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Abstract—Queueing networks are typically subject to demulti-
plexing operations, whereby network nodes split flows into mul-
tiple sub-flows. The demultiplexing operation captures relevant
network aspects such as packet loss or multi-path routing. In this
paper we propose a novel approach to analyze queueing networks
with demultiplexing. The basic idea is to represent a network
node implementing a demultiplexing operation on an output
flow as an equivalent system for which the corresponding input
flow is logically demultiplexed according to the demultiplexing
operation at the output. In this way, the service given to one of
the demultiplexed sub-flows at the output can be expressed in
terms of a leftover service curve, and consequently performance
bounds can be derived using the network calculus methodology.
Using numerical illustrations, we show that the obtained bounds
improve upon existing bounds, especially in the case of the rather
small sub-flows.

Index Terms—Demultiplexing, network calculus, leftover ser-
vice, scaling element.

I. INTRODUCTION

A. Motivation

Over the last decade, the stochastic network calculus has
established itself as a versatile alternative methodology to
the classical queueing theory for the performance analysis of
networks and distributed systems. The network calculus was
pioneered by Cruz in the early 1990s [5] in a deterministic
framework, and soon after by Chang [2] in a probabilistic
framework. Subsequently, a significant number of researchers
have contributed to both the deterministic and stochastic
formulations of the network calculus (see the books of Chang
[3], Le Boudec and Thiran [12], and Jiang and Liu [9]).
The high modeling power of the network calculus has been
transposed into several important applications for network
engineering problems: traditionally in the Internet’s Quality
of Service proposals IntServ and DiffServ, and more recently
in diverse environments such as wireless sensor networks [11],
[14], switched Ethernets [16], Systems-on-Chip (SoC) [1], or
even to speed-up simulations [10], to name a few.

From a methodological point of view, the main prospect of
stochastic network calculus is that it can deal with problems
that are fundamentally hard for queueing theory based on the
fact that it works with (probabilistic) bounds rather than striv-
ing for exact solutions. A great challenge of any methodology
for queueing analysis is to deal with queueing networks subject
to flow transformations, which occur when the flows’ data is
altered inside the network. Flow transformations are in fact

characteristic to many modern networked and distributed sys-
tems, e.g., a wireless sensor network processes the transported
data, while delivering it to a sink node, for energy-efficiency
purposes.

On an abstract level, one very obvious and yet highly
important case of flow transformation results from the demul-
tiplexing of flows inside the network. By demultiplexing we
mean here the separation of a flow into multiple sub-flows,
one of which is subject to the analysis (e.g., with respect to
delay). Such an abstract demultiplexing allows to capture many
concrete real-world effects like losing part of a data flow in,
e.g., a wireless transmission, or distributing a data flow to
a set of servers for load balancing with or without knowing
the loads of the subsequent servers, or simply a (randomized)
multi-path routing. Thus, the (stochastic) modeling of demul-
tiplexing processes can be generally regarded as an important
component in queueing network analysis, and in particular it
opens up the modeling scope of network calculus widely.

While we have addressed demultiplexing in network calcu-
lus in previous work of ours [4], [15], we come up with a new
way to solve this analytically hard problem in this paper. Our
approach is based on finding an equivalent formulation (to [4])
for the demultiplexing as a leftover service curve computation
problem. Interestingly, with respect to the achievable delay
bounds the two methods perform quite differently and none
completely dominates the other (see Section IV), though the
new method shows a clear advantage in scenarios where the
sub-flow of interest is rather small and only rarely outper-
formed by [4].

B. Related Work

So far, demultiplexing has not seen that much treatment
in network calculus yet. However, interestingly, despite this
observation, Cruz in his pioneering papers [5] originally intro-
duced a demultiplexer as a member of his set of basic network
calculus modeling elements. For the demultiplexer’s operation,
it is assumed that data units are ”marked” with information
about their output path. This assumption essentially means
that demultiplexing decisions are statically configured (e.g.,
at the connection set-up in a virtual circuit setting) and cannot
be made dynamically as, for example, for load-balancing
purposes.

In [3], Chang introduces a network calculus modeling
element called a router. The router has one data input and
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output and one control input. The control input provides a
functional relation between input and output data. This is very
similar to a previous work of ours in which we introduced
a wider framework of such scaling behavior (as it is called
therein) in network calculus [7]. As we will also discuss in
the course of this paper, such a router or scaling element
may constitute the basis for the modeling of more flexible
demultiplexing which is not statically decided. The key to real
flexibility with respect to modeling dynamic demultiplexing
is a stochastic bounding of the scaling behavior. This is only
briefly touched on in [3] and not provided in [7].

In [15], we started to head into this direction by stochasti-
cally generalizing the scaling element from [7] and showing
its utility in a load-balancing application. Though useful, the
stochastic scaling from [15] has its limitations, most clearly
documented by the fact that the scaling process cannot be an
ergodic one. In [4], we therefore took a different approach
to define a stochastic scaling element based on moment-
generating functions which is much more versatile than the
one from [15]. Now, in the paper at hand we continue the
work started in [4] concentrating on demultiplexing as a flow
transformation and provide a new analysis method based on
leftover service computation. In fact, in many cases this allows
to considerably improve the bounds over the ones calculated
in [4], which are based on a direct analysis of the stochastic
scaling.

II. A NOVEL MODEL FOR FLOW DEMULTIPLEXING

A (network) flow is an abstraction of the data carried be-
tween two nodes in a network, the source and the destination.
At each traversed node, the flow’s data can be represented
by a point process, i.e., a bi-dimensional stochastic process
(tn, sn)n≥1, where tn’s denote the arrival times and sn’s
denote the sizes of the flow’s instantaneous arrivals (or the
number of data units), respectively.

