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ABSTRACT
In recent years, various types of control algorithms have
been proposed for cognitive radios (CR), ranging from al-
gorithms coordinated by centralized control to ones coordi-
nated in a distributed manner. These algorithms, however,
all require communication to either peer nodes or a master
node, thus creating communication overhead and potential
vulnerability. We introduce a new class of control algorithms
to the area of CRs derived from observations of emergent
design in nature. Specifically, we introduce an algorithmic
approach based on swarm behavior to the task of config-
uration management in CR networks. Without requiring
the exchange of information among peers or a central au-
thority, CRs equipped with such an algorithm are able to
globally optimize the configuration of a CR network in the
presence of interference and jammers, while only relying on
local information, thus providing a fast and efficient way for
configuration management especially for large networks.

Categories and Subject Descriptors: C.2.1 Computer-
Communication Networks, Network Architecture and De-
sign, Wireless communication

General Terms: Design, Experimentation, Performance

Keywords: Cognitive radio networks, Biologically-inspired
algorithms, Emergent behavior, Swarm

1. INTRODUCTION
Software defined radios have enabled new control mecha-

nisms, resulting in cognitive radios (CR) that are more adap-
tive to environmental noise, interferers and jammers. One of
the most important tasks for cognitive radios is the need to
coordinate the frequency and modulation for specific com-
munication links. There are a number of ways this can be
accomplished – for example, a common “hailing channel”
could be used to coordinate further communication. How-
ever, predefined mechanisms such as this are very sucep-
tible to attack in a hostile environment and are also not
robust in the face of interference. This paper focuses on dis-
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tributed, decentralized methods for coordinating CRs. We
assume that the radios have mechanisms for determining
when they have received a message from another radio in
their network.

In this paper we describe how the underlying principles of
emergent behavior in nature might be transferred and used
in CR networks to achieve a coordinated configuration with-
out the need for a formal, hierarchical structure and exten-
sive communication among the nodes.

When looking at emergent behavior in nature, such as a
flock of birds in the sky or a school of fish in the water,
one might wonder how do these creatures communicate to
maintain such spatial distributions. Although there is no
“master fish” that seems to coordinate the behavior or send
commands to the school on how each individual fish should
behave, still all fish move in unison and stay within range
of each other. Further, each individual fish seems to con-
trol the entire swarm’s behavior. Any one fish encountering
an obstacle in its path or seeing a predator approaching
will make the entire school (seemingly) magically move to
avoid the danger and do so without appearing to announce
its behavior upfront to every other fish. Behavior is nei-
ther centrally controlled by a “master” nor distributively
determined by negotiation in the entire school, yet without
any formal communication the entire swarm makes a coor-
dinated decision about its movement.

In the current state of the art, most CR control algorithms
that coordinate a network of CRs require some communica-
tion among peers or the existence of (and communication
with) a central authority, which makes decisions based on
global knowledge of the network’s state. These design deci-
sions, however, pose several challenges in a practical deploy-
ment. First, the need of communication to manage configu-
ration exposes vulnerability. Second, an authority must be
chosen. Third, centralized approaches do not scale well.

The strategy proposed in this paper avoids such difficulties
by removing the need for any explicit communication. All
decisions are made locally, relying only on local knowledge
and local observations of the network. As prominent in other
disciplines, the idea proposed and discussed in this paper
was inspired by observations in nature. From the observa-
tions and formalizations of swarm behavior1, we transferred
the central underlying mechanisms and adapted these to the
properties and requirements of CR networks to achieve self-
configuration networks that globally optimize without re-

1Throughout the paper we will use “swarming” as a gen-
eral term for emergent behavior such as flocks of birds and
schools of fish.
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lying on communication among peers or a central control
authority. Thus, this approach can overcome the drawbacks
discussed above and is able to scale very well to large net-
work environments. We show that the biologically-inspired
algorithm does well in the task of synchronizing a network
of CRs while:

• The swarm algorithm does not need a central control
channel or a central control authority to perform.

• The swarm algorithm does not need explicit synchro-
nization with neighboring nodes to converge besides
local observation of the neighbors.

• The swarm algorithm does not need to know charac-
teristics of the entire network such as the number and
position of all nodes. Instead it is sufficient to know
the configuration information of the nodes in its trans-
mission range despite their physical location and it can
infer this information from the received packets.

The remainder of this paper is structured as follows: In
Section 2, we present related work in the field of CR con-
trol algorithms. In Section 3, we describe the underlying
mechanisms of swarm behavior and show how these can be
adapted to control CR networks. In Section 4, we evaluate
the methodology, identify and discuss its behavior compared
to other algorithms and outline under which circumstances
it will perform better or worse than the current state of the
technology. In Section 5 we conclude and summarize our
findings.

2. RELATED WORK
In considering the related prior work, we discuss two rather

distinct areas - control algorithms for cognitive radio net-
works and algorithms for swarms.

2.1 Control in Cognitive Radio Networks
Only a few control algorithms have been proposed that

coordinate the configuration in a CR network across multi-
ple nodes. An example of centralized control is Danzeisen
et al.’s work [3] which uses a Global System for Mobile com-
munications (GSM) infrastructure to coordinate the config-
uration of nodes’ wireless interfaces to initiate a communi-
cation channel between them. Simarly, Oikonomou et al.
[7] propose to use a centralized authority to exchange node
information and coordinate routing information, but require
the nodes to have a second interface on the 60 GHz band.

