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ABSTRACT
Energy gives personal comfort to people, and is essential for
the generation of commercial and societal wealth. Neverthe-
less, energy production and consumption place considerable
pressures on the environment, such as the emission of green-
house gases and air pollutants. They contribute to climate
change, damage natural ecosystems and the man-made envi-
ronment, and cause adverse effects to human health. Lately,
novel market schemes emerge, such as the formation and op-
eration of customer coalitions aiming to improve their mar-
ket power through the pursuit of common benefits.

In this paper we present CASSANDRA, an open source1,
expandable software platform for modelling the demand side
of power systems, focusing on small scale consumers. The
structural elements of the platform are a) the electrical in-
stallations (i.e. households, commercial stores, small indus-
tries etc.), b) the respective appliances installed, and c) the
electrical consumption-related activities of the people resid-
ing in the installations.

CASSANDRA serves as a tool for simulation of real demand-
side environments providing decision support for energy mar-
ket stakeholders. The ultimate goal of the CASSANDRA

1https://github.com/cassandra-project

simulation functionality is the identification of good prac-
tices that lead to energy efficiency, clustering electric energy
consumers according to their consumption patterns, and the
studying consumer change behaviour when presented with
various demand response programs.

Categories and Subject Descriptors
I.6.7 [SIMULATION AND MODELING]: Simulation
Support Systems

General Terms
Design, Experimentation

Keywords
Decision support tool, Consumer analysis, Demand-response

1. INTRODUCTION
Energy markets have undergone fundamental changes at

the conceptual level over the last years. Sustainability re-
quirements have transformed the traditional power produc-
tion scheme to a distributed energy resource one. The future
points towards a great number of decentralized, small-scale
production sites that include renewable energy sources. The
Smart Grid paradigm is here to stay, while the deregulation
of energy markets has defined new rules and procedures.
This context presents substantial opportunities to actors
throughout the electrical energy value chain. These, how-
ever often remain unexploited for two main reasons: a) Small
scale consumers, comprising the vast majority of electrical
energy consumers, each have insignificant market power and
are individually unable to affect market related policies and
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b) there is currently a lack of tools for modelling the con-
sumers with respect to their consumption behaviour, the
identification of trends formulated and the evaluation of
policies and decisions against specific socio-economic and
environmental performance indicators.

To this end, we designed and developed CASSANDRA,
a platform for the realistic modelling of the energy mar-
ket stakeholders, including small-scale consumers. Through
CASSANDRA, users are able to test and benchmark work-
ing scenarios that can affect the electrical power system op-
erations, pricing, as well as environmental policies at dif-
ferent levels of abstraction, starting from a single small-
scale installation (e.g., an apartment) and shifting up to
large numbers of consumers (e.g., an entire city). Further-
more, CASSANDRA supports the grouping of small scale
consumers into Consumer Social Networks (CSNs) with in-
creased market power that are able to negotiate their energy
needs, but can also respond to specific targeted incentives
for behavioural change.

The main objectives of CASSANDRA are to:

1. Provide a theoretical model that clearly defines the
energy profiles and energy consumption patterns of all
relevant stakeholders, as well as their interrelations, in
order to support energy efficiency.

2. Promote and validate methodologies that provide in-
creased market power to low level consumers, through
consumer coalitions (Consumer Social Networks - CSNs).

3. Develop a modular, extendable and interoperable soft-
ware platform that implements the CASSANDRA the-
oretical paradigm to model, simulate and benchmark
scenarios and operations, and act as a decision mak-
ing tool for energy performance, considering consumer
behaviour.

4. Promote the proposed consumer behaviour and load
modelling approach, and disseminate the energy and
environmental benefit/impact.

The paper is organized as follows: In Section 2 we present
related work and motivation, while in Section 3 we introduce
the CASSANDRA platform, where we discuss the CASSAN-
DRA entities, the architectural overview, and the respective
workflow, as well as the CASANDRA simulation process.
Section 4 presents the validation and testing of the Platform.
We conclude in Section 5, summarizing the benefits CAS-
SANDRA contributions to the energy market and proposing
future work directions.

2. RELATED WORK
During the past 30 years, a number of paradigms have

been presented in the international scientific community re-
garding energy efficiency frameworks and modelling of en-
ergy consumption of small-scale electricity consumers. These
models correspond mainly to residential electricity consumers;
however, in most cases, they can also be used for the mod-
elling of commercial or small industry consumers.