In practice, flows are typically subject to transformations
at some of the traversed nodes. We are particularly interested
in the operation of demultiplexing, whereby a flow is split
into multiple sub-flows. For instance, if at some node the
flow is subject to random routing (say with two alternative
paths), then the flow is split into two sub-flows, one for each
path. As another example, if at some node the flow is subject
to loss, then the flow is again split into two sub-flows: one
consisting of the unaffected data, yet to be carried through,
and another consisting of the lost data. If the original flow is
represented by (tn, sn)n≥1, then the sub-flows are represented
by (tn, s

(1)
n )n≥1 and (tn, s

(2)
n )n≥1, respectively, with

sn = s(1)n + s(2)n ∀n ≥ 1 .

In this section, we introduce a novel model for the oper-
ation of demultiplexing a flow into two flows. This model
is motivated by the need to analyze end-to-end performance
metrics (e.g., delay) for general classes of arrival processes
(i.e., of flows) subject to demultiplexing. We recall that, with
the classical queueing networks theory, the demultiplexing
analysis is typically possible for the class of Poisson arrivals

(a) (b)
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Fig. 1. Two equivalent systems for the demultiplexing operation. In (a), the
output process D(t) is demultiplexed according to a scaling process X. In
(b), the input process A(t) is virtually demultiplexed according to the same
X. In both (a) and (b), the node S runs FIFO scheduling.

and Bernoulli demultiplexing processes. Our goal herein is to
extend these classes in a greater generality, e.g., by considering
Markov modulated demultiplexing processes. Before present-
ing the novel demultiplexing model, let us briefly introduce
some notations in the framework of the network calculus.

The time model is discrete with events (e.g., flows’ arrivals)
occurring at time instants t = 0, 1, 2, . . . In the framework
of the network calculus, a flow (tn, sn)n≥1 is described as a
cumulative arrival process A(s, t) counting the number of data
units (packets) arrived in the time interval (s, t]. The univariate
representation is A(t) = A(0, t), and the instantaneous arrival
process is a(t) = A(t − 1, t). Note the duality between the
two representations of a flow, i.e., either as a point process or
as a cumulative arrival process.

We next recall the scaling element model which was re-
cently introduced by us in [4].

Definition 1: (SCALING ELEMENT) A scaling element
transforms some arrival process into another. It consists of
a random process X = (Xi)i≥1 taking non-negative integer
values, an input (arrival) process A(t), and an output (scaled)
process AX(t) for X, which is a transformed version of the
input process, and it is defined as

AX(t) =

A(t)∑
i=1

Xi ∀t ≥ 0 .

The demultiplexing operation can be directly modelled with
a scaling element. For brevity we focus on the particular
case of two sub-flows demultiplexing, which can be modelled
with a scaling process X with Xi ∈ {0, 1} ∀i ≥ 1. For an
arrival flow A(t) and a (demultiplexing) scaling process X,
the demultiplexed sub-flows are AX(t) and A1−X(t), where
1 = (1, 1, . . . ). Note that, in general, the demultiplexing
operation into n sub-flows can be modelled with multiple
scaling processes X1, . . . ,Xn, such that

∑n
j=1 Xj = 1.

Let us now consider a work-conserving network node,
denoted by S, with arrival and departure processes A(t) and
D(t), respectively. We assume that a demultiplexing process
X, which is independent from the data flows, splits D(t) into
two sub-processes: DX(t) and D1−X(t) (see Figure 1.(a)).
Based on the demultiplexing process X, we can virtually
split the arrival process A(t) into two sub-processes, AX(t)
and A1−X(t), and we denote the corresponding (virtual)
output processes by DAX(t) and DA1−X(t) (see Figure 1.(b)).
The next lemma establishes the equivalence between the two
systems from Figures 1.(a,b), and it is instrumental for our
proposed approach to analyze queueing systems with general
demultiplexing processes.



Lemma 1: (EQUIVALENT SYSTEMS FOR THE DEMULTI-
PLEXING OPERATION) Consider the systems (a) and (b)
depicted in Figure 1 and described above. If the node is locally
FIFO then the two systems are equivalent in the sense that for
all t ≥ 0

DX(t) = DAX(t) and (1)
D1−X(t) = DA1−X(t) .

The proof is straightforward and relies on the assumption
of locally FIFO scheduling, i.e., A(t)’s packets are served in
the order of their arrivals.

PROOF. Let t ≥ 0. The departure process D(t) from system
(a) can be represented as a sequence d1d2 · · · dD(t), where
di = i, i.e., di’s stand for the sequence numbers of D(t)’s
packets. Then, because the scaling operation does not alter
the order of the packets’ arrivals, with some abuse of notation,
the X-scaled departure processes DX(t) and D1−X(t) can be
represented as the subsequences

DX(t) = dx1dx2 · · · dxi · · · dxm and
D1−X(t) = dy1dy2 · · · dyj · · · dyn ,

where m,n ∈ [0, D(t)],m+n = D(t), xi, yj ∈ [0, D(t)], xi <
xi+1, yj < yj+1, and xi ̸= yj , ∀i ∈ [0,m] and j ∈ [0, n].
That means, those packets in D(t) are mutually demultiplexed
into DX(t) and D1−X(t). In turn, because the node S runs
FIFO scheduling, the arrival process A(t) must be represented
(again, with abuse of notation) as the following sequence