In the area of distributed control algorithms, Nie and Co-
maniciu [6] propose the use of game theory to negotiate
frequency assignment information in a CR network using
a control channel. Other researchers have used rule-based
reasoning to configure CR networks. In Bandholz et al. [1],
packets with information about the layer-2 status and the
application’s demand on the network are shared within the
CR network. In similar work, Winter et al. [16] also ex-
change information about the nodes’ local status with other
radios in the network, but send these updates piggy-back
with outgoing packets to reduce overhead. Several other
approaches exist, but in these lines of research the control
algorithms are designed to configure a single CR and not a
network with multiple nodes simultaneously. Examples for
such control algorithms include genetic algorithms, which

are used in [11] to configure two radios to stream video be-
tween them or rule-based reasoning algorithms based on the
design of experiment procedure in [14].

2.2 Swarm Algorithms
Swarm algorithms have primarily been explored in con-

trolling unmanned aerial vehicles (UAV), satellites and ro-
botics. In the field of UAV research, one of the prominent
questions is how to control the flight of multiple UAVs that
are cruising over a given area. As UAVs were initially con-
trolled by ground personnel, employing a large number of
UAVs was considered infeasible as humans had to analyze
the status of all UAVs in real-time and send back control
commands [8, 9]. In the domain of sensor networks, open
research questions include load balancing traffic and syn-
chronizing distributed sensors nodes such that nodes awake
from extensive sleep periods at the same time (so routing
and message exchanges can take place while saving as much
energy as possible) [13, 15]. In the field of robotics, swarm
algorithms have also been used to control the behavior of
autonomous, multi-agent systems [2, 12].

Our work is novel and unique in two aspects. First, pre-
vious work in CR control algorithms has coordinated CR
networks either through a central authority or distributively
through negotiation within the CR network. Our approach
to controlling CRs, however, operates on a local scale, where
no communication or explicit synchronization with other
peers or a central authority takes place. Second, to the
best of our knowledge, previous work on swarm algorithms
in communication technology has exclusively applied swarm
algorithms as a means to control the physical position of
devices, routing rules among nodes or time-synchronization
of nodes. Our approach transfers the concept of swarming
from a procedure for physical alignment to a means of align-
ing the behavior of communication systems among other
dimensions by controlling the configuration of the commu-
nications agents.

3. MECHANISMS OF SWARM BEHAVIOR
In this section, we will first discuss the mechanisms of

swarm behavior as they can be observed in nature. We will
then describe how these mechanisms can be abstracted and
transferred to the context of CR networks and finally discuss
the details of our model.

3.1 Mechanisms in Nature
Reynolds [10] first came up with an algorithmic descrip-

tion of flocking behavior, which has been confirmed by biol-
ogists for multiple species. His model is built on three basic
rules, each modeling a sub-behavior of swarm behavior:

Cohesion stay together as a group,

Obstacle avoidance stay a certain minimal distance from
your neighbors in the swarm and foreign objects, and

Alignment move at the same velocity as your neighbors.

These three sub-behaviors can easily be formalized math-
ematically for an implementation. For the following para-
graphs, consider a set of objects S1,2,...,n each modeling a
swarm or a group of obstacles. The swarm we are simulating
will be denoted as Si. The swarm consists of a finite num-
ber of elements, of which we are simulating the pth element.



While the calculations are analogous for all elements in all
swarms, it will simplify the discussion of the algorithm and
its formalization.

Cohesion. The most obvious sub-behavior of a swarm
is that each member stays in close proximity to its peers
around it. Each member can sense the position of its peers
(or only its ultimate neighbors as a subset) and will move
toward their position, which coincides with the swarm’s cen-
ter of mass. In the situation where a fish is in the center
of a swarm, peers are positioned at all sides of that fish, so
the peers’ center of mass will be at or near the fish’s current
position and the urge to move toward that center of mass
will be small. If a fish is on the boundary of a swarm, all its
peers and consequently the center of mass are on one side
of the fish, so its movement toward the center of mass will
keep the swarm together.

vc =

X
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Equation 1 formalizes this behavior. Given element p in
the swarm Si, the center of mass as seen from that particular
element is the average position of all its peers. The path to
that position can be determined as a vector to the average
position or mathematically analogous as the average of all
vectors from element p to every peer.

Obstacle Avoidance. It is further important that all
elements in the swarm avoid obstacles. Such obstacles can
be other members of their own swarm or foreign objects from
which a minimal distance must be maintained, thus this rule
provides a counterbalance to the cohesion behavior. For
this behavior each element stays at least a certain minimal
distance away from all other elements in the swarm as well
as out-of-swarm objects that are in the way. If objects come
closer than this minimal distance, the fish tries to reestablish
this minimal distance on the fastest way possible which is
denoted by the negative vector from its current position to
the obstacle: a straight reverse. If more objects are too close
and must be avoided, it moves according to the sum of all
“avoidance” vectors.
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where Cs = {i ∈ Si |
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and Co = {j ∈ (
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Equation 2 realizes this avoidance of obstacles. The set
CS contains all elements from the element’s own swarm that
are within collision distance of the element, set Co contains
obstacles in foreign swarms that are closer than a certain
minimal distance. For each of these elements, the avoidance
vectors between element p and all elements of Cs and Co

that will restore the minimal distance as soon as possible is
determined and combined to account for all obstacles at the
same time.

