggregated flows.

III. DEFICIT ROUND ROBIN

Different policies have been defined to share the capacity of
a server among several flows. GPS is an ideal policy explicitly
designed to allow fair sharing. In GPS, each flow Ri receives
a fractional part ρiβ of the system service curve β (with∑
i ρi = 1). As mentioned in [15]: “a problem with GPS is that

it is an idealised discipline that does not transmit packets as
entities. It assumes that the server can serve multiple sessions
simultaneously and that the traffic is infinitely divisible”. A
well-known GPS approximation is P-GPS (aka Weighted Fair
Queueing [15]), that offers the same guarantees as GPS in a
packet system, up to one packet size deviation. Nevertheless,
P-GPS implementation is rather complex, and other GPS
approximations are used. The Deficit Round Robin algorithm
is a practical, efficient implementation of the GPS paradigm.
In DRR, each flow Ri receives a credit Qi, and DRR ensures
that each flow will get a factional part ρi = Qi∑n

j=1Qj
of the

service. DRR is among the most used, since it exhibits a low
complexity (O(1)) and can be implemented in very efficient
ways (like the Aliquem implementation of [8]). Nevertheless,
DRR latency is larger than the P-GPS one. Then, this latency
must be carefully evaluated.

Papers about GPS consider that the shared server has a
constant rate service (β = λr), but the definition can be
generalised to any kind of β service curve in the context of
network calculus: the generalisation of GPS just states that the
aggregated service β is shared in a way such that each flows
receives a service curve ρiβ.

Similarly, DRR makes no assumption about the kind of
curve offered by the server. However, all the performance

3In fact, up to now, most results need a strict service curve, and the FIFO
policy is the only one requiring only simple service curve.



analyses in the literature are carried out under the assumption
of a constant rate service.

A. DRR algorithm

The DRR algorithm is explained in Algorithm 1. We assume
that there are n input flows, and when a packet of i-th flow
enters the system, it is put into the i-th queue. The behaviour
of the scheduler is the following: an infinite global loop scans
all queues in sequence. If the i-th queue is non empty, it is
selected, the Deficit Counter DC[i] is increased by Qi, called
the flow’s quantum, and as long as DC[i] is greater than or
equal to the size of the head-of-line packet, the packet is sent
and the DC[i] counter is decreased accordingly. The loop ends
when the flow lacks enough credit to send the next packet or
its queue gets empty. In this last case, DC[i] is set to zero.

A minor modification has been made with respect to the
original presentation of [16]: the infinite loop scans all queues,
whereas the original code maintains a list of active (i.e.,
backlogged) queues and scans only these. It is assumed here
that DRR implementation cost is negligible.

To increase the readability of the proof (given in the Ap-
pendix), a print pseudo-instruction has been added, executed
in null time, which prints the current time-stamp now(),
and the flow i which is currently selected. Of course, this
instruction is not part of a real implementation.

Note that no assumption is done about the policy inside
each queue. The only restriction is that the head of queue is
the same, from line 9 to line 11 in a given iteration of the
loop. But it can be changed from one iteration to the other, if,
for example, a packet with a higher priority arrives between
two iterations of the service.

B. DRR modelling

We are going to make a few assumption in the proof: mainly,
we assume that

• only the send instruction takes time,
• the send instruction always has non null duration,
• the same queue can be not seen as empty and non empty

at the same date, i.e. if a queue i is seen as empty at
line 14, then, it can not be seen non empty at the next
iteration at line 9 if this iteration occurs at the same
instant.

C. DRR residual service

We now state the main result.
Theorem 2 (Residual DRR service): Let S be a server, of-

fering a strict service of super-additive curve β, shared by n
flows R1, . . . , Rn. Each flow has a maximum packet size lmi ,
and a quantum Qi. Then, S offers to each flow Ri a strict
residual service curve βDRR

i defined by:

βDRR
i (t) =

[
Qi
F
β(t)− Qi(L− lmi ) + (F −Qi)(Qi + lmi )

F

]+
with F =

∑n
i=1Qi, L =

∑n
i=1 l

m
i .

