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ABSTRACT
Recognizing user activities using body-worn, miniaturized
sensor nodes enables wearable computers to act context-
aware. This paper describes how online activity recognition
algorithms can be run on the SensorButton, our miniatur-
ized wireless sensor platform. We present how the activity
recognition algorithms have been optimized to be run online
on our sensor platform, and how the execution can be dis-
tributed to the wireless sensor network.
The resulting algorithm has been implemented as a cus-
tom, platform-specific executable as well as integrated into
TinyOS. A comparison shows that the TinyOS executable is
using about 7kB more code memory, while both implemen-
tations classify the activity in up to 18 classifications per
second.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Distributed
Systems; I.5 [Computing Methodologies]: Pattern Recog-
nition

1. INTRODUCTION
Recognizing user’s actions is one aspect of context aware-
ness which may give future generation smart appliances and
mobile devices the ability to interact with users in a more
intuitive way. The activities of a person may be recognized
by small, wirelessly interconnected sensor nodes worn on the
person’s body [24]. To be unobtrusive, these sensor nodes
must integrate seamlessly into the wearer’s clothes. There-
fore they need to be of small dimensions and can only offer
very limited computational power and memory. Previous
work has shown that online activity recognition of activities
is possible on such miniaturized devices as the SensorBut-
ton [3, 23].
The context information determined on one network node
is more valuable if it can be shared to other devices on the
body or in the environment, such that they can react on
this information. This paper presents our efforts to bring
context recognition algorithms to sensor nodes acting in a
network on the body and its environment. This adds addi-
tional challenges, as the type and number of available sensors
is difficult to foresee and thus, the context algorithms imple-

mented need to be made adaptable to the environment. We
developed a framework that supports the dynamic adapta-
tion of algorithms by reconfiguration of sensor nodes, called
Titan [19]. It allows to express context recognition algo-
rithms using interconnected data processing tasks. Titan
executes those task graphs in a dynamically changing sen-
sor network by reconfiguring individual sensors to update
the network algorithm execution. We have extended Titan
with pattern classifiers and enable it to recognize user ac-
tivities.
In this paper we present how TinyOS [12] is ported to the
SensorButton, such that the Titan framework can be used
on it. We then show how we have selected different param-
eters for recognition algorithms, which are suited for this
platform. Finally we evaluate the costs of using an OS in-
stead of a custom implementation of the activity recognition
algorithms.
The paper is organized as follows: Section 2 describes the
SensorButton and how we ported TinyOS to it. The activity
recognition algorithm is developed in section 3 and its im-
plementation analyzed in section 4. In section 5 we describe
how the context information computation is distributed over
the network. Finally we put our work into a larger context
in section 6 and conclude it in section 7.

2. THE SENSORBUTTON
The hardware used for this project is the SensorButton. Its
architecture is shown in figure 2 and contains 4 main parts:
an analog sensory circuits, digital processing, radio commu-
nication, and a hybrid power supply. The SensorButton is
composed of two stacked PCBs of 31 mm in diameter and 11
mm in height. This makes it small enough to be worn on the
body. Figure 1 shows the SensorButton in its wrist-mount
casing, which also includes a 150 mAh lithium-ion battery.
The wrist is an ideal place for the recognition of activities
using the hands [24, 20]. People are already used to wear
devices similar to watches and thus are not alienated by the
sensation of the sensors.

The upper board of the SensorButton carries 3 sensors:
a 3-axis accelerometer, a MEMS microphone, and a visible
light sensor. All sensors can be turned off individually if
they are not needed; the microphone is filtered by a second
order Butterworth filter. The upper board also provides the
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Figure 1: The SensorButton in its wrist-mount case

Figure 2: The SensorButton architecture with its 4
main parts: analog circuits, digital processing, RF
communication, and the hybrid power supply

wireless communication in form of a nRF2401E transceiver
working in the 2.4 GHz band. It communicates via a PCB
antenna to other SensorButtons or to a desktop computer.
The lower board contains the digital part with a 16-bit,
low-power MSP430F1611 microcontroller running at up to
8 MHz. It provides 4kB of RAM, 48 kB of ROM and offers
4 power modes. The MSP430F1611 contains a 8-channel
ADC to sample the sensor data from the upper board. The
hybrid power supply circuitry is located on the lower board
as well. It allows to power the SensorButton via a lithium-
ion battery in combination with a solar cell. The voltages
of the battery as well as the solar cell can be monitored
via the microcontroller ADC to perform a maximum power
point tracking [4].