Alignment. The third rule is a specialized, but optional
version of obstacle avoidance which tries to address the issue
of collision avoidance predicatively. Instead of reversing its
movement when the minimal distance is violated, the align-
ment continuously matches the element’s speed to that of
all of its neighbors. If every node follows such a pattern, the
members of a swarm should not get into collision distance
in the first place.

va =

X
i∈Sin
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where Sin = {i ∈ Si |
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For this behavior, which is modeled in Equation 3, a node
only considers those of its peers that are in a close, but
not yet colliding distance to itself. However, since these
nodes are at risk of becoming a potential obstacle in the
future, each node matches its current velocity to that of its
neighbors, thus slowing down when two nodes move towards
each other and are at risk of colliding in the future.

To determine the overall direction that p will move, the
resulting vectors from each sub-behavior are weighted and
summarized. The weights have been found by biologists to
be species-specific [4], depending on behavioral properties of
a species, e.g. strong cohesion vs. loose cohesion.

vp = vc ∗ wc + vo ∗ wo + va ∗ wa

The resulting combined velocity determines the direction
element p will move in in the next epoch.

3.2 Swarm Behavior in
Cognitive Radio Networks

When applying these mechanisms of swarm behavior to
communication networks, one must adjust the observations
and actions to those meaningful in a network of CR net-
works, i.e. replace the eyes and the movement of the fish by
the senses and actions a CR has.

In this section, we therefore discuss how it is possible to
translate the control of spatial distance as found in school
of fish and flocks of birds into a “distance” equivalent in
CRs. In order to do so, we extract for each of the three sub-
behaviors cohesion, obstacle avoidance and alignment the
abstract function that this sub-behavior provides in nature,
then derive what an equivalent abstract function would be
meaningful for a CR given its sense, actions and objectives
and finally provide an concrete example the sub-behavior
can be modeled in a CR.

The main objective of a group of birds or fish to form
and move as a flock or school is to minimize the danger of
predators as a group is more difficult to attack than individ-
ual members. Staying together therefore offers protection.
To form a school each fish changes some of its parameters,
namely its position, to achieve this objective.

When viewed from a communication perspective, the ob-
jective of a CR is very similar. As close proximity shields
the school from outside influences, a network of CRs would
ideally also minimize outside interferences while enjoying a
good communication environment for those members inside
its own swarm. Unlike the fish in our example, a CR typ-
ically cannot or does not want to modify its physical posi-



tion to achieve this objective, but it has other parameters
it can freely choose: frequency, transmission power, modu-
lation, encoding etc. Thus, we can transfer and adapt the
main objective to CR networks: maximize communication
with peers and minimize outside interference by adapting
the transmission control parameters. This mapping between
fish and CRs then also alludes to how to model the three
sub-behaviors cohesion, collision avoidance and alignment
within the CR domain.

Cohesion. The abstract function of the cohesion rule is
to maximize the objective for the elements inside the swarm:
the closer the fish are to each other, the more they are pro-
tected. The corresponding intra-swarm objective for a CR
is to maximize the strength of its communication links to
its peers. If we measure this in signal-to-interference-noise-
ratio (SINR) for example2, we see how certain configurations
of the radio influence SINR: (i) increasing the transmission
power will increase the SINR for its peers, (ii) transmitting
on a frequency that the receiver is not listening on results
in no received signal, and (iii) transmitting in the direction
where a signal was received from when the node is equipped
with a directional antenna increases SINR at the destina-
tion.

Equation 4 expresses a CR’s cohesion behavior for the
three factors mentioned above:

{

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→0BBBB@
0
fi−−−−−→

RXdiri

1CCCCA
0BBBB@

RXmin − TXpowpi − gip

fp−−−−−→
TXdirpi

1CCCCA} ∀i ∈ Si (4)

where gip = (TXpowip −RXpowip).

(i) Transmission power For every peer i ∈ Si the radio
p measures the received signal strength RXpowip. For sim-
plicity in this example, we assume symmetrical link gains,
but the example can certainly be extended in such a way
that the network assesses and incorporates different link
gains for every transmitter-receiver pair. From a stamp in
the outgoing package, the receiver p also knows the trans-
mit power that i used to send the packet to p, thus the link
gain of link i ↔ p can be calculated as gip = TXpowip −
RXpowip. The received signal strength for packets trans-
mitted from p to i therefore equals a symmetrical link TXpowpi−
gip. If the CR is configured to meet a minimal signal strength
at the receivers end RXmin, it will increase or decrease its
own transmit power until it meets the predefined value by

evaluating
−−−−−−−−−−−−−−−−−−−−−→
0(RXmin − TXpowpi − gip). This vector will in-

crease p’s transmit power to i when the received signal can
be expected to be less than RXmin, or decrease it if it over-
shoots this target. Since a similar algorithm drives the peer,
the peer will in turn adjust its power level if sudden link
fading occurs, thus both p and i will receive packets at the
minimal signal strength RXmin. We are aware that many
other proposals exist for controlling power in a CR network,
but we illustrate in this example how CR power control can
be achieved using a swarm algorithm.

(ii) Frequency For the value of SINR, frequency acts as
a discrete parameter having no impact when both receiver
and sender are on the same frequency, but reducing SINR
to 0 when they are on a different frequency. This is mod-

eled by the vector
−−→
fifp which will create the urge to switch

frequencies match most of the radio’s communication peers.

2Of course, other metrics can be chosen that incorporate
application-level terms such as latency, bandwidth etc.