Input: Per flow quantum: Q1..Qn (Integer)
Data: Per flow deficit: DC[1..n] (Integer)
Data: Counter: k (Integer)

1 for i= 1 to n do
2 DC[i]← 0 ;
3 end
4 while True do
5 for i= 1 to n do
6 if not empty(i) then

// Print is a pseudo
instruction, used to
simplify the proof

7 print (now(), i) ;
8 DC[i]← DC[i] +Qi ;
9 while (not empty(i)) and

(size(head(i)) ≤ DC[i]) do
10 send(head(i)) ;
11 DC[i]← DC[i]− size(head(i)) ;
12 removeHead( i ) ;
13 end
14 if empty(i) then
15 DC[i]← 0
16 end
17 end
18 end
19 end

Algorithm 1: DRR algorithm

Moreover, if the packet length is discrete, multiple of a basic
unit ε (e.g., one byte), and all the Qi are multiple of this basic
unit as well, then the residual service curve can be refined as:

βε-DRR
i (t) =

[
Qi
F
β(t)− Qi(L

ε − lm-ε
i ) + (F −Qi)(Qi + lm-ε

i )

F

]+
with lm-ε

i = lmi − ε and Lε =
∑n
i=1 l

m-ε
i .

Such a basic unit always exists in practice, its value being
at least ε = 1 or ε = 8, due to sizes being in bits or bytes.
Nonetheless, it is sometimes easier from a modelling point of
view to deal with continuous packet lengths. This is why both
curves are presented.

c) Sketch of proof: A full proof is reported in the
Appendix. The proof is quite simple. The first two observations
are that the value of DC[i] always lies within an interval
[0, lmi +Qi) (and, in fact, within [0, lmi ) when considering values
at line 6), and increases of at most Qi between two iterations
of the main loop. Then, during p consecutive iterations, a flow
i can send at most pQi + lmi data. If a flow i is continuously
backlogged during an interval I and has p service opportunities
during I , then, it can send at least pQi − lmi data.

Now, consider two instants of a backlogged period of a
flow i, s and t, s ≤ t. Let p denote the number of service
opportunities for i between s and t. Then, each flow j 6= i
gets at most p+ 1 service opportunities between s and t.

From the strict service curve property, we get β(s, t) ≤
R′i(s, t) +

∑
j 6=iR

′
j(s, t). Let p be the number of full ser-



vice opportunities of i between s and t. Then,
∑
j 6=iR

′
j ≤∑

j 6=i((p+ 1)Qj + lmj ) = (p+ 1)
∑
j 6=iQj +

∑
j 6=i l

m
j , which

yields a lower bound for p. It is also known that R′i(s, t) ≥
pQi − lmi . By substituting the lower bound for p in the
above formula, the thesis follows after some straightforward
manipulations.

The only subtle points are the formal definitions of “be-
tween”, “period of service” and so on.

d) Types of services: In Theorem 2, the service offered
by the shared server must be strict, and the residual service
offered to each flow is still strict. Strictness is an important
property: in general, real implementations offer strict service
curves. However, the challenge is to get strict residual service
curves from the former, since this allows one to apply residua-
tion again in order to get performance guarantees for flows in
a hierarchical scheduling context. For instance, a single DRR
queue could be shared among several sub-flows according to
some policy. In this case, since each queue is given a strict
service curve, performance guarantees for the sub-flows can
be derived through residuation.

For example, since the DRR latency may be too high for
some flows, commercial routers allow a NP-SP/DRR policy,
meaning that flows are aggregated into classes of service,
with a first level of static priority scheduling (NP-SP), and,
inside each priority class, the flows can be scheduled with a
DRR policy. Then, in order to be able to apply our result, the
residual service curve of the NP-SP policy must be strict.

e) Parameter choices: Some papers [16], [6] consider
only a single maximum packet size, which is assumed to be
common to all flows. However, considering per-flow maximal
packet sizes instead appears to be a reasonable assumption
(flows with small packets – e.g., VoIP flows – normally
coexist with flows with large packets – e.g., web flows), and
yields tighter bounds [11], [9], [8]. The basic unit ε has been
introduced to ensure comparison with [6]. If the packet length
and quanta are discrete, the interval within DC[i] always falls,
which were reported to be [0, lmi +Qi) and [0, lmi ), can indeed
be rewritten as [0, lmi −ε+Qi] and [0, lmi −ε]. This allows one to
save an ε worth of latency for each flow wherever an lmi term
appears. The expected gain of modelling quanta and packets as
discrete entities (rather than continuous) is however negligible
in practical cases, where ε is one byte and lmi is commonly
hundreds or thousands of bytes. For a 100-byte packet (quite
small nowadays), the improvement represents one percent.