A(t) = d1d2 · · · dD(t)dD(t)+1 · · · dA(t) ,

and furthermore after using the same scaling process X onto
this sequence of arrivals we will get the virtual sub-processes
AX(t) and A1−X(t). So the starting part must stay the same as
for the X-scaled departures, and the remainder arrival packets
are X-scaled in the similar ways (with abuse of notation).
Thus, we have

AX(t) :=dx1dx2 · · · dxi · · · dxmdxm+1 · · · dxm+a · · · dxm+u ,

A1−X(t) :=dy1dy2 · · · dyj · · · dyndyn+1 · · · dyn+b
· · · dyn+v ,

where u, v ∈ [0, A(t) − D(t)], u + v = A(t) − D(t),
xm+a, yn+b ∈ [0, A(t)], xm+a < xm+a+1, yn+b < yn+b+1,
and xm+a ̸= yn+b, ∀a ∈ [0, u] and b ∈ [0, v]. So far, we
only changed the notation and the departed sequences up to
time t are still those two sequences dx1dx2 · · · dxi · · · dxm

and dy1dy2 · · · dyj · · · dyn . We can find a matched sequence
of dx1dx2 · · · dxi · · · dxm in AX(t), which proves that

DAX(t) = dx1dx2 · · · dxi · · · dxm ,

and thus DX(t) = DAX(t). Similarly, one can show that
D1−X(t) = DA1−X(t), which completes the proof. �

Using the equivalence of systems (a) and (b) from Figure 1,
we will next compute statistical end-to-end delay bounds in
queueing systems subject to the demultiplexing operation. The
basic idea is to use the representation from system (b) in
order to construct the so-called leftover service curves for

the demultiplexed processes. Using these service curves, the
desired performance bounds follow by applying conventional
techniques from stochastic network calculus.

III. STATISTICAL END-TO-END DELAY BOUNDS

In this section, we compute end-to-end delay bounds in a
network with flow demultiplexing. For illustrative purposes,
we focus on the single and two nodes cases, and later comment
on the generalization to an arbitrary number of nodes. For
numerical comparisons, we also reproduce an existing parallel
result from [4].

First we briefly introduce the service curve concept and then
give the leftover service curve for the flow of interest, i.e.,
AX from Figure 1.(b). Service curves (in [3] called dynamic
servers) provide lower bounds on the service received by an
arrival flow at a network node, and are formally defined as
below.

Definition 2: (SERVICE CURVE) Assume A(t) and D(t)
are the arrival respectively departure process of a node. A
bivariate random process S(s, t) for 0 ≤ s ≤ t is called a
service curve provided by this node, if for all t ≥ 0 it holds
that

D(t) ≥ A⊗ S(t),

where ‘⊗’ denotes the (min,+)-convolution defined as A ⊗
S(t) = inf0≤s≤t {A(s) + S(s, t)}.

Note, through this work we use “service curve” instead
of “service curve process” for the simplicity of naming.
Further, if the inequality is replaced by equality then the
service curve is called exact. The service curve of two con-
catenated nodes with service curves S1 and S2 is S1 ⊗ S2

[3], which is achieved using the associativity property of
the (min,+)-convolution. The leftover service curve under
a FIFO scheduling model ([6], [12]) is derived using the
following proposition.

Proposition 1: Consider two flows with arrival processes
A1(s, t) and A2(s, t) which are FIFO-scheduled at a service
curve S(s, t). Assume that S(s, t) is nonnegative, increasing
in t, and S(s, s) = 0. Flow 1 sees a service curve

S1(s, t) = [S(s, t)−A2(s, t− x)]+ 1{t−x>s},

where parameter x ≥ 0, [y]+ := max(0, y) and 1cond = 1 if
cond = true, 1cond = 0 otherwise.
The proof follows directly using the bivariate arrival processes
and service curves instead of arrival curve and service curve
functions (see the proof of Proposition 6.2.1 in [12]). Note,
S(s, t) is not necessarily strict. We also point out that the
leftover service curve here is a bivariate process presentation
of the service, which is different from a probabilistic sample
path bound presentation as given in [13]. Knowing additional
information of the leftover service curve, the transformation
between both presentations might be possible. But such discuss
is not the scope of this paper.

So far, we know that the leftover service curve for AX,
obtained in the particular case of FIFO scheduling, is

SLO(s, t) =
[
S(s, t)−A1−X(s, t− x)

]
+
1{t−x>s} ,



where x ≥ 0 is an optimization parameter.

A. Single Node: Main Idea

Referring to Figure 1.(a), we are interested in the virtual
delay of the (sub-)flow of interest DX. The corresponding
arrival process is AX (see the interpretation from system (b)),
and the leftover service curve is SLO(s, t) shown above. Then,
a probabilistic delay bound can be obtained as below

P(W (t) ≥ d)

= P
(
AX(t− d) ≥ DAX(t)

)
= P

(
AX(t− d) ≥ DX(t)

)
≤ P

(
sup

0≤s<t−d

{
AX(t− d)−AX(s)−

[
S(s, t)−A1−X(s, t− x)

]
+
1{t−x>s}

}
≥ 0

)
,

where in the third line we used Lemma 1, in the fourth line
we used the definition of a service curve and moved the
infimum to the left side of the inequality. The derivation can
be continued depending on two cases for x:

(i) x > d, i.e., t− x < t− d:

= P
(
max

(
sup

0≤s<t−x

{
AX(s, t− d)−[
S(s, t)−A1−X(s, t− x)

]
+

}
,

sup
t−x≤s<t−d

{
AX(s, t− d)

})
≥ 0

)
= P

(
max

(
sup

0≤s<t−x

{
AX(s, t− d)−[
S(s, t)−A1−X(s, t− x)

]
+

}
,

AX(t− x, t− d)

)
≥ 0

)
= 1

(ii) 0 ≤ x ≤ d

= P
(

sup
0≤s<t−d

{
AX(s, t− d)−

[
S(s, t)−A1−X(s, t− x)

]
+

}
≥ 0

)
≤ P

(
sup

0≤s<t−d

{
A(s, t− d)−

S(s, t) +A1−X(t− d, t− x)
}
≥ 0

)
The optimal value is for x = d, and the last probability
becomes

= P
(

sup
0≤s<t−d

{A(s, t− d)− S(s, t)} ≥ 0

)
.