(iii) Directionality SINR is also improved when a trans-
mitter p equipped with a directional antenna sends its pack-
ets to i toward the same direction from which it previously
received packets from i. The less accurate the steering the
more attenuated the signal is at the receiver’s end. If we

describe the perceived direction of the receiver i as
−−−−−→
RXdiri

and the direction to transmit from p to i as
−−−−−→
TXdirpi, the

vector product of the two directions ((
−−−−−→
RXdiri) (

−−−−−→
TXdirpi))

expresses a simple cosign relationship between the receiving
and transmitting direction: if both are aligned, the full sig-
nal will be received at the receiver, for orthogonal receiving
and transmitting directions no signal is received at i’s end.
If the beam shape of the directional antenna is known to
the transmitting CR, this property can be more accurately
modeled for a specific setup.

Since different factors are of different importance3, the ex-
pression can be affined by a weight vector that attenuates
certain factors over less important ones. The final configu-
ration is then determined by a combination of the different
vectors generated in the evaluation of all i ∈ Si. The combi-
nation can be either through addition in vector space (as in
the introductory discussion of the swarm model) or in case
of discrete parameters through an argument count.

Collision Avoidance. The function of the collision avoid-
ance rule is to (i) reduce exposure to out-of-swarm influences
that will harm performance and (ii) to provide a counter-
weight to the cohesion rule, if too much cohesion within a
swarm creates negative side effects. For the former case,
CRs should avoid those signals from other radios which are
strong enough to create significant interference and impair
the performance of the radio’s own receiver. For the lat-
ter case, the CR should also bound some of its parameters,
for example transmit power, as high transmit power may
overpower or bleed into other peers’ receivers, increase en-
ergy consumption (ce) and for leased spectrum access might
cause higher licensing costs (cl). This example of collision
avoidance is modeled in Equation 5.

−
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where Co = {j ∈ (
S

∀j|j 6=i

Sj) | |−→jp| < distmin & (fi == fp)}

(i) Within-Swarm Col. Avoidance While improving
SINR of a link does not necessarily have an upper bound
beyond which any additional improvement is harmful (in
the sense that birds staying too close will not achieve maxi-
mal protection but collide with other birds), nevertheless it
makes sense to model bounds that counterbalance cohesion.
The example in Equation 5 therefore limits transmit power
by penalizing transmit power levels that will be received
higher than a maximum power level RXmax at the receiver’s
end and encourage power levels that meet this maximum

3Frequency has a very drastic influence when compared to a
directional antenna for example: If two receivers are on dif-
ferent frequencies communication cannot happen. The abil-
ity to sense other channels is needed for fast convergence of
the algorithm. However, requiring that a CR can scan many
or all channels at a time imposes technical difficulties or an
expensive receiver. This pragmatic issue will be discussed
in Section 3.3.



power level. Furthermore, we can use the collision avoid-
ance term to assign costs for energy expense ce(TXpowpi)
for transmitting from p to i and if we consider licensed spec-
trum, costs for licensing the spectrum when transmitting at
a certain transmit power cl(TXpowpi). In our example, we
are taking into account transmissions from p to any member
of the swarm Si, but if only collision avoidance in terms of
overpowering nearby receivers is of concern, we can limit the
set Si to those nodes within a certain range of p.

(ii) Outside-Swarm Col. Avoidance For collision
avoidance with out-of-swarm elements, p considers every ra-
dio j ∈ Co that is not part of p’s own swarm Si, transmits
on the same frequency as p and is located within a certain
interference range (which can be determined either by geo-
graphic location for location-aware devices or by a minimal
received signal strength). In this case, all radios j ∈ Co

are creating a certain amount of interference to p’s receiver
which, as a cumulated value, can be used as a measure for
the interference on p’s channel.

Alignment. As alignment is not a necessary requirement
to the correct functioning of a swarm algorithm, we will only
briefly touch on the use of alignment in a CR swarm model.
The general purpose of alignment is a predicative reaction to
influences before they become subject to the collision avoid-
ance rule. In the application scenario of CR networks, such
predicative behavior could be applied to avoid out-of-swarm
interference sources before they start to impair communi-
cation. Here, a CR would already switch from the current
frequency to an alternative one if the ambient interference
level is continuously increasing, even well before the current
channel assignment is mathematically a worse choice than
any other alternative. Thus, given stable trends a CR would
early adapt its transmission parameters instead of waiting
until it becomes necessary to adapt the transmission param-
eters.

3.3 A Cognitive Radio Network Swarm Model
In the previous section we discussed how to transfer the

idea of emergent behavior to the domain of CR networks
in general. In this section we describe in detail the spe-
cific CR swarm model we used in our simulations. In this
swarm model, we randomly placed five radio networks on a
300 x 300 meter plane. Each network contained the same
number of stationary nodes that were was fixed for each set
of experiments, but varied between different experiments to
study the scalability of the control algorithm. The objective
of the CRs was to maintain the best possible link measured
in SINR within their own network, while avoiding outside
interference as best as possible. This outside interference
was created by radios of the other four networks as well as
a jammer that temporarily transmitted.