IV. RELATED WORKS

DRR has been designed in [16] for fair sharing of server
capacity among flows, i.e. as a possible implementation of the
ideal GPS policy [15], with a low implementation complexity
(O(1) if each quantum Qi is no less than the maximal packet
size [16, Th. 4.5]). Its drawback is its latency. For flow i,
latency includes a quantum plus a max packet size from all
flows j 6= i, hence it grows as O(n). Furthermore, latency
is not proportional to a flow’s quantum: increasing a flow’s
bandwidth does not decrease its latency. This makes it hard

to meet tight delay constraints when many flows contend for
bandwidth at a server.

A. DRR latency evaluations

The latency of the DRR is defined as a time deviation with
the ideal GPS policy. Several works have dealt with evaluating
this latency [17], [6], [9]. However, all papers consider that the
server shared according to the DRR policy is a constant rate
server (λr in network calculus), and see the residual service
for a flow as a Latency-rate (or rate-latency) server [18], (βR,T
in network calculus). In this framework, all papers show that
the residual service for flow i is a βQi

F r,θi
, and each paper

provides its own evaluation of θi.
The first work, in [17], gives the bound θ[17]

i on latency:

θ[17]
i =

3F − 2Qi
r

(3)

This bound has been refined in [6]. The notations used
in [6] are a little bit different (using a W value equal to
F/minj Qj , wi = Qi/minj Qj). Here we present the result
with the current notations:

θ[6]
i =

1

r

(
F −Qi + (lm − 1)

(
F

Qi
+ n− 2

))
(4)

with lm = maxj
{
lmj
}

.
Independently, a third bound was found in [8], [9]:

θ[9]
i =

1

r

(F −Qi)(1 +
lmi
Qi

) +

n∑
j=1

lmj

 (5)

Last, [19] considers an AFDX network with a DRR schedul-
ing, using network calculus. But it also restricts the study to
constant rate server, and computes a bound on latency with
this assumption. Moreover, since the focus in [19] is done on
comparing DRR, FIFO and NP-SP policies, technical details
allowing an exact comparison are missing. Its latency seems
equivalent to the one of [8].

In order to compare our result with the other ones, we must
restrict to the case β(t) = λr(t) = rt, even though the result
of Theorem 2 is more general. Considering that β = λr, our
result gives:

θi =
1

r

(
(Lε − lm-ε

i ) + (F −Qi)
(
1 +

lm-ε
i

Qi

))
(6)

Proof: The above result can be proved through straight-
forward algebraic manipulations:

βi(t) =

[
Qi
F
rt− Qi(L

ε − lm-ε
i ) + (F −Qi)(Qi + lm-ε

i )

F

]+
=
Qi
F
r

[
t− 1

r

(
(Lε − lm-ε

i ) + (F −Qi)
Qi + lm-ε

i

Qi

)]+
= βQi

F r,θi

We now show that, under the same assumptions, our result
is equal to or better than the two others [6], [9].



To compare with [6], one must consider ε = 1, and all
flows having the same maximal packet size lm. Under these
assumptions, (Lε− lm-ε

i ) = (n− 1)(lm− 1) and lm-ε
i = lmi − 1.

Then θi defined in Eq. (6) becomes

rθi = (n− 1)(lm − 1) + (F −Qi)(1 +
lm − 1

Qi
)

rθ[6]
i =

(
F

Qi
+ n− 2

)
(lm − 1) + (F −Qi)

rθ[6]
i − rθi = (

F

Qi
− 1)(lm − 1)− (F −Qi)

lm − 1

Qi
= 0

That is to say, assuming (as a restrictive hypothesis) that the
server has a constant rate, all flows have the same maximal
size, and packets and quanta are integer multiple of one bit,
our new result is as good as [6]. If, instead, maximum packet
sizes are different, the latency increases with the difference
between (n− 1)(lm − 1) and

∑
j 6=i l

m
j − ε.