Interestingly, the same bound can be obtained for the delay
of the aggregate departure flow D. In other words, the per-
flow delay bound is equal to the aggregate delay bound; the
equality between the per-flow and aggregate delays is known to

FIFO

... FIFO
...

Fig. 2. A network with two nodes, S1 and S2, and a demultiplexer element
in between.

hold, on average, in the case of Poisson arrivals and Bernoulli
demultiplexing, as a consequence of the PASTA property.

B. Two Nodes

In this section, we derive statistical end-to-end delay bounds
in a network consisting of two service nodes and one scaling
element implementing a demultiplexing operation in between
(see Figure 2). We shall use the idea presented above, of first
computing the leftover service curve for one demultiplexed
flow of interest.

Before carrying out the derivations, it is useful to compute
the moment generating functions (MGFs) as well as MGF
bounds of the scaled processes in terms of the MGFs of
the arrival processes and scaling processes. First we recall
an example of a scaling process from [4], called Markov-
modulated scaling process (MMSP). Let the scaling process
X = (Xi)i≥1 be modulated by a discrete and homogeneous
Markov process S(i) with states 1, 2, ...,M and transition
probabilities λi,j for all 1 ≤ i, j ≤ M , as in Figure 3. Every
state i, 1 ≤ i ≤ M, has an i.i.d. random process Li(n)n≥1.
Then the scaling process is defined as Xi = LS(i)(i). In the
cases of a single state, or two states with λ1,2 + λ2,1 = 1, the
scaling process X is i.i.d.

λj,i

... ...

(n)Li ML   (n)(n)L1

i
λi,j

j

(n)Lj

1 M

Fig. 3. A Markov chain S(i) with M states and transition probabilities λi,j ,
modulating the scaling process X as Xi = LS(i)(i).

Now denoting MX(θ) := E
[
eθX

]
for some r.v. X and

θ > 0 we have the following lemma [4].
Lemma 2: (MOMENT GENERATING FUNCTION OF

SCALED PROCESSES) Let an arrival process A(t) and an
MMSP X = (Xi)i≥1 defined as above. Then we have the
MGFs for some θ > 0:

1) (General case) If the matrix λ = (λi,j)i,j is irreducible
and aperiodic then

MAX(t)(θ) ≤ MA(t) (log sp (ϕ(θ)λ)) , (2)

where ϕ(θ) := diag
(
ML1(1)(θ), . . . ,MLM (1)(θ)

)
and

sp (ϕ(θ)λ) denotes the spectral radius of ϕ(θ)λ.
2) (I.i.d. case) If Xi’s are i.i.d. then

MAX(t)(θ) = MA(t) (logMX(θ)) . (3)



We now consider the network scenario of interest from
Figure 2(a), of which the first node and the demultiplexing
element can be equivalently transformed as detailed in the
previous section. The result is shown in Figure 2(b). The next
theorem provides the end-to-end delay bounds under different
assumptions regarding the increments of the arrival process
A(t).

Theorem 1: (STATISTICAL END-TO-END DELAY BOUNDS
IN A TWO NODES NETWORK WITH DEMULTIPLEXING) Con-
sider the network scenario from Figure 2(a). A stationary
arrival process A(t) crosses two FIFO nodes offering the sta-
tionary service curves S1(s, t) and S2(s, t). Assume the MGF
bounds of arrivals and services: MA(s,t)(θ) ≤ eθr(θ)(t−s) and
MSk(s,t)(−θ) ≤ e−θCk(t−s), where k = 1, 2 and for some
free parameter θ > 0. The demultiplexing process X is such
that Xi’s are either 0 or 1, and denote δ(θ) = 1

θ logMX(θ)
and δ̄(θ) = 1

θ logM1−X(θ). All the processes are assumed to
be statistically independent, and we focus on the end-to-end
sub-flow with departure process E(t).

(1) If A(t) has statistically independent increments then
under some stability conditions, to be explicitly given in the
proof, we have the following delay bounds for all d ≥ 0

P(W (t) ≥ d) ≤ K1e
−θC2(d−x) +

K2e
−θC1deθδ̄(θ)r(θδ̄(θ))(d−x) +K3e

−θC1deθ(C1−C2)(d−x) ,

where K1, K2 and K3 are constants to be given in the proof.
x is an optimization parameter introduced by FIFO leftover
service.

(2) If the increments of A(t) are not necessarily independent
then under some stability conditions, to be explicitly given in
the proof, we have the following delay bounds for all d ≥ 0

P(W (t) ≥ d) ≤ Ke−θC2d ,

where the constant K will be given in the proof.

Note, since θ is a free parameter for each MGF function,
we use the same θ for the simplicity of denotation. A direct
representation of the theorem using different θ’s follows by
applying MGF bound respectively with different private θ’s.