2.1 Wireless Network
The SensorButton is intended to be used on the body to
compute context information. Its wireless link transmits
the results to other devices on the body or in the environ-

ment. To get an idea of where the receiving devices can be
located, we have evaluated the communication range of the
SensorButton on the body and its environment in an office
environment. Table 1 shows our results for packet success
rates from different parts of the body to others. Packets are
counted as successfully transmitted if they pass the CRC
test in the nRF2401 transceiver. Long range transmissions
in free line of sight are possible with 63.93% success rate
up to 50m. However, from about 20m distance, any object
blocking the direct line of sight lets the reception rate drop
to almost zero. Reliable transmissions is thus only possible
in very short range. Objects blocking the direct line of sight
line greatly reduce the transmission rate. Consequently the
transmission range from the waist of a sitting person to the
ankle when sitting consequently falls to 78.39% compared
to a standing person. Such rates prohibit the communica-
tion of raw, unprocessed sensor data for an accurate activ-
ity recognition. A better approach is to preprocess data
on the SensorButton itself, and only to transmit intermedi-
ate or finalized classification results, which typically have a
smaller data volume as the complete sensor readings. Re-
ducing the message count to be transmitted saves power, as
the major power consumer on wireless sensor nodes are the
transceivers.

When a sensor node takes part in a wireless network, it

Source Destination Rate
standing
shoulder (A) abdomen (C) 95.69 %
back (D) abdomen (C) 97.12 %
ankle (F) moving arm (E) 94.74 %
ankle (F) still arm (E) 96.86 %
sitting
chest (B) wrist (E) 99.44 %
abdomen (C) ankle (F) 78.39 %
Free line of sight
4m 99.85 %
10m 99.64 %
20m 99.40 %
30m 97.15 %
40m 97.07 %
50m 63.93 %

Table 1: Transmission rates at the highest sending
power level (0dBm), measured in the hallway of our
office

has to follow various other tasks besides computing con-
text information. Such tasks can be following the various
network protocols used (MAC, clustering, routing. . . ). Ad-
ditionally, in real-life many different types of sensor nodes
will be available in the environment, and some abstraction
of the hardware is needed to allow our software to be ported
to these different platforms. To integrate our sensor nodes
into a network, we thus need an operating system. We have
looked at different systems, such as TinyOS, Contiki [7],
SOS [10], and others. Out of these we have chosen TinyOS
for the reasons stated in the following section.

2.2 TinyOS
A major restriction for operating systems for wireless sensor
network nodes are the hard restrictions on computational re-
sources and power. An operating system for such nodes has
to be extremely light-weight and has to incorporate power-
saving modes into its operation. TinyOS is targeted to such



systems and provides the functionality needed. It is pro-
grammed in the nesC [9] C dialect, which allows a modular
composition of the operating system components. The com-
piler only loads modules, which are actually needed. The
peculiarities of programming in TinyOS have been analyzed
in [8]. TinyOS provides a non-preemptive scheduler which
allows to run different processes, or tasks sequentially.
Some of the advantages of using TinyOS as the operating
system are:

• TinyOS has been ported to different platforms, such as
Mica [11], Telos [21], TinyNode [6] and many others.
This brings the advantage that the code can be ported
with reduced effort.

• The modularity of TinyOS allows a flexible composi-
tion of the recognition algorithms. This simplifies the
reuse of algorithm components and makes code also
easier to understand.

• TinyOS has been used by many research groups and in
industry and provides a large code base that can also
be accessed for different projects. Thus implementa-
tion time is reduced by using such components.