Moreover, during the last years, social networks have been
in the center of attention for various research communities.
Numerous methodologies, such as social network analysis,
graph analysis, statistical models, multilabel classifiers and
collaborative systems have been proposed, that either com-
bine information from multiple social resources or analyse

specific aspects of the formed networks. These methodolo-
gies are based on resource attributes and have been applied
in different fields, but their use in energy markets remains
limited, despite the fact that they could have an important
influence for their operation.

2.1 Energy Efficiency Frameworks
The approaches used for energy-consumer modelling may

be divided in two categories: a) top-down and b) bottom-up
approaches. Top-down approaches require the implemen-
tation of econometric and technological data in a macro-
scopic level. Bottom-up ones correspond to the cognitive
approaches (see [21] for a comprehensive review of existing
implementations), where methods such as neural networks
[12], fuzzy logic [8], conditional demand analysis and regres-
sion techniques [3] are used along with past consumption
data, in order to predict future load profiles. The problem,
in the latter case, is that cognitive systems are heavily de-
pendent on the nature of the past data used for their train-
ing procedure. This data usually corresponds to a specific
background (e.g. the energy consumption in a single coun-
try), and always refers to a specific time frame, thus not
being able to follow changes in consumption patterns, due
to technological or policy novelties.

With respect to existing frameworks that either optimize
or simulate energy performance, two types of approaches
exist: a) frameworks that focus on optimally solving very
specialized problems (e.g. specifying the market equilibrium
in the power stock market), where algorithmic optimization
is performed; and b) frameworks that model specific seg-
ments of the Energy market, either in the context of effi-
ciency (buildings and houses), or in the context of affecting
behaviours (reduction of consumption).

It should be mentioned, with respect to the latter cate-
gory of frameworks, that no standardization attempt exists,
that would allow for the modelling of all entities and their
interactions in a uniform manner. As far as tools that fo-
cus on optimally solving specialized problems are concerned,
employed approaches are further differentiated in two sub-
categories: (i) tools that focus on the optimization of energy
performance, given a set of hard constraints (not allowing
versatility/dynamicity and exploration); and (ii) tools that
simulate more dynamic scenarios and are investigating for
the optimal strategy/solution. In the former case machine
learning techniques, such as neural networks [11], genetic
algorithms [9], support vector machines and temporal data
mining techniques have been employed for solving problems
related to load prediction, market equilibrium identification
and decision support. In the latter case, agent modeling and
machine learning approaches are adopted, in order to ensure
dynamicity and uncertainty. One should mention SEPIA
(Simulator for Electrical Power Industry Agents), a multi-
agent platform capable of running a plethora of comput-
ing experiments for many different energy market scenarios.
In the same context, EMCAS (Electricity Market Complex
Adaptive System) [7] implements an efficient mechanism for
handling the Electric Energy Market, while also studying
the complex interactions between the physical entities of the
market, in order to analyze the participants and their strate-
gies. As far as real-market analysis is concerned, Bagnall [2]
presents a simplified simulation model of Great Britain’s
Electricity Market with producers being agents that par-
ticipate in a series of auctions-games, wherein the possibil-



ity of cooperation between agents is also observed. There
are also a few implementations specifically designed for En-
ergy Markets, which are, though, merely simulations for the
regulations. One of the first platforms created was MA-
SCEM (Multi-Agent Simulator for Competitive Electricity
Markets) [22], which was used to validate regulations and
behaviors within the Electricity Markets, using only naive
reinforcement learning strategies. Another Agent platform
was soon developed in order to test the reliability of the pro-
posals FERC of USA (Federal Energy Regulatory Commis-
sion) applied in the Standard Market Design (SDM) [14]. In
this implementation, agents were used to model the Produc-
ers (Enterprises or Persons), the Consumers and the Distri-
bution Network Operator. More multi-agent systems have
been successfully applied to model Power Markets (see [27]
by Zhou et. al. for a survey).

In 2006, Sonnenschein et al. [20] described an agent-based
simulation tool for examining the impact of real-time pric-
ing methods on the power consumption of domestic users
(households). The main entities within the model are elec-
tricity suppliers and electricity consumers scheduling their
demand according to real-time prices for electricity. In [26],
a hybrid econometric and social influence model was imple-
mented for evaluating the influence of pricing and public
education policies on residential habit of electricity using in
power resources management. Abras et al. [1] implemented
a Multi-Agent Home Automation System (MAHAS) dedi-
cated to power management that adapts power consumption
to available power resources according to inhabitant com-
fort and cost criteria. Karnouskos et al. [13] presented the
emergent concept of a future Smart City Grid. They de-
signed and built a simulator based on software agents that
attempts to capture the behaviour of a smart city, by simu-
lating discrete heterogeneous devices that consume and/or
produce energy, able to act autonomously and collaborate.
Similarly, in [25], [18], residential consumers are modelled
as autonomous agents (SmartHome) which are responsible
for shifting their consumption in order to maximize the resi-
dential revenue, in addition to several social welfare factors.
These studies do not attempt to model consumer behaviour,
since their goal is the decentralized control of shiftable loads
and the optimal utilization of renewable energy sources.