To compare with [9], the ε term must be removed, hence
Lε = L and lm-ε = lm. In this case, θi becomes:

rθi = (F −Qi)
(
1 +

lmi
Qi

)
+

n∑
j=1

lmj − lmi (7)

and it directly gives

r(θ[9]
i − θi) = lmi (8)

The above result should not be misconstrued to imply that
our latency is better than the one in [9] by a factor of lmi

r . In
fact, the gap originates from different definitions of the term
“latency”. In our case (following standard network calculus
lexicon) it is the time before a flow gets some service. In
[9], instead (following the lexicon adopted in [17] and other
works of the same authors), it is meant as the time before a
flow transmits a packet, which requires that the flows receives
at least lmi units of service. Hence it also includes a factor lmi

r
to account for maximum-length packetisation.

V. OVERALL PESSIMISM EVALUATION

The overall pessimism of our approach can be evaluated by
measuring the distance between the original service curve β
and the sum of all the residual service curves.

Let us consider a server S shared by n flows
(R1, . . . , Rn)

S−→ (R′1, . . . , R
′
n), offering a strict service β.

It means that, for all backlogged period [s, t):
n∑
i=1

R′i(t)−R′i(s) ≥ β(t− s) (9)

Assume that, for each flow, a residual strict service curve βi
can be derived, then for all Ri backlogged period [si, ti):

R′i(ti)−R′i(si) ≥ βi(ti − si) (10)

Now, consider that [s, t) is a backlogged period for each Ri
(for example, all flow send packets at time s, and t is the

first instant when one first queue is empty), then they are two
bounds:

n∑
i=1

R′i(t)−R′i(s) ≥ β(t− s)

n∑
i=1

R′i(t)−R′i(s) ≥
n∑
i=1

βi(t− s)

Of course,
∑n
i=1 βi(t−s) ≤ qβ(t−s) (otherwise, decompos-

ing a service would increase the capacity, which is impossible).
The overall pessimism given by decomposition into residual
service curves can be defined as:

Pess = β −
n∑
i=1

βi (11)

Then, the overall pessimism of Theorem 2 is:

DRR-Pess = β −
n∑
i=1

βDRR
i (12)

To simplify notation, the βDRR
i is considered instead of βε-DRR

i

(we have already shown that the impact of the ε term is
negligible in practice).

F (β −
n∑
i=1

βDRR
i )

≥F

(
β −

n∑
i=1

Qi
F
β +

n∑
i=1

Qi(L− lmi ) + (F −Qi)(Qi + lmi )

F

)

=

n∑
i=1

(Qi(L− lmi ) + (F −Qi)(Qi + lmi ))

=

n∑
i=1

(QiL− 2Qil
m
i + FQi + Flmi −Q2

i )

=F 2 + 2FL− 2

n∑
i=1

(Qil
m
i )−

n∑
i=1

Q2
i

=

(
n∑
i=1

Qi

)2

+ 2

n∑
i=1

Qi

n∑
i=1

lmi − 2

n∑
i=1

(Qil
m
i )−

n∑
i=1

Q2
i

=

(
n∑
i=1

Qi + lmi

)2

−
n∑
i=1

(Qi + lmi )
2
+

(
n∑
i=1

lmi

)2

−
n∑
i=1

(lmi )
2

Hence, we get

DRR-Pess

≥ 1

F

( n∑
i=1

Qi + lmi

)2

−
n∑
i=1

(Qi + lmi )
2
+

(
n∑
i=1

lmi

)2

−
n∑
i=1

(lmi )
2

+

Now, since Qi ≥ lmi , this term has lower bound:

DRR-Pess ≥ 3
(
∑n
i=1 l

m
i )

2 −
∑n
i=1(l

m
i )

2

(
∑n
i=1Qi)

(13)



This lower bound is reached when Qi = lmi . If all lmi are the
same and equal to lm, it becomes:

DRR-Pess ≥ nlm − lm

n
(14)

It confirms the intuition that the algorithm is somehow optimal
when Qi = lmi , and shows that our analysis somehow “loses”
one frame per flow, leading to a pessimism increasing linearly
with the number of flows. This was expectable, since residual
service curves provide a measure of a worst-case service for
each flow i. Such worst-case service takes place when a whole
frame (minus one quantum) expires before flow i gets serviced,
and worst-case scenarios cannot happen simultaneously for
all the flows. Therefore, the overall pessimism should indeed
grow by one frame per flow.