We have ported TinyOS 2.0 to the SensorButton. The mi-
crocontroller is the same as one of the prime platforms for
TinyOS, the Telos motes, which simplified the porting of
the operating system, as only the external interfaces had to
be adapted to the different hardware. We had to extend
the ADC driver module for our purposes in two ways: 1)
consecutive reading of the ADC channels, such that the 3
channels of the accelerometer are sampled as synchronous
as possible. 2) DMA controlled sampling to achieve a 4kHz
reading of the microphone without burdening the microcon-
troller too much. The major porting work was writing a
driver for the nRF2401 transceiver, which was not yet sup-
ported by TinyOS. The TinyOS hardware abstraction made
the use of the SensorButton-specific transceiver transparent
to the application running on TinyOS.
The code for the activity recognition algorithms could be
integrated by writing wrapper modules around the function
calls. To allow the TinyOS scheduler to run other tasks dur-
ing the classifier runtime, the classifier code had to be split
into a sequence of tasks to be executed. This allows other
tasks, such as network protocols, to be run in parallel by
TinyOS, but adds additional overhead to the execution of
the algorithm.

3. ACTIVITY RECOGNITION
The main challenge on performing online activity recogni-
tion on a platform like the SensorButton is to select al-
gorithms which can achieve acceptable recognition perfor-
mance with limited computation resources. Our method-
ology was to select a scenario with a number of activities
to be recognized. These activities would then be recorded
on multiple subjects for an offline analysis to determine the
optimal settings for an online activity recognition algorithm
running on the SensorButton.
We have chosen an office worker scenario and selected the 7
activities listed in table 2 to be recognized. The data pro-
cessing flow used for our algorithms is as follows: The sensor
data is segmented using a sliding window. The second step
is to compute features that characterize the signal captured

Drinking water
Moving a computer mouse
Writing on a whiteboard
Opening a drawer
Opening a cupboard
Typing on a keyboard
Writing with a pen

Table 2: Office worker activities to be recognized by
the activity recognition algorithm

Sensors Accelerometer, light sen-
sor, microphone

Segmentation Sample frequency (32Hz),
window size (2.5 sec), win-
dow overlap (70%)

Features mean, energy, variance,
std. deviation, fluctuation,
mean gradient, abs. gradient,
mean crossing rate

Classification J48/C4.5, k-Nearest
Neighbors (k-NN), Näıve
Bayes, Bayes Net

Table 3: Design space for the activity recognition al-
gorithm. Our choices for the actual implementation
are marked in bold

in the window, which are then fed into a classifier. In a last
step, the result is communicated to other sensor nodes.

Table 3 shows the design space of the activity recogni-
tion algorithm optimizations. To assess the influences of
the different parameters, we have asked 9 test subjects to
perform each activity 30 times. The sensor values have been
collected with 4086 Hz from the microphone and with 108
Hz for the other two sensors. It served as the basis for an
offline-analysis of the different parameters. The main goals
of the optimizations were to achieve a high recognition rate
with low processing complexity. In the following, we present
the results we have found for each step of the algorithm.
Sensors: The microphone information is ruled out as the
activities in the given scenario are dominated by motions
and the accelerometer readings yield much more valuable
information.
Segmentation: Figure 3 shows the effects of the window

size and overlap on the performance of the classificators ex-
emplarily for the k-NN classifier. A higher overlap improves
the recognition performance, which leads to a trade-off to
additional computational work needed to process all data
multiple times. The size of the window needs to be cho-
sen more carefully, since a too long as well as a too short
window will degrade the performance of the classifiers. The
sampling frequency also plays a major role in the resulting
processing needed for the data. We have analyzed its ef-
fects by resampling our recorded data and have chosen a
sampling frequency of 32 Hz. Lower sampling frequencies
will significantly decrease the recognition rate. A window
size of 2.5 seconds and an overlap of 70% resulted in a good
compromise between processing needs and recognition per-
formance.
Feature Extraction: Features can be ranked based on the
information gain they provide to the classifier [14]. The fea-



Figure 3: Evaluation of classification quality for on-
line context recognition for the kNN classifier at 32
Hz

ture information gain must again be related to the cost, or
computational complexity of computing it. Table 3 lists the
evaluated features. The mean, variance, and energy values
of the signal of the window have been selected for implemen-
tation and have been computed for all of the 3 accelerometer
axes and the light sensor.
Classification: We have used the Weka Machine Learning
Toolkit [26] to train the classifiers. All four classifiers we
have used in our analysis showed similar recognition behav-
ior. Thus the complexity of the calculation has been the
decisive point, where we have chosen to use k-NN with a
Manhattan Distance, and a J48/C4.5 decision tree, being
the classifiers with the least complexities but rendering ac-
ceptable performance.