On the other hand, Power TAC is a multivariate bench-
marking framework that models the energy market from a
financial/economic perspective [6]. In Power TAC, focus
is given on individual agents that act as retail brokers in
a local power distribution region, purchasing power from
a wholesale market, as well as from local sources, such as
homes and businesses with solar panels, and selling power
to local customers and into the wholesale market. However,
there are issues unaddressed in Power TAC. One of these
issues is consumer modelling, which is indispensable for the
development of dynamic consumer models, as preferences
essentially guide choices and decisions, both in real life and
in a dynamic model that endeavours to simulate it [4].

In bottom-up approaches heuristic methods can be used.
Various sets of rules are used, in order to develop a number
of basic load profiles. Subsequently, probability distribu-
tions are utilized, in order to produce greater numbers of
load profiles, based on the initial ones. The set of rules
used for the determination of the initial load profiles may
be arbitrarily complex, and it may take into consideration
demographical data, historic consumption data, information

regarding all the involved consumption appliances, seasonal
variations, etc. [10, 17].

However, even the most advanced heuristic models avail-
able in the literature, share some common weaknesses. They
are developed within the traditional structure of the respec-
tive energy markets, considering consumers mainly as pas-
sive elements with little or no response capabilities. This
means that the resulting models are very efficient in pro-
ducing great numbers of small-scale consumer load profiles,
but they are not able to model consumer reaction to possi-
ble incentives. A novel approach is, therefore, essential that
will be able to combine the results of the aforementioned
approaches with the ability to model demand response.

2.2 Consumer Social Networks
Consumer social networks have been leveraged for mo-

tivating people into reducing CO2 emissions as well. In
[16] Mankoff proposed to explore the use of social network-
ing websites in supporting individual reduction in personal
energy consumption. They integrated feedback on ecologi-
cal footprint data into existing social networking and Inter-
net portal sites, which allowed frequent feedback on per-
formance, while enabling the exploration of motivational
schemes that leverage group membership. Approaches like
the ones followed by Opower2 and Bidgely3, attempt to em-
power Energy Service Companies (ESCOs) with actionable
insights for their customers by engaging the latter in a so-
cial loop with tips on their energy efficiency and compar-
ative graphs on others’ consumption. Consumers became
the center of attention in the early 2012, when the “Which?
campaigning charity”4 started the “Big Switch” initiative, a
completely new way to buy - and save money on - people’s
energy. So, using the power of thousands of consumers, it
planned to negotiate with energy suppliers in the UK and
seek to secure a market-leading energy deal and help people
make the switch. Which? had more than 50.000 people sign
up to the “Big Switch” within the first 48 hours and more
than 250.000 more since.

In the same context [24] attempts to organize consumers
into Virtual Electricity Consumer (VEC) entities, which pro-
cure electricity as a single customer in order to get a discount
on electricity through collective buying. In their approach,
they try to exploit real social relations between consumers
and build flattened profiles for the VECs. Regarding de-
mand side management, [15] envisages the formation of co-
operatives of medium-large consumers and the design of a
mechanism for allowing cooperatives to regularly participate
in the existing electricity markets by providing electricity
demand reduction services to the Grid. The proposed Con-
sumer Demand Side Management (CDSM) mechanism em-
ploys agents that proactively place bids in the electricity
market, contribute to the flattening of the energy consump-
tion curve for the day ahead and distributes profit among
the cooperating agents. [23] focuses on the concept of a Vir-
tual Power Plant (VPP) and attempts to define a mechanism
for creating coalitions between wind generators and electric
vehicles, where wind generators seek to use Electric Vehi-
cles (EVs) as a storage medium to overcome the vagaries of
generation.

2www.opower.com
3www.bidgely.com
4www.which.co.uk



However, available literature on coupling demand side man-
agement with social networks is limited, and mainly focused
in the field of telecommunication networks. This is mainly
based on the fact that the burst of cell phone use took place
during the 00’s, while the existence of different consump-
tion programs/tariffs is still limited in the energy market.
Following the social network literature, [19] described the
structure of a CSN with two key characteristics: a) strength
of a tie, and b) relational density of a personal network.
Shi’s study provided many useful guidelines for the design
of optimal price plans. In another work, [5] estimated the
importance of tariff-mediated network effects in the use of
mobile telephones and the impact of the structure of social
networks on consumer choice.