Each network was initialized to have (a,b)-connectivity,
e.g. (1,3)-connectivity, meaning that each radio of a cer-
tain network was in range of at least 1 but at most 3 other
nodes of that same network. This ensured that each net-
work was connected, but spread out significantly in order
not to measure trivial network deployments that were ei-
ther highly interconnected or possibly partitioned. Based
on a Lee propagation model [5], we chose the radios’ trans-
mit power in such a way that each radio’s range was limited
to 150 meters. The received signal strength at a certain re-
ceiver was used as a measure of link quality, which supplied
the data for the calculation of cohesion and collision avoid-

Peers theoretically
in range

Peers practically in 
range due to

limited scanning window 

Figure 1: When limiting the scanning range, addi-
tional cohesion and collision avoidance rules can be
used to restore the swarming behavior.

ance. The signal strength from the radio’s own and a foreign
swarm were weighted equally (except the sign), however sig-
nals introduced by the jammer were penalized by a factor of
10, modeling a very timid behavior for the stark influences
introduced by the jammer. The radios’ transmit power was
constant throughout the simulation.

Each radio was set to a certain frequency that each radio
could change at its own discretion once every epoch. The fre-
quencies were assumed to be adjacent, but non-overlapping
channels as in 802.11b. Each radio could only see and ob-
serve the nodes that are within the 150 meter range of itself
and had to make decisions based only on its local view of
the network environment and must not explicitly exchange
status or configuration information with any other node.
Further, each radio did not have a full local view of its sur-
roundings, but could only scan a certain part of the spec-
trum at any time. If a given radio p is set to frequency fp,
it can only see nodes on the two upper and lower adjacent
channels, i.e. (fp − 2, ...fp, ...fp + 2). This extra require-
ment was introduced for technical considerations, as a CR
should not spend most of its time/energy scanning and be
equipped with low cost hardware that could only scan a
small number of frequencies at a time. For simplicity in this
set of experiments, we assumed symmetrical links and fixed
power output and limited a CR only to avoid interference
by switching its transmit frequency to eliminate the effects
of multi-factor adaptivity for the analysis.

The simulator was written in Java, using the Java pseudo
random number generator (PRNG) with a cycle length of
232. All sources of randomness were drawn from a dedicated
PRNG that was initialized appropriately in each scenario to
achieve a random but reproducible environment.

As mentioned above, in this CR swarm model we diverged
from the original preconditions of the swarm algorithm by
limiting each entity’s scanning window to five frequencies.
By restricting to detect its peers only within a certain dis-
tance and only on a subset of frequencies, we added ad-
ditional complexity to the problem as each CR now only
has a partial view of its local surroundings. In the original
domain, this would mean that a fish would only have 160
degree vision4 and could only see its neighbors when they
are within a certain distance and swimming in this 160 de-
gree window as shown in Figure 1. Clearly, this restricted
vision would make it more difficult for a fish to find and stay
close with its school.

To overcome this additional, artificial technical require-
ment not present in the original domain, we added three

4If we scan only 5 frequencies out of 11 for 802.11.
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Figure 2: Swarms can converge to subgraphs if not
prevented by the cohesion rule.

additional cohesion and one collision avoidance rule5 that
would allow the CR network to find its peers, stabilize quickly
and not form subgraphs even though each node could only
make a partial scan of its local surroundings at a time. The
need for the extra cohesion and collision avoidance rules be-
comes evident when we transfer a limited CR back to the
original domain of schooling fish as shown in Figure 1.

Cohesion-II: Look for others. When a node does not
see any other node within each range at its own frequency
± 2, it scans the whole spectrum and selects that frequency
on which most of its peers are present. We determine pres-
ence by the ability to decode packets from other stations.
This could be done less computationally expensive by look-
ing at the power level on a particular channel. In this work
however, we did not explore this method. This rule is of
importance when a new node appears and must join an ex-
isting network, or when a bridge node providing the only
connection to the network was jammed and switched to a
frequency that is outside of the now disconnected node’s fre-
quency scanning range. Intuitively, this would mean that a
fish continues turning until it can see another peer.

Cohesion-III: If a peer does not come, go to it
yourself. In situations where networks are interfered with
by multiple jammers from different angles, a network driven
by the swarm algorithm can converge to local stable states,
but remain unconnected as a whole. Figure 2 shows such a
situation: Nodes A, B, and C are in range of each other and
have converged to frequency 4. Nodes D, E, and F are also in
range of each other and have agreed on frequency 5. While
node C can see node D on the adjacent frequency 5, node C
also senses the jammer J1 on frequency 5, and decides this
frequency is inferior from its perspective and therefore does
not switch to frequency 5 by itself, which would make nodes
A and B switch to frequency 5 as well. The same situation
exists for node D. It senses node C and the jammer J2 on
frequency 4 and therefore does not make a change to, from
its perspective inferior, frequency 4 which would then trigger
E and F to also switch to 4.

Cohesion rule II addresses this forming of subgraphs. A
node i of a stable network that sees another peer j in range,
but j does not switch to i’s frequency after a certain num-
ber of epochs, i will assume that from j’s perspective j’s
frequency is better than i’s. In that situation, i will make
a switch to j’s frequency and, if equal or better, remain on

5denoted as Cohesion-II/III/IV and Collision Avoidance-II
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Figure 3: Following Temporary visitors

j’s frequency. If i remains, this will trigger the remaining
nodes of i’s network to also switch to the new frequency and
the two subgraphs will merge. In a fish example, if a fish
inside a school sees another school at a distance which does
not come any closer, it will itself move towards the remote
school and drag its own school along.

Cohesion-IV: Follow temporary visitors. Consider
the situation depicted in Figure 3. After a sequence of in-
terference avoidance actions, nodes A, B, C and D form a
stable network on frequency 4. Nodes F and G detected
each other on frequency 9. Even though F is theoretically
in range of C and D, it does not break the connection with
G but stays on frequency 9 as F does not have any informa-
tion about the total number of nodes in its network and has
found a peer in G.

After a while, node E (which might have just gotten ini-
tialized, or after a jamming attack ended up as an isolated
node) is scanning frequencies and briefly switches to fre-
quency 4. As it continues scanning and associates with other
peers in range, it finally decides to remain on frequency 9
as there are more peers in its proximity (F and G). Node D
noticed earlier that E was joining their frequency, but then
left. Since it cannot see E in its limited frequency scanning
window, it assumes that E is either dead or has found a bet-
ter choice than D’s frequency. If E therefore does not return
after a while, D also starts scanning the whole spectrum,
despite the fact that D is a member of a stable network.
Once it finds E and F on the new frequency, it also remains
on frequency 9 and drags A, B and C along because they
are triggered to switch by the same rule. Explained in a
fish example, a fish would turn to look for a peer if the peer
briefly was in sight but never appeared later again.

Collision Avoidance-II: Leave noisy environments.
If a peer’s network has converged to a stable state and no
peers on different frequencies were ever visible that would
trigger the rules Cohesion-II or Cohesion-III, a node should
temporarily check if the background noise is lower on any
other frequency than its current one. It will then switch to
the frequency with the lower background noise and trigger
the cohesion actions so all nodes in the network will ren-
dezvous on the frequency with less noise.

4. EVALUATION
When proposing a new algorithm, it is a challenging task

to create a variety of scenarios that will reflect actual condi-
tions that the algorithm will face in practice and not over-
estimate the benefit of a proposed algorithm by choosing
an unrepresentative sample set. In order to avoid designing
evaluation test scenarios that bias in favor of our algorithm,
we created a benchmarking application that would create
and evaluate test scenarios randomly.



4.1 Setup of the Evaluation
For our evaluation, we randomly generated 10,000 test

scenarios with 5 networks each containing 5, 10, 20, 30, 50
and 70 nodes, resulting in a total of 60,000 scenarios. In
each scenario all nodes were placed randomly on a 300 by
300 meter plane such that every node was part of a con-
nected, but not too densely connected network. For scenar-
ios where each network contained 5, 10, or 20 nodes, each
node had to be in range of a least 1, but not more than
3 other nodes of its own network ((1,3)-connectivity). For
30 and 50 nodes, we required (1,9)-connectivity and for 70
nodes, (1,20)-connectivity. Each node was initialized to a
random frequency setting. Since all nodes started at the
same time with a random initialization, each algorithm was
given up to 500 epochs initialization to build all its necessary
data structures and (for the centralized control algorithm)
exchange network status information to reach steady-state.
At epoch 500, a jammer was placed in the network. The
location was chosen so that at least 10% of all nodes in the
networks were in its transmission range. The jammer’s fre-
quency was set to the frequency that most nodes within its
range used for transmission at epoch 0. However, the con-
trol channel for the centralized approach was never jammed
and was set to not encounter congestion at any time. We
recognize this is acting in favor of the centralized control
and not a realistic scenario.

After the scenarios containing the nodes’ physical position
and initial frequency assignment and the jammer’s position
and frequency were generated, each control algorithm was
evaluated with each of the 60,000 scenarios. For each of
these runs, we recorded the networks’ overall performance
for every epoch, whether each network had achieved full
connectivity, and at which epoch the control algorithm con-
verged to the final, stable solution.

For the swarm algorithm, we assumed that in a certain
epoch nodes were active with a certain probability. If a
node decided to be active during a time interval, it was
visible to other nodes around it. Otherwise, its neighbors did
not have any information about this node. For the analysis
of performance, convergence, and disconnected networks in
Sections 4.2, 4.3 and 4.4, we assumed a probability of p=0.25
and/or p=1 that nodes were active. In Section 4.5 however,
we explore how the swarm behavior changes for a variety
of probabilities with p={0.25, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9,
0.95, 1}.

To benchmark the performance of the swarming approach,
we implemented a second control algorithm. This algo-
rithm provided a central authority that was in range of ev-
ery other node, received local observations from nodes and
issued (based on the current global knowledge) the best pos-
sible configuration to each node. These status and configu-
ration messages were transmitted on a different channel that
was fixed throughout the simulation.

Such a control channel can nevertheless not transport an
unlimited amount of communication messages. While the
actual capacity would be limited in practice due to back-off,
transmit, decoding and processing times, network topology
would further limit the amount of communication messages.
As in a typical deployment, not every node would be in
range of the central authority. Thus, packets would need to
be routed by nodes along the way and nodes would consume
overhead air time for the relaying of packets.

To account for this bottleneck we limited the number of
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Figure 4: Performance Comparison between Swarm
(p=1) and Control-8

messages that could be transmitted to and from the central
authority during every epoch. We assumed a 50 ms inter-
val for every epoch, which would provide the Swarm enough
time for scanning five frequencies and the central authority
enough time to send and receive about 16-17 messages.6 To
quantify the lost capacity due to routing control messages,
we calculated the average number of hops that it would take
from one node to get to any other node for the 10,000 sce-
narios, since theoretically every deployed node could act as
the controlling agent. As it would take on average more
than 2 hops7 (thus relayed messages) to distribute status
and configuration information, we allowed the central au-
thority to receive and send 8 and 20 messages within each
epoch, which are labeled in the following sections as Control-
8 and Control-20, respectively, and are upper bounds for
the behavior of the centralized control algorithm, modeling
a two-hop routing and a no-routing case.

4.2 Performance
Figure 4 shows the performance of the Swarm (p=1) and

Control-8 algorithm as a cumulative distribution function
(CDF). Due to space restrictions, we are discussing only
two scenarios that illustrate the performance of the two al-
gorithms. Figure 4(b) displays the performance of both al-
gorithms at epoch 50 during the initialization period. In this
part of the simulation, the algorithms started from a random
initialization and needed to converge to a common configu-
ration without the presence of a jammer. Figure 4(b) shows
the percentage of the best possible result for this scenario
achieved at epoch 50 in the initialization period. One can
see that the Swarm approach outperforms the Control-8 al-
gorithm in the case where many configurations must be per-
formed in parallel as the algorithms started from a random
but identical initialization: In 90% of the least scoring sce-
narios, the Control-8 algorithm has only achieved about 10%
of its best possible performance at the end of the initializa-
tion period, while the Swarm (p=1) algorithm has achieved
about 80% of its final performance.

As discussed before, in epoch 500 a jammer appears that
will jam 10% of the network after the algorithms have reached
steady state. Figure 4(a) shows the performance of the al-
gorithms 10 epochs after being jammed, measured as a per-
centage of the final performance at the end of the adapta-

6It takes about 3 ms to send a 200 byte packet on 802.11b
with 1 Mbps.
71.4 messages in a 5 node, 2 messages in a 10 node, 2.8
messages in a 20 node network etc.



Table 1: Convergence Time
# of Swarm (1) Swarm (0.25) Control-8 Control-20

Nodes avg/std avg/std avg/std avg/std
5 8.1 / 27.1 25.6 / 79.5 17.5 / 9.8 4.4 / 2.4
10 17.4 / 46.8 15.6 / 26.9 26.2 / 14.3 7.0 / 3.3
20 57.0 / 133.5 17.0 / 33.1 61.2 / 21.7 17.2 / 10.6
30 37.2 / 109.1 17.3 / 46.4 91.2 / 57.5 26.2 / 7.3
50 43.6 / 117.7 32.5 / 91.6 208.1 / 154.8 57.8 / 45.2
70 71.6 / 162.0 83.6 / 152.2 286.2 / 123.7 183.2 / 117.7

tion. Both algorithms have achieved a high percentage early
on; in 80% of the runs both algorithms achieve at least 95%
of their final result already in epoch 10, however the swarm
algorithm slightly underperforms in this scenario.

4.3 Convergence Time
Table 1 shows the convergence time on instances of 5, 10,

20, 30, 50 and 70 nodes for the Swarm (p=0.25), Swarm
(p=1.0), Control-8 and Control-20 algorithms. As expected
Control-20 clearly outperforms Control-8 since its higher
communication rate with the nodes lets it configure the
nodes faster and can adapt more efficiently to the jammer’s
influence. Therefore, both the average time to converge and
the standard deviation (std) is lower for Control-20 in com-
parison to Control-8.

When doing a pair-wise comparison between the four al-
gorithms, one can see that for small instances from 5 to
30 nodes, Control-20 clearly outperforms the Swarm algo-
rithms, while Control-8 is outperformed by at least one of
the two Swarm algorithms. In all these cases the difference
is not statistically significant, due to the large standard de-
viation. This fast convergence and the improvement in iter-
ations can be seen in Figure 5.

The number of total iterations to final convergence, how-
ever, grows faster for the centralized control algorithms than
for the swarm approach, so that Control-8 is outperformed
by both swarms for 20 nodes and Control-20 for 50 nodes.
For growing network sizes the amount of communication be-
tween the central coordinator and the nodes also grows lin-
early while the number of slots available for communication
with the nodes remains constant. Therefore, it takes more
iterations to reach all nodes and to react to the jammer’s
and other networks’ influences as can be seen in Figure 6.

Figures 5 and 6 also show the reason for the Swarm’s
large standard deviation on its convergence time and why
for large instances the Swarm approach might be a better
choice. The randomness in the Swarm algorithm8 lets some
instances converge only after a long time. This happens for
example when nodes in disconnected networks repeatedly
make local actions to rendezvous with a neighbor while that
neighbor simultaneously makes a similar, but counter action
from a global perspective. These late converging instances
in Figures 5(a)(b) and 6(a)(b) drive the average convergence
time and especially its std up. However, in the majority of
runs (especially for larger instances) the Swarm algorithms
finish significantly earlier than Control-8 and Control-20.

4.4 Disconnected Networks
A similar pattern exists for the connectivity of networks.

After each epoch, we evaluated whether the current network
configuration realizes a fully connected network, i.e. if ev-
ery node in a given network can talk to every other node

8For example by not looking at its neighbors in a pre-
defined, specific order.

on the same frequency. Table 4.4 lists the average number
of disconnected networks and the standard deviation that
occurred in the 500 epochs reconfiguration time after the
jammer’s appearance for the five networks.

Both the average number of disconnected network states
and its standard deviation is lower for Control-8 and Control-
20 when compared to those of the Swarms for network sizes
up to 30 nodes (except for Swarm p=1 and 5 nodes). As the
number of nodes in the network grows, the centralized algo-
rithms reach a tipping point. For 50 nodes, the Control-8
algorithm’s connectivity rapidly drops. As shown in Figure
8(c), in none of the 10,000 scenarios containing 50 nodes does
the Control-8 algorithm configure the network fast enough
that less than 50 disconnected network states occur, and
more than half the scenarios have more than 200 epochs of
unconnected network states. Similarly, the Control-20 algo-
rithm also shows a significant number of large disconnected
states, which more dramatically increases once the network
size is increased to 70. The relatively high standard devi-
ation for the Swarm algorithms can again be explained by
the small number of “late convergers” (see Figures 7 and 8),
while in the majority of runs the Swarm algorithms finishes
within the first 30-80 epochs.

4.5 Activeness of Nodes
Besides network topology and network size, the perfor-

mance of network configuration algorithms also depend on
the number of nodes actually active inside the network at a
certain time. If a node is not active in a centralized scenario,
it cannot exchange network status and configuration. If a
node is not active for the swarm scenario, its neighbors are
not aware of it and cannot change their configuration based
on its presence.

To quantify the impact of the activeness of a network’s
nodes on the convergence of the algorithm, we simulated
500 network scenarios with 8 different activation levels and
with 6 different network sizes. For each of the scenario, we
configured the nodes that they send with probabilities of
0.25, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95 and 1 and placed 5,
10, 20, 30, 50, and 70 nodes in each of the 5 networks. The
result of these 24,000 test cases is shown in Figure 9.

As can be seen in the Figure, the swarm algorithm con-
verges at similar times for all levels of activeness and network
sizes. The small variations in average convergence time re-
sult from outliers as discussed in Section 4.3 and tabulated
(for 10,000 scenarios) in Table 1.

The reason for the similar performance results from the
interplay of the four cohesion rules: As the number of ac-
tive nodes in a scenario decreases, the overall network looses
some cohesion as the sleeping nodes cannot be seen and are
not taken into account when the nodes are converging to a
common configuration.

This lack of convergence due to the Cohesion-I rule (ad-
just your configuration to that of your neighbors) however

# of Swarm (1) Swarm (0.25) Control-8 Control-20
Nodes avg/std avg/std avg/std avg/std

5 8.1 / 22.5 16.2 / 74.6 10.6 / 10.7 2.6 / 2.6
10 27.0 / 68.5 21.5 / 37.7 14.2 / 15.2 3.9 / 3.5
20 50.1 / 122.8 36.1 / 87.5 21.6 / 16.0 11.8 / 10.8
30 52.6 / 161.1 39.9 / 129.6 28.5 / 0.4 8.2 / 4.9
50 64.7 / 196.1 76.6 / 246.6 144.5 / 133.4 42.4 / 37.7
70 87.3 / 203.7 207.4 / 425.1 324.6 / 95.9 247.0 / 138.0

Table 2: Number of Disconnected Network States
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(a) Swarm (1) with 10 nodes
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(b) Swarm (0.25) with 10 nodes
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(c) Control-8 with 10 nodes
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(d) Control-20 with 10 nodes

Figure 5: Convergence time to a final solution for Swarm, Control-8/-20 for five networks with 10 nodes each
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(a) Swarm (1) with 50 nodes
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(b) Swarm (0.25) with 50 nodes
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(c) Control-8 with 50 nodes
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(d) Control-20 with 50 nodes

Figure 6: Convergence time to a final solution for Swarm, Control-8/-20 for five networks with 50 nodes each
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Figure 9: Comparison of swarm behavior conver-
gence for various node activeness probabilities

is counterbalanced by the Cohesion-II, -III and -IV rules.
When less nodes are active, these nodes can converge quicker
to a common configuration. When additional nodes become
also active, the awakening nodes then see a few already con-
verged networks and join these (Cohesion-II). When only a
few these converged networks exists instead of many, these
can also then come to a common configuration faster (fol-
lowing Cohesion-III/Cohesion-IV).

4.6 Summary
As discussed in the previous sections, the decentralized

swarming approach provides competitive results in terms of
overall performance, convergence time and connectivity of
the network when benchmarked against a centralized control
algorithm without requiring the exchange of explicit config-
uration messages. The swarm algorithm scales better than
a centralized one and outperforms in medium size scenar-
ios in respect to convergence time and network connectivity.

While in a medium jamming context (10% of nodes affected)
the swarm algorithm achieves nearly the same results as the
best-possible algorithm using global knowledge in terms of
performance, in a scenario where much adaptation needs to
be done, i.e. after a global initialization (where 100% of
nodes need to be coordinated) the swarm clearly outper-
forms a centralized control. Due to its multiple coherence
functions, the swarm algorithm is independent of nodes ac-
tiveness and also stabilizes in situations where only a few
nodes are active at a time.

5. CONCLUSIONS
In this paper, we have introduced and transferred the

concept of emergent behavior as found in schools of fish
and flocks of birds to the domain of CR networks. We
have shown that the underlying mechanism can help a de-
centralized network to converge to a common configuration
and adapt to outside influences quickly. Our results further
showed that for growing network sizes, algorithms based on
centralized control can reach limitations which are overcome
by the algorithm based on emergent behavior. The proposed
algorithm scales well to large network sizes and is insensitive
to the level of activeness of its network’s nodes.
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Figure 7: Disconnected networks until a final solution for Swarm, Control-8/-20 for five networks with 10
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(a) Swarm (1) with 50 nodes
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Figure 8: Disconnected networks until a final solution for Swarm, Control-8/-20 for five networks with 50
nodes each
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