VI. CONCLUSIONS

Deficit Round Robin is a common policy used to share
the capacity of a server in a fair way. It has good fairness
properties and constant per-packet complexity, but a non
negligible latency, that must be evaluated as accurately as
possible.

This paper presents an evaluation of the DRR policy using
network calculus under very general assumptions. This frame-
work generalises previous studies, taking into account:
• per flow maximal packet size (unlike [6]),
• some ε term modelling the fact that packet lengths are

discrete (unlike [9]), and
• a server that exhibits any kind of (strict) service curve,

which generalises both the above works, which assume
constant-rate servers.

A per-flow residual service curve is given. It is proved that
its latency is tighter than (or as tight as) that of previous works,
when evaluated under the hypotheses of these works, and is
therefore better in general.

Two sequels are planned for this work: one on NP-SP/DRR
integration and one on enhancing the same results.

As for the first issue, we have already stated that, due to
its non negligible latency, DRR cannot be used for flows
with very low delay constraints. Then, one can envisage a
hierarchical scheduling framework with three priority levels:
the top priority for very low-latency flows, the second for
some real-time flows, sharing the available capacity using a
DRR policy, and the last for best-effort, non-critical flows. In
network calculus, this can be done by mixing the results on
NP-SP [13], [14] and the current one on DRR. Such kind of
work was partly undertaken in [12], where commercial variants
of the DRR are evaluated. However, that work cannot be easily
generalised, and we expect that the compositional properties
of network calculus will yield a relatively simple proof under
more general conditions.

Each time a network calculus bound is given, the first
question that arises is “is the residual service tight?” i.e. “is
it the exact worst case, or only a bound?”. Our intuition,
following the work done in [13], [14], is that the current

t

bits

β ρiβ −Xi

Fig. 5. Enhancement intuition

bound can be enhanced. If the shared service offers a service
curve β = λr, then, Theorem 2 yields a residual service in the
form of a rate-latency curve of rate ρir (with ρi =

Qi∑
j Qj

).
However, in practice, the real output is a shaped stair case,
as illustrated in Figure 5, as a flow alternates between being
served (i.e., being given the full server capacity, whatever the
server’s service curve) and waiting for its round-robin turn. In
Figure 5, the ρiβ −Xi is the current result, and the alternate
red curve is the one that is expectable in practice.
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APPENDIX

We give here the full proof of the above theorem, together
with intermediate results and definitions. In order to simplify
the notation, if R is a cumulative function for a flow, notation
R(s, t) is used for R(t)−R(s).

The rest of the proof assumes that β 6= 0 (otherwise,
βDRR
i = βε-DRR

i and the Theorem 2 is trivial).
Lemma 1 (Service curve grows to infinity):

β 6= 0, β curve of strict service =⇒ lim
x→∞

β(x) =∞ (15)

Proof: If β is the curve of a strict service, it is super-
additive [2]. β 6= 0 =⇒ ∃x, β(x) > 0 and, for all n, β(nx) >
nx.

This Lemma is necessary to prove that, for each instant s,
it the i-th flow is backlogged, it will be served in the future
(at each iteration of the loop, only a finite quantity of other
flows is served, and then, the i-th flows will be served).

Definition 1: DRR trace definition Let [u, v[ be a maximal
backlog period. Let (τk, flk)k∈[0,N ] be the sequence of couples
(instant, flow), printed at line 6 in the algorithm. (u = τ0). The
sequence is completed by τN+1 = v.

Note that the τk sequence is increasing (τk < τk+1), since
the send instruction has a non-null duration (Section III-B).

From this sequence, three kinds of objects are derived:
function fl : [u, v[ 7→ [1, n] that gives the flow currently served
at each instant, and, for each flow i, sequences τ ij and ηij ,
describing the start and end of j-th service opportunity. These
quantities are shown in Figure 6.