4. RESULTS
The selected k-NN and J48/C4.5 classifiers have been im-
plemented for the SensorButton in two configurations: a
custom code, platform-specific executable and an integra-
tion into TinyOS.
In the offline evaluation on a PC, the classifiers reached 98%
recognition rate. The implementation for the SensorButton
let the recognition rate drop to 86% for the J48/C4.5 and
91% for the k-NN (k=5) classifier. This is mainly due to
the reduction of the bit accuracy from floating point to fix-
point, which is needed for an online implementation on a
16-bit microcontroller.
The custom code implementation has been compiled us-
ing the IAR C/C++ Compiler for MSP430 version 3.42A.
TinyOS compiled with nesC 1.2.7b (gcc 3.4.4 for Cygwin).
The memory footprints of the implementations are shown
in table 4. TinyOS adds about 7kB of code to the appli-
cation. This code contains the TinyOS scheduler, different
hardware control and access modules, and wireless protocol
implementations, which do not exist in the custom solution.
More important with respect to power consumption is the

execution time of the algorithms, which is shown in table 5.
The sampling time indicates the time needed to access the
ADC to sample the sensors, which is done at 32Hz. The
total time for each classifiers includes the time for sampling,
feature calculation, and communication for 1 of consecu-

TinyOS Custom Code
k-NN C4.5 k-NN C4.5

Code (ROM) 33’428 9930 26’317 2978
Data (RAM) 2476 2476 2338 2338

Table 4: Code size in bytes of the implementations.
The large code memory requirements for the k-NN
derive from the feature space point database, which
contains 1312 entries

tive classifications. It includes the sampling time 24 times,
as with 70% window overlap, every sample in the 2.5 sec-
ond sampling window is used about 3 times. A unexpected
observation was that the gcc compiler optimized the same
code for the feature calculation and the k-NN classifier bet-
ter than the IAR compiler. This resulted in an overall lower
computation time for the C4.5 classifer in TinyOS.

TinyOS [ms] Custom Code [ms]
Sampling 1.01 0.03
Features 7.2 27
k-NN 54 80
C4.5 0.02 0.02
Communication 22 10
Total kNN 107.44 117.72
Total C4.5 53.46 37.74

Table 5: Execution Times on custom and TinyOS
code for 80 samples and 70% window overlap in-
cluding sampling interruptions at 32 Hz

To get the power values, the computation times have to
be multiplied with the power consumption in the different
states. Table 6 shows the power consumption of the Sen-
sorButton when different modules are enabled. It shows the
large power drawn by the microphone and identifies the wire-
less link as the biggest power consumer. The power needed
by the transceiver can be reduced using a duty-cycling MAC
protocol [5], which allows to turn it off for certain times.
If the SensorButton does not have to receive any data at
all, the power requirements can further be reduced by only
turning the radio on when it is needed to send a message
containing the recognition result. The same applies for the
sampling of the sensors, which could be turned off when not
in use.
If the SensorButton is always driven in the optimal power

Active hardware modules mW
MSP430 only (at 4MHz) 0.99
plus light sensor and accelerometer 4.78
plus Microphone 17.63
plus nRF2401 28.08

Table 6: Power consumption of the SensorButton in
different operation modes

mode, meaning sensors and transceivers are only turned on
when actually needed, a theoretical minimum energy re-
quirement per classification of 803 µJ for k-NN and 749 µJ
for the C4.5 can be computed for the TinyOS implemen-
tation. However, this is a theoretical value, as sensors as
well as the transceiver need a startup time before they can
be used. Our TinyOS implementation leaves sensors on all



the time and enables the transceiver only for transmission.
This renders an average power consumption of 5.46 mW
when communicating 2 classifications per second. Using our
150 mAh battery, this configuration can be run for 75 hours.