PROOF. As discussed in Section II, we can equivalently
transform the system (a) from Figure 2 into the system (b)
from the same figure. Then we have for the end-to-end sub-
flow of interest with input AX(t) and output E(t):

P(W (t) ≥ d)

=P
(
AX(t− d) ≥ E(t)

)
≤P

(
sup

0≤s<t−d

{
AX(t− d)−AX(s)−

SLO ⊗ S2(s, t)
}
≥ 0

)
≤P

(
sup

0≤s<t−d
sup

s≤u≤t

{
AX(t− d)−AX(s)−

SLO(s, u)− S2(u, t)
}
≥ 0

)

=P
(

sup
0≤s<t−d

sup
s≤u≤t

{
AX(t− d)−AX(s)−

[
S1(s, u)−

A1−X(s, u− x)
]
+
1{u−x>s} − S2(u, t)

}
≥ 0

)
(4)

In the second line we used the definition of the virtual delay
process for the arrival process AX(t) and the departure process
E(t), and also the equivalence W (t) ≥ d ⇔ AX(t − d) ≥
E(t). In the third line we used the definition and the con-
volution property of service curves and then expanded the
convolution and the expression of SLO(s, u) in the rest lines.

The rest of the proof follows the derivations from Subsec-
tion III-A, depending on the value of the parameter x:

(i) x > d, or, u− x < t− d. Let us consider only a part of
the domain for the supremum as below

sup
t−x≤s<t−d

sup
s≤u≤t

{
AX(t− d)−AX(s)−[

S1(s, u)−A1−X(s, u− x)
]
+
1{u−x>s} − S2(u, t)

}
= sup

t−x≤s<t−d
sup

s≤u≤t

{
AX(t− d)−AX(s)− S2(u, t)

}
≥0 ,

and thus the optimal value of x does not fall in this interval.
(ii) 0 ≤ x ≤ d, and we continue Eq. (4) as follows:

=P
(

sup
0≤s<t−d

{
max

(
sup

s≤u≤s+x

{
AX(s, t− d)−[

S1(s, u)−A1−X(s, u− x)
]
+
1{u−x>s} − S2(u, t)

}
,

sup
s+x<u≤t

{
AX(s, t− d)−

[
S1(s, u)−

A1−X(s, u− x)
]
+
1{u−x>s} − S2(u, t)

})}
≥ 0

)
≤

∑
0≤s<t−d

P
(
AX(s, t− d)− S2(s+ x, t) ≥ 0

)
+

∑
0≤s<t−d

∑
s+x<u≤t

P
(
AX(s, t− d)−

[
S1(s, u)−A1−X(s, u− x)

]
+
− S2(u, t) ≥ 0

)
≤

∑
0≤s<t−d

P
(
AX(s, t− d)− S2(s+ x, t) ≥ 0

)
+

∑
0≤s<t−d

∑
s+x<u≤t

P
(
AX(s, t− d) +A1−X(s, u− x)−

S1(s, u)− S2(u, t) ≥ 0
)

(5)

The first line is just a separation of the interval of u in order to
eliminate the indicator function “1”. Besides that we applied
the union bound in the second line. In the third line, we
eliminated “[·]+”. Next we use the properties of the arrival
process A(t) in order to prove (1) and (2), respectively.

(1) A(t) has independent increments. Since the two intervals
[s, t − d] and [s, u − x] are overlapping, we can merge the
overlapping parts of AX(s, t−d) and A1−X(s, u−x). Yet we
do not know which value, t − d or u − x, is larger. So from



Eq. (5) we separate the interval of u as below

≤
∑

0≤s<t−d

P
(
AX(s, t− d)− S2(s+ x, t) ≥ 0

)
+

∑
0≤s<t−d

∑
s+x<u≤t−d+x

P
(
AX(u− x, t− d) +

A(s, u− x)− S1(s, u)− S2(u, t) ≥ 0
)
+∑

0≤s<t−d

∑
t−d+x<u≤t

P
(
A1−X(t− d, u− x) +

A(s, t− d)− S1(s, u)− S2(u, t) ≥ 0
)

≤
∑

0≤s<t−d

e−θC2(t−s−x)eθδ(θ)r(θδ(θ))(t−d−s) +∑
0≤s<t−d

∑
s+x<u≤t−d+x

e−θC1(u−s)e−θC2(t−u)eθr(θ)(u−x−s)eθδ(θ)r(θδ(θ))(t−d−u+x)

+
∑

0≤s<t−d

∑
t−d+x<u≤t

e−θC1(u−s)e−θC2(t−u)eθr(θ)(t−d−s)eθδ̄(θ)r(θδ̄(θ))(u−x−t+d)

≤ e−θC2(d−x)

eθ(C2−δ(θ)r(θδ(θ))) − 1
+

1
eθ(C1−r(θ))−1

− 1
eθ(C2−δ(θ)r(θδ(θ)))−1

1− eθ(C1−C2−r(θ)+δ(θ)r(θδ(θ)))
e−θC1deθ(C1−C2)(d−x)

+
e−θC1d

(
eθδ̄(θ)r(θδ̄(θ))(d−x) − eθ(C1−C2)(d−x)

)
(
1− eθ(C1−C2−δ̄(θ)r(θδ̄(θ)))

)
(θC1 − θr(θ))

. (6)

In the second line we used the Chernoff bound for some θ >
0 together with Lemma 2 for i.i.d. X ′

is (Eq. (3)). Because
A has independent increments and is independent of X, it
follows that AX(u − x, t − d) is independent of A(s, u − x)
and A1−X(t−d, u−x) is independent of A(s, t−d). In the case
when X is MMSP, we have that δ(θ) = 1