Function fl : R → [1, n] is a time projection of the flk
sequence, describing which flow is served at each time instant.

fl(t) def
= flk with k = max {k′ τk′ ≤ t}

For each flow i, τ ij is the start of the j-th service opportunity,
i.e. τk such that flk = i. Formally, if a backlog instant t exists

in [u, v[ for flow i (R′(t) > R(t)), then

τ i0
def
= min {τk flk = i}

τ ij
def
= τkij with kij s.t. j =

∣∣{τp flp = i, p ≤ kij
}∣∣

For a given i, kij is an increasing sub-sequence of N. The ηij
instants mark the ends of service opportunities:

ηij
def
= τk+1 with τ ij = τk

The τ ji instants defined here are the same instants as the
τ ik defined in [6], with i being an index on the flow, and j, k
being sequence indexes.

The model assumes that, on [τi, τi+1[, flow fli is served, an
no one else.

∀τk,∀j 6= flk,∀t ∈ [τk, τk+1[: R
′
j(τk, t) = 0 (16)

Lemma 2 (Bounds on Deficit counter): Let [u, v[ be a
maximal backlog period, and τk, flk, τ

i
k as defined in Def. 1.

Let DC(i, τk) be the value of DC[i] when the code passes
line 6 at time τk. Then, the following properties hold [16].

∀τ ij : 0 ≤ DC(i, τ ij) < lmi (17)

∀τ ij : 0 ≤ DC(i, τ ij) ≤ lmi − ε (18)

∀τ ij : DC(i, τ ij+1)−DC(i, τ ij) ≤ Qi (19)

fl(ηij) 6= i =⇒
R′i(τ

i
j , η

i
j) ≤ Qi +DC(i, τ ij)−DC(i, τ ij+1)

(20)

which leads to

∀t ∈[ηij+p−1, τ ij+p) :
R′i(τ

i
j , t) ≤ pQi + lmi − ε < pQi + lmi

(21)

One can also focus on backlog period

[τ ik, τ
i
k+p[ i-backlog period ⇒
R′i(τ

i
k, τ

i
k+p) ≥ pQi − lmi − ε > pQi − lmi

(22)

a) Remark on equations 20 and 21: The equations 20
and 21 have the precondition fl(ηij) 6= i, meaning that the
property only holds if there is not two consecutive services
of the same flow (meaning that the i flow is the only active
one). This condition is related to continuity of β at scheduling
point. Let consider lm1 = Q1, and a β function defined by

β(x) =

{
x if x < Q1

2x− Q1

2 if x ≥ Q1

(23)

β(x)

x

Then, consider the case when, at time 0, two frames of the
size lm1 of the first flow are put in the first queue. Assume that
the server output is exactly β. At first iteration, DC[1] = 0,
and DC(τ10 ) = 0. The first frame is send from time 0 to Qi
(τ10 = 0, η10 = Q1), and the deficit counter is decremented by
the size of the send frame i.e. Q1. Then, a second iteration
begins, with DC(1, τ11 ) = 0. But, at this instant τ11 = Qi the
server begins to serve the second frame, and, outputs half of
this frame instantaneously. Then, R′(τ10 , η

1
0) =

3
2Qi > Qi +
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Fig. 6. Illustration of fl(x), τ ij , ηij

DC(τ10 )−DC(τ11 ). This could have been solved introducing
a notion of successive actions at the same instant, but the
condition fl(ηij) 6= i, meaning that the property holds if the
same flow is not servers two times in sequence is sufficient
for the proof.

of Lemma 2: Relations 17 and 20 were already in [16,
Lemma 4.1 and Theorem 4.2]. Proofs are also given here for
ease of reading.

Proof of Eq. 17–18. The DC[i] variable is initialised to 0,
and decremented in one line only in the algorithm. Before
decrementing the variable DC[i] by size(head(i)), it is checked
that size(head(i)) ≤ DC[i], which ensures DC[i] ≥ 0.

Conversely, DC[i] is incremented only if the queue is not
empty, and, in this case, while DC[i] ≥ size(head(i)), it is
decremented. When the loop ends, DC[i] < size(head(i)) ≤
lmi , which yields Eq. 17.

Proving bound DC[i] ≤ lmi − ε needs an intermediate result:
DC[i] is always a multiple of ε.