5. COLLABORATIVE CONTEXT
RECOGNITION

A collaborative context recognition of multiple sensor net-
work nodes may be beneficial for different tasks; to recognize
whether two devices are on the same person [18], the device
position on the body [16], or of course the activity of a per-
son using multiple sensors on the body [2]. The classification
results from different devices can also be communicated to a
meta-classifier. It fuses the different results to improve the
overall classification result [22].
In a dynamic environment such as an on-body-network, it is
difficult to make assumptions about what devices are avail-
able in the environment beforehand, and must thus be as-
sessed during the runtime of the network. As people move
around, the situation can also be changing quickly, and dis-
tributed context algorithms must be constantly adapted to
the momentary configuration of the wireless network.
Titan [19] is a framework designed for this task. It dy-
namically reconfigures wireless sensor networks to perform
algorithms that have previously been specified by design-
ers as task graphs, describing the data flow from sensors to
recognition result. These algorithm task graphs are loaded
into a database in the wireless network. When a node calls
for the execution of a task graph, Titan examines the cur-
rently available sensor network for its capabilities and starts
a distributed task graph execution.
The task graph remains executing until network nodes fail
or get out of reach. In this case, Titan computes a new
network configuration and dynamically reconfigures single
network notes, such that the algorithm can continue to run.
Titan has the following distinct advantages:

• Ease of use – Algorithms are designed as task graphs.
All communication between those tasks are taken care
of by Titan.

• Portability – Titan is based on TinyOS, which has
been ported to different platforms. Due to the ab-
straction from the actual hardware it can run on het-
erogeneous networks.

• Flexibility – It adapts to the dynamic wireless sensor
network configuration by reconfiguring individual sen-
sor nodes to keep the distributed algorithms running.

• Speed – Titan can reconfigure a sensor node in less
than 1 ms [19].

The activity recognition algorithms presented in section 3
have now been incorporated into Titan and enable it to per-
form more complex activity recognitions.

6. DISCUSSION
Task graphs for context recognition has been employed by
the Context Recognition Network Toolbox [1] in different
projects [25]. It is intended to be used on a Linux-based
computer. Its ease of use has convinced us to bring the same
algorithm design principle to Wireless Sensor Networks. For

this purpose we had to add the capability to handle het-
erogeneous and dynamically organized wireless sensor net-
works, which have done in Titan.
Capturing activity information by accelerometers has been
done by different groups [2, 13, 17]. However, these ap-
proaches require more processing power as miniaturized de-
vices, such as the SensorButton can provide. Initial work in
the direction of context aware wristwatch sized computers
has been done by [15], where simple activities such as walk-
ing, sitting, and standing have been recognized. The work
at hand goes further in that it recognizes more complex ac-
tivities.
In future work we will start making use of the classifiers
ported to Titan and go into the recognition of activities us-
ing multiple sensors located on the body. This will start
to rise a series of questions that we want to target, such
as: how are the recognition algorithms influenced by un-
reliable communication links, ie. missing data? From the
available sensors, which should be selected for the actual
context recognition, and if they fail, which should replace
them? Another interesting question is how to derive, which
sensors are all on the same body, and clustering them such
as to know which sensors will presumably keep together for
some time.

7. CONCLUSION
The SensorButton platform has been presented and an ac-
tivity recognition algorithm has been developed and opti-
mized for an online activity recognition in an office worker
scenario. This algorithm has been implemented twice, once
as a single application and a second time integrated in the
TinyOS operating system. A surprising result is that the
implementation in TinyOS executes faster, which must be
due to the different compilers used. The TinyOS implemen-
tation also uses about 6kB more code memory, while the
dynamic memory requirements are comparable. The imple-
mentations are able to perform up to 18 context evaluations
per second.
The activity recognition algorithms can be integrated in a
dynamic wireless sensor network using Titan. In this frame-
work, the algorithms adapt dynamically to the available sen-
sor network nodes.
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