From all related work, one may say that work by Vinyals
et al. [24] is closer to our approach. However, their hy-
pothesis differs from our approach in three ways. First, au-
thors consider the existence of social interaction between
consumers, thus links already exist; we define links based
on the ”proximity” of consumers, and model consumers ac-
cordingly. Second, authors do not consider network topol-
ogy, and how consumers are assigned under different ML
(medium-low) voltage transformers; this is probably not im-
portant if applied in large-scale (since authors are referring
to the market), nevertheless has to be taken into considera-
tion from the power network perspective. What is more im-
portant, though, is that we do not focus on the behavioural
aspects of the network and how they will act/interact, given
specific incentives; we focus on how structural properties of
a generated network will influence peak reduction.

2.3 CASSANDRA’s contributions
From all the above, it is obvious that work on energy effi-

ciency, i.e. energy efficiency frameworks and energy-consumer
modelling, is not mature enough, and that there are not
many published studies that approach residential electri-
cal power consumers as individual and autonomous entities.
In addition, consumer social networks have been partially
leveraged for motivating people into reducing energy con-
sumption. Nevertheless, none of the already developed tools
and methodologies provide an integrated solution to energy
market stakeholders for testing and benchmarking scenar-
ios where they provide incentives to consumers for energy
reduction.

This is the reason we propose CASSANDRA, a platform
for the realistic modelling of the energy market stakeholders,
including small-scale consumers. The system integrates be-
havioural and simulation models with user interfaces to sup-
port the following functionalities: a) disaggregation of loads
at an installation level, to identify the appliance consump-
tion models and to map active and reactive load curves to
appliance switching by consumers, b) modelling of consumer
activities, supporting also small-scale consumers, c) a range
of simulation models, including simulation of large number
of installations using demographics/statistics, d) modelling
of consumer behaviour/response to monetary incentives, en-
vironmental impact, as well as to different levels of aware-
ness of the consumers to these parameters, e) simulation
and comparison of different demand response and feedback
scenarios, f) computation of different Key Performance In-
dicators (KPIs) and their modification in the simulated and
applied scenarios, g) public pages for consumer awareness
where consumers can view the simulated and real consump-

tion of their installations.
The CASSANDRA platform is expected to be used by

aggregators, energy efficiency/monitoring devices providers,
regulators/distribution network operators/transmission sys-
tem operators, energy traders/suppliers, energy efficiency
software providers, energy and environmental consultants,
university/research centres, and large scale consumers.

3. THE CASSANDRA PLATFORM

3.1 The CASSANDRA Entities
Modelling in the CASSANDRA platform is based on a set

of assumptions, used to determine the properties of entities,
whose interactions result in the representation of a single
small-scale installation with respect to its electrical energy
consumption. Conceptually, an installation is assumed to
comprise a set of electrical appliances, used by a single equiv-
alent person according to his/her consuming habits. Thus,
there is an installation entity, which is correlated with a
person entity and a number of appliance entities. The ap-
pliances are described by respective consumption models,
used to simulate their energy consumption during operation.
Moreover, the person is correlated with a number of activ-
ities (e.g. cooking, cleaning, entertainment), involving the
operation of appliances. Each activity is essentially a set of
probability density functions, determining the possible trig-
gering, time of use, and daily usage frequency regarding an
appliance within a simulation scenario. The CASSANDRA
platform functionality is based on a set of models, which
interact in order to represent and simulate real life demand
side scenarios, ranging from measurement analysis regard-
ing individual installations, to demand response modelling
for a consumer community.

3.2 Architectural overview
The proposed CASSANDRA platform modules are de-

picted in Figure 1; these are:

1. The Agent module: The agent module plays the role of
the simulation engine of the CASSANDRA platform.
It contains the necessary structures for modelling the
behaviour of agents (persons) and object constructs
(i.e. installations, appliances) with respect to energy
consumption activities, communication, and response
to stimuli in the form of demand side management
programmes.

2. the CSN module: The CSN module is a tool for per-
forming general network analyses and clustering the
population into groups based on (dis)similarities of be-
haviour or social activities. It is a benchmark tool for
experts to experiment and test different use case sce-
narios, in order to fine-tune hypotheses on consumer
response based on CSNs.