The above statement is true at reset (lines 1 and 14), and
preserved when incrementing the variable by Qi (DC[i] ←
DC[i] + Qi) – since Qi is also a multiple of ε, and when
decrementing the variable (DC[i] ← DC[i] − size(head(i))) –
since packet sizes are multiple of ε. Then, from DC[i] < lmi , and
DC[i] and lmi are multiple of ε, it follows that DC[i] ≤ lmi − ε.

Proof of Eq. 19. DC[i] is incremented only once per
iteration, by quantum Qi.

Proof of Eq. 20. Let us introduce DC ′(i, τ ik) as the value
of DC[i] between lines 13 and 14 (DC ′(i, τ ik) ≥ 0). Since the
DC[i] variable is decremented by the amount of sent data, it
follows that:

R′i(τ
i
j , η

i
j) = Qi +DC(i, τ ij)−DC ′(i, τ ij) (24)

And DC(i, τ ij+1) = DC ′(i, τ ij) or DC(i, τ ij+1) = 0 depend-
ing on test at line 14. Then, DC(i, τ ij+1) ≤ DC ′(i, τ ij).

Proof of Eq. 21. It is a simple consequence of Eq. 20, giving
the bound on one service period, Eq. 16, ensuring that there
is not output between two period of service, and 18 giving

bounds on DC(·, ·) values.

R′i(τ
i
j , t) =

p−1∑
k=0

R′i(τ
i
j+k, τ

i
j+k+1)

≤
p−1∑
k=0

(Qi +DC(i, τ ij+k)−DC(i, τ ij+k−1))

= (

p−1∑
k=0

Qi) +DC(i, τ ij)−DC(i, τ ij+k−1)

≤ pQi + lmi − ε

Proof of Eq. 22.
The same decomposition as in the previous proof is done,

however using eq. 24 instead of 20. We also use the fact that,
in a backlogged period of flow i, DC ′(i, τ ij) = DC(i, τ ij+1).
Then, sum

∑j+p−1
k=j of eq. 24 leads to R′i(τ

i
j , τ

i
j+p) = pQi +

DC(i, τ ij)−DC ′(i, τ ij+p−1), and using eq. 18 both DC and
DC ′ can be removed.

Lemma 3 (Number of cycles): Let s be a instant in a back-
logged period of i, within the maximal general backlog period
[u, v[. Let τ ik be the start of the next period of service
(τ ik = min

{
τ im τ im ≥ s

}
). Then, each other flow has been

served at most p+ 1 times between s and τ ik+p.

∀j 6= i,
∣∣{τ jm s ≤ τ jm < τ ik+p

}∣∣ ≤ p+ 1 (25)

Proof: Since the loop is always executed in the same
order, and since [s, τ ik+p[ is a backlog period for Ri, the
condition at line 6 is always true. Then, each flow is selected at
most once in [s, τ ik[, they are p iterations of the loop between
τ ik and τ ik+p and each other flow is selected only once per
iteration.

of Theorem 2: Let i be a flow, with input function Ri and
output function R′i. Let s ≤ t be two instants in its backlogged
period. Let [u, v[ be the maximal backlog period of the system
which includes s and t. Let us consider the sequences τi, fli
τ ji , as defined in Def.1.



Let τ ik be the start of the first service opportunity for flow i
after s (there is one for sure, since s marks a backlogged period
of i and DRR is work conserving), P the set of complete
service opportunities of i between s and t, and p its cardinality
(if there is no service opportunity between s and t, P = ∅ and
p = 0).

τ ik
def
= min

{
τ im τ im ≥ s

}
P def

= {τm s ≤ τm, τm+1 ≤ t, flm = i}
=
{
τ ij s ≤ τ ij , ηij ≤ t

}
p = |P|

Sub-goal 1. R′i(s, t) ≥ pQi − lm − ε
Assume p > 0 (the case p = 0 is postponed). In this case,

P =
{
τ ik, . . . , τ

i
k+p−1

}
. Since τ ik ≥ s, and R′i ∈ F is non

decreasing, we have

R′i(τ
i
k) ≥ R′i(s) (26)

Let us consider τ ik+p.
If t is within a service opportunity of i (fl(t) = i), then

τ ik+p ≤ t (fl(t) = i implies that there exists k′ such that τ ik′ ≤
t < ηik′ , then τ ik′ /∈ P and then k′ > k+ p− 1, i.e. k ≥ k+ p
and since τ i is increasing, t ≥ τ ik+p) R′i(τ

i
k+p) ≤ R′i(t).