θ log sp (ϕX(θ)λX)
and δ̄(θ) = log sp (ϕ1−X(θ)λ1−X), according to Eq. (2). In
the third line, imposing the following two stability conditions

θ(C1 − r(θ)) > 0 and θ(C2 − δ(θ)r(θδ(θ)) > 0

for the first term by letting t → ∞, we get an infinite geometric
series; for the second term we computed the sum of geometric
series over u and got the exact sum of infinite geometric series
by letting t → ∞; the computation for the third term is similar.
By letting

K1 =
1

eθ(C2−δ(θ)r(θδ(θ))) − 1

K2 =
1(

eθ(C1−r(θ)) − 1
) (

1− eθ(C1−C2−δ̄(θ)r(θδ̄(θ)))
)

K3 = K1 ·K2 ·
(
1− eθ(C1−δ(θ)r(θδ(θ))−δ̄(θ)r(θδ̄(θ)))

)
in Eq. (6), we get

P(W (t) ≥ d) ≤ K1e
−θC2(d−x) +

K2e
−θC1deθδ̄(θ)r(θδ̄(θ))(d−x) +K3e

−θC1deθ(C1−C2)(d−x) ,

and the proof of (1) is complete.
(2) The increments of A(t) are not necessarily independent.

We can continue Eq. (5) as follows

≤
∑

0≤s<t−d

e−θC2(t−s−x)eθδ(θ)r(θδ(θ))(t−d−s) +∑
0≤s<t−d

∑
s+x<u≤t

e−θC1(u−s)e−θC2(t−u)·

E
[
eθ(A

X(s,t−d)+A1−X(s,u−x))
]
,

after using the Chernoff bound. To compute the bound of the
expectation we use Hölder’s inequality because of the possible
dependence between AX and A1−X. Let g, h ≥ 1 such that
1
g +

1
h = 1. For t → ∞, we continue the above inequality with

≤ e−θC2(d−x)

θ(C2 − δ(θ)r(θδ(θ)))
+

e−θC1deθ(C1−C2)(d−x)

θ(C1 − C2 − δ̄(hθ)r(hθδ̄(hθ))) · θ(C2 − δ(gθ)r(gθδ(gθ)))
.

Here, without losing tightness, we used an upper bound on the
infinite geometric series for simplicity. Let us now assume the
stability conditions

θ (C2 − δ(θ)r (θδ(θ))) > 0

θ (C2 − δ(gθ)r (gθδ(gθ))) > 0

θ
(
C1 − C2 − δ̄(hθ)r

(
hθδ̄(hθ)

))
> 0 .

To continue the previous derivation, we use the next convex
optimization result

inf
x>0

{
αe−βx + eγx

}
=

(
αβ

γ

) γ
β+γ β + γ

β
.

We finally obtain that

P(W (t) ≥ d) ≤ Ke−θC2d,

where

K =
C1

C2

(
C1

(C1 − C2)θ(C2 − δ(θ)r(θδ(θ))

)1−C2
C1

·
(
θ(C1 − C2 − δ̄(hθ)r(hθδ̄(hθ)))

·θ(C2 − δ(gθ)r(gθδ(gθ))
)−C2

C1
.

The proof is now complete. �

C. Statistical End-to-End Delay Bounds by Commuting Scal-
ing Element and Service

Here we briefly reproduce the computation of the end-to-
end delay bound in a demultiplexing network by commuting
scaling and service elements, as proposed in [4]. Starting
from Figure 4.(a), we can find another system, as shown
in Figure 4.(b), where A(t) goes first through X and then
through the exact service curve T (s, t) :=

∑A(s)+S(s,t)
i=A(s)+1 Xi,

such that the departures for both systems in (a) and (b) satisfy
E(t) ≤ DX(t) for all t ≥ 0; a tacit assumption is that A, X,
and S are independent.



(a) (b)

FIFO

FIFO

Fig. 4. Commuting service and scaling elements.

The following theorem (also from [4]) provides the statis-
tical end-to-end delay bound.

Theorem 2: (END-TO-END DELAYS IN A FLOW TRANS-
FORMATION NETWORK) Consider the network scenario from
Figure 4.(a) where a stationary arrival process A(t) crosses
a series of alternate stationary and (mutually) independent
service and scaling elements denoted by S1, S2, . . . , Sn

and i.i.d. X1,X2, . . . ,Xn−1, respectively. Assume the MGF
bounds MA(s,t)(θ) ≤ eθr(θ)(t−s) and MSk(t)(−θ) ≤ e−θCkt,
for k = 1, . . . , n, and some θ > 0. Under a stability condition

an−1r(an−1) + log b < 0,

where

a0 = θ, ak+1 = logE
[
eakXk,1

]
, b = sup

k=0,...,n−1
e−akCn−k ,

we have the following end-to-end steady-state delay bounds
for all d ≥ 0

P (W > d) ≤ Knbd,

where the constant K =
(1+ d

n )
1+ d

n

( d
n )

d
n

.

IV. COMPARISON

So far, we presented the dual analytical methods to calcu-
late statistical end-to-end delay bounds in a demultiplexing
scenario. Next, we compare them quantitatively. Before we
can do so, we need to provide some results regarding MGF
bounds, because for both methods, we assume to have the
MGF bounds for the arrivals and the service, and also need to
use the MGF bounds of the scaling processes and the scaled
processes to compute the delay bounds.