3. the Aggregation module: The aggregation module serves
as the interface between the agent module (simulation
engine), the CSN module (graph/clustering studies)
and the web-service module (API). Even though it is
depicted as a box in Figure 1, it is actually the wrap-
per code that implements the interactions between the
modules. The aggregate module is a form of mapping
I/O of one module into I/O of another module.



4. the Web service module: The web service module is the
socket of the CASSANDRA platform to the outside
world. Through this interface it is possible to define
simulation scenarios, policies (pricing, legislative) and
KPIs in order to be simulated by the agent module.
The same interface can be used to query for results
and for post-simulation reporting and analysis.

5. the End-user module: The end-user module is an im-
plementation of a front end-client that adheres to the
web-service module communication protocol. It pro-
vides a graphical interface for using the platform. With
this module the CASSANDRA platform is a complete
and usable tool and not just a simulation software plat-
form. In addition, the end-user module has ready-
made reporting and assessment functionalities. We
should also mention that due to the incorporation of
the web-services it is possible for any developer to im-
plement an end-user module.

Figure 1: CASSANDRA modules

The overall CASSANDRA platform architecture as pro-
jected from the conceptual CASSANDRA platform (Figure
1) is depicted in Figure 2. Besides the aforementioned CAS-
SANDRA modules, several technical layers have been intro-
duced from the conceptual to the implementation design.

The CASSANDRA platform was designed to follow the
Software-as-a-Service paradigm, where the software along
with its data are hosted on the cloud and access to their
computational and data resources will be met, on-demand,
by users via thin clients. The decoupling of the CASSAN-
DRA platform and the end-user interface introduced a layer
of communication between the server and the client imple-
mented through a RESTful web-service.

Last but not least, a database component was added in
order to efficiently store and retrieve data related to the enti-
ties of the CASSANDRA platform. There are several types

Figure 2: Overall CASSANDRA platform technical
architecture

of databases in the platform: (a) the projects database,
which holds all the modelling information to run the sce-
narios defined by the user, (b) the results database, which
holds information regarding runs of a scenario along with
their definition and (c) the CASSANDRA and user libraries
databases, which hold ready-to-use models of CASSANDRA
entities so they can be used and re-used in different scenar-
ios. Figure 3 depicts the CASSANDRA platform as a UML
deployment diagram

3.3 CASSANDRA Workflow
In order to illustrate the main dataflow and workflow sce-

nario, let’s consider an end-user that wants to perform a
simulation of the energy demand of a large neighbourhood
and find information about the activities that took place
during peak demand time (the workflow is depicted in stan-
dard fonts and the dataflow in italics):

1. Through the CASSANDRA GUI, the user creates a
new project and then a new scenario. The properties of
the project and scenario entities are entered in the GUI
and stored in the DB in the form of JSON documents.

2. The user defines a number of appliances along with
their consumption models and a number of person
types along with their behaviour with respect to ap-
pliance usage patterns. Also the user defines demo-
graphic data of appliances, person types and instal-
lation types, number of days and start/end dates of
the simulation along with the number of installations
to be populated dynamically. The entity definitions
are stored in the DB in the form of JSON documents.



Figure 3: Deployment diagram of the CASSANDRA
platform

All the operations are made through the REST Web-
service Create Read Update Delete method calls.

3. The user wants to take a person of type “student” from
the CASSANDRA library and put it in the collection
of person types to be created during the instantiation
of the scenario. The JSON documents and their hier-
archical structure of an entity of type person (person
=¿ activity =¿ activity models =¿ distributions) are
retrieved from the CASSANDRA Library and the doc-
uments are copied to the projects database for further
use.

4. The user requests to execute the simulation scenario
with the provided simulation parameters A JSON doc-
ument is created that contains all the necessary JSON
documents (as sub-documents) required to run the sim-
ulation. A new database is created in order to store the
JSON document defining the scenario and later store
the results of the run. The simulation is executed as a
background thread.

5. During the simulation, the CASSANDRA entities ap-
ply their behavioural patterns to their corresponding
environment and every minute the aggregate and per
installation power consumption is stored in the database.

6. Upon completion, the user requests the energy con-
sumption time-series of the neighborhood for a specific
period of time, say one week. A JSON document is re-
turned containing the power demand for every minute
in the simulation.

7. The user spots a peak and requests to find out what
types of activities and appliances where on, during

that peak time. A JSON document is returned dis-
playing the types of activities and appliances at that
period of time along with their count and percentage.

A more general dataflow of creating and running CAS-
SANDRA scenarios is depicted in Figure 4 as an activity
diagram:

Figure 4: Activity diagram for creating a CASSAN