If t is outside a service opportunity of i, τ ik+p > t then
R′i(τk+p) = R′i(t) (by successive applications of eq.16) Then,
in both cases:

R′i(τ
i
k+p) ≤ R′i(t) (27)

Then, R′i(s, t) = R′i(t) − R′i(s) ≥ R′i(τ
i
k+p) − R′i(τ ik) ≥

pQi − lmi − ε from Eq. 22 (the backlog hypothesis [τ ik, τ
i
k+p[

comes from the fact that [τ ik, τ
i
k+p[⊂ [s, t[ and [s, t[ is a

backlogged period).
If p = 0, pQi − lmi − ε ≤ 0 ≤ R′i(s, t).
This proves Sub-goal 1, i.e. a lower bound on R′i(s, t) as a

function of p:
R′i(s, t) ≥ pQi − lmi − ε (28)

Now, one has to find a lower bound on p based on β(t−s).

Sub-goal 2.
β(t−s)−(R′

i(s,t)+
∑

j 6=i(l
m
j−ε))∑

j 6=iQj
≤ p+ 1

Since the server offers a strict service curve, the following
holds:

β(t− s) ≤ R′(s, t) = R′i(t)−R′i(s) +
∑
j 6=i

R′j(t)−R′j(s)

If t is within a service opportunity of i, τ ik+p ≤ t, however,
for all j 6= i, R′j(τ

i
k+p) = R′j(t) (by successive applications

of eq. 16). Otherwise, τ ik+p ≥ t and R′j(τ
i
k+p) ≥ R′j(t). Then,

in both cases R′j(τ
i
k+p) ≥ R′j(t).

β(t− s) ≤ R′i(t)−R′i(s) +
∑
j 6=i

R′j(τ
i
k+p)−R′j(s)

By Lemma 3, there are at most p + 1 cycles for each Rj
between s and R′j(τ

i
k−1), i.e. R′j(τ

i
k+p)−R′j(s) ≤ (p+1)Qj+

lmj − ε (using eq. 21).

A simple sum yields a lower bound on p expressed as a
function of β,Qj , lmj and R′i(s, t).

β(t− s) ≤ R′i(s, t) +
∑
j 6=i

(
(p+ 1)Qj + lmj − ε

)
(29)

= R′i(s, t) + (p+ 1)
∑
j 6=i

Qj +
∑
j 6=i

(
lmj − ε

)
(30)

Now, all it takes is some straightforward algebraic manipu-
lation of eq. 28 and eq. 29.

To simplify the notation, we use F =
∑n
j=1Qj , l

m-ε
i =

lmi − ε, and Lε =
∑n
j=1 l

m-ε
i . Then,

∑
j 6=iQi = F − Qi, and∑

j 6=i l
m
j − ε = Lε − lm-ε

i .

eq. 29

⇐⇒ β(t− s)− (R′i(s, t) + (Lε − lm-ε
i )) ≤ (p+ 1)(F −Qi)

⇐⇒ β(t− s)−R′i(s, t)− (Lε − lm-ε
i )− (F −Qi)

F −Qi
≤ p

Reporting this bound on p in eq. 28 yields:

R′i(s, t) ≥
β(t− s)−R′i(s, t)− (Lε − lm-ε

i )− (F −Qi)
F −Qi

Qi − lmi

⇐⇒ (F −Qi)R′i(s, t) ≥ Qiβ(t− s)−QiR′i(s, t)
−Qi ((Lε − lm-ε

i ) + (F −Qi))− (F −Qi)lm-ε
i

⇐⇒ FR′i(s, t) ≥ Qiβ(t− s)
−Qi ((Lε − lm-ε

i ) + (F −Qi))− (F −Qi)lm-ε
i

⇐⇒ R′i(s, t) ≥
Qi
F
β(t− s)− Qi(L

ε − lm-ε
i ) + (F −Qi)(Qi + lm-ε

i )

F

Moreover, since R′i(t) is non decreasing, R′i(t)− R′i(s) ≥ 0,
then, the operator [·]+ can be applied.
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