A. MGF Bounds

In this section, we present necessary prerequisites regard-
ing MGF bounds for three examples of arrival processes
A(t): Bernoulli(-modulated) arrivals with rate R together with
Bernoulli parameter p0, Poisson arrivals with rate λ and
MMOO arrivals with peak rate P . We also present results
for the MGF bounds of scaled processes with two examples
of scaling processes X: Bernoulli scaling and MMOO scaling.

For Bernoulli arrivals with rate R, we consider arrivals with
constant rate R passing through a Bernoulli scaling process
with Bernoulli parameter p0. We know that the MGF of a
Bernoulli r.v. XB with parameter pB ∈ [0, 1] is MXB (θ) =
1 − pB + pBe

θ. So Lemma 2 yields the MGF bound for the
i.i.d. Bernoulli arrivals with rate R and probability p0 ∈ [0, 1]
as

MA(s,t)(θ) = MR(t−s)

(
log

(
1− p0 + p0e

θ
))

= E
[
elog(1−p0+p0e

θ)R(t−s)
]

=
(
1− p0 + p0e

θ
)R(t−s)

.

We rewrite this as

MA(s,t)(θ) = eθ·
1
θ log(1−p0+p0e

θ)R·(t−s) = eθ·r(θ)·(t−s),

where we denote 1
θ log

(
1− p0 + p0e

θ
)
R as r(θ) according

to the form of MGF bound for the arrivals in Theorem 1. Next,
we derive δ(θ) for the scaling process X as a Bernoulli process
with parameter p ∈ [0, 1] and δ̄(θ) for its conjugate scaling
process 1−X. Again, knowing the MGF of the i.i.d. Bernoulli
process X we have

δ(θ) =
1

θ
logMX(θ) =

1

θ
log

(
1− p+ peθ

)
δ̄(θ) =

1

θ
logM1−X(θ) =

1

θ
log

(
p+ (1− p)eθ

)
.

Now we have r(θ), δ(θ) as well as δ̄(θ). As all other parame-
ters in Theorem 1 are already given, we can compute the delay
bounds for the two nodes network. On the other hand, noting
that a1 is θδ(θ), we can use Theorem 2 to compute alternative
delay bounds.

In the following, we consider the following scenario:
Poisson process as arrivals and Markov-Modulated On-Off
(MMOO) process as scaling. The MMOO scaling processes
are presented in Figure 5. µ1 and µ2 are transition probabili-

Fig. 5. Markov-Modulated On-Off (MMOO) scaling process.

ties. The processes let data pass along this sub-flow while in
state ‘on’ (thus the rate is 1) and block while in state ‘off’.
If the scaling processes are MMOO, we derive δ(θ) and δ̄(θ)
from Theorem 1 as

δ(θ)=
1

θ
log sp (ϕX(θ)λX)

=
1

θ
log

µ2 + µ1e
θ +

√
(µ2 + µ1eθ)

2 − 4(µ1 + µ2 − 1)eθ

2

δ̄(θ)=
1

θ
log sp (ϕ1−X(θ)λ1−X)

=
1

θ
log

µ1 + µ2e
θ +

√
(µ1 + µ2eθ)

2 − 4(µ2 + µ1 − 1)eθ

2
,

where µ1 and µ2 have the following relation for Figure 5(a),
given the average ‘on’ probability p for scaling process X,

p =
1− µ2

1− µ1 + 1− µ2
.

Then, of course, the scaling process 1 − X has the average
‘on’ probability 1 − p. Hence, knowing p, given µ1 we can



compute µ2, and vice versa. Further knowing the MGF bound
of the Poisson arrival process, which is

MA(t)(θ) = eθr(θ)t, where r(θ) =
1

θ
λ(eθ − 1),

we can again use Theorem 1 to compute the delay bounds for
the two nodes network.

Similarly, considering an MMOO process as arrival process,
we use P as the peak rate instead of 1 and λ1, λ2 as transition
probabilities instead of µ1, µ2. We compute the MGF bound
of the arrivals as

E
[
eθA(t)

]
≤ eθr(θ)t,

where r(θ) = 1
θ log

λ1e
θP+λ2+

√
(λ1eθP+λ2)2−4(λ1+λ2−1)eθP

2 .
For other combinations of different arrival and scaling cases,
we have similar computations.

B. Delay Bounds

Next, we numerically compare the statistical delay bounds
using both methods in the above mentioned three examples
of arrivals: Bernoulli with probability p0 and rate R, Poisson
with rate λ, and MMOO with peak rate P and transition
probabilities λ1, λ2. We consider the network senario with
two nodes shown in Figure 2(a). For the scaling process we
consider for two examples: Bernoulli process with probability
p and MMOO process with average probability p and tran-
sition probabilities µ1, µ2. Here, we only show the results
for MMOO arrivals with MMOO scaling, so we have five
combinations and for all the combinations we compare the
statistical delay bounds of the two nodes network using the
dual analytical methods presented in Section III . Moreover,
for the five combinations we compare the delay bounds
in different utilizations for the first node - low and high
utilization (30% and 80%). As a reference, we also provide the
results of discrete-event simulations. We use OMNeT++ [17]
version 4.2 to simulate the queueing network. To compute the
empirical 10−3-quantiles, we observe 106 packets and use the
P2 algorithm [8] for calculating the quantiles without storing
so many observations. Random number generating during the
simulations is done using the class cLCG32.

In the following, we give the numerical settings. First, the
service rate of the first node C1 is normalized to one packet per
time unit. Correspondingly, we set the utilization of the first
node as either 0.3 or 0.8, i.e., the average rates of arrivals are
set as 0.3 and 0.8, respectively. We let R = 2, thus in the case
of Bernoulli arrivals p0 equals to 0.15 and 0.4, respectively.
For the case of MMOO arrivals, we also set P = 2 and λ1 =
0.75. With the average passing probability p of the scaling
process X the capacity at the second node C2 is set to C2 =
p · C1. These settings guarantee the stability conditions. We
vary p from 0.1 to 0.9 in steps of 0.1. In the case of MMOO
scaling, we set µ1 as 0.75. We plot the ε-quantiles (in time
units) of the end-to-end delay bounds with ε = 10−3. In all
figures, we can perceive, that the delays decrease for higher
values of the pass probabilities p. This behavior is due to
setting C2 = p · C1 for a constant C1.
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Fig. 6. Bernoulli arrivals, Bernoulli scaling.
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Fig. 7. Bernoulli arrivals, MMOO scaling.
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Fig. 8. Poisson arrivals, Bernoulli scaling.
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Fig. 9. Poisson arrivals, MMOO scaling.
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Fig. 10. MMOO arrivals, MMOO scaling.



Figure 6 shows the statistical delay bounds obtained with
Theorem 1 and Theorem 2 (existing result) as well as the sim-
ulation results in the case of Bernoulli arrivals and Bernoulli
scaling. For demultiplexing probabilities p ≤ 0.7 the figures
clearly illustrate the order of the results, with the new leftover
service computation method as a superior option especially
for smaller pass probabilities p. For p > 0.7, the results of
Theorem 1 (with independent increments) and Theorem 2 are
nearly the same. Going to the higher utilization of 0.8 in
Figure 6.b of course results in higher delays, but also seems
to loosen the bounds somewhat as the gap to the simulation
results grows.

Figure 7 shows the statistical delay bounds in the case of
Bernoulli arrivals and MMOO scaling. Basically the same ob-
servations as in the previous paragraph, for Bernoulli arrivals
and Bernoulli scaling, can be made. It is interesting to note,
however, how the MMOO scaling leads to much higher delay
bounds compared to the Bernoulli scaling case.

Next, Figure 8-9 display the same as Figure 6-7, but now
for Poison arrivals. For most of it, the conclusions for the
Poisson arrivals are the same as for the Bernoulli arrivals,
yet one interesting observation is that for Poisson arrivals and
Bernoulli scaling for the high utilization case, the leftover
service compution results in slightly, but clearly visible worse
delay bounds than the method from Theorem 2. This is not
the case for the MMOO scaling which indicates that things
are not so simple here ...

Figure 10 shows the statistical delay bounds in the case of
MMOO arrivals and MMOO scaling. Note that in this scenario
we do not have independent increments of arrivals any more
and and thus have to resort to the respective case in Theorem 1.
We can see that the method by commuting service curve and
scaling element now clearly dominates the leftover service
method. As a general remark, we can observe that the bounds
are quite pessimistic for low values of the pass probability p
when they are compared to the simulation results. It is simply
harder to cope with the correlations in arrivals and scaling
processes.

C. Discussion

In the previous subsection we compared the results obtained
by the dual methods from Theorem 1 and Theorem 2 for some
numerical examples. We can see that, on one hand, Theorem 1
provides the opportunity to utilize some additional information
on arrivals to show an advantage, especially in scenarios
where the sub-flow of interest is small. On the other hand,
a disadvantage of using the leftover service curve method is
that the delay bound computation is not easily extensible to
the n nodes case. This is because we would have to introduce
different “x” for the leftover service curve element at each
node, which makes the analytical solution very complicated.
In contrast, Theorem 2 is more easily applicable to the n nodes
case.

However, the “door is still open” for the method using
the leftover service curve. In the following, we sketch the

...

...

...

...

...

...

Fig. 11. A flow demultiplexing network consisting of services and scaling
elements.

iterative computation steps to be taken, but keep the detailed
computation as future work.

Consider a network scenario from Figure 11(a) which is the
general extension of Figure 2(a). Because the service curves
of the nodes are not necessarily strict, we can firstly apply
all the scaling effects to A and after iteratively computing the
leftover service curves we then obtain the transformed system
in Figure 11(b). The iteration can be stated as the following
equations with n = 2, 3, . . .

SLO1(s, t) =
[
S1(s, t)−A1−X(s, t− x1)

]
+
1{t−x1>s}

SLOn−1(s, t) =
[
(SLOn−2 ⊗ Sn−1)(s, t)−

AX1X2···(1−Xn−1)(s, t− xn−1)
]
+
1{t−xn−1>s}.

V. CONCLUSIONS

We have presented a novel approach to analyze queue-
ing networks with flow demultiplexing, e.g., due to loss or
dynamic routing. First we used a scaling element to model
the demultiplexing and showed how to transform a network
node with a demultiplexing operation on the output flow into
an equivalent system with a logically demultiplexed input
flow. Then we applied network calculus’ leftover service
computation for the logically demultiplexed input sub-flow of
interest to compute a statistical delay bound. We compared this
result with an alternative result from previous work of ours [4].
Although the new computation cannot completely dominate
the other approach, it tends to be a more intuitive way of
dealing with demultiplexing in the framework of stochastic
network calculus. Furthermore, it has the advantage that spe-
cific information on the arrivals can be easier incorporated than
for [4]. On the downside, the generalization to the n nodes
for the leftover service method still remains open whereas the
other method is already more advanced with respect to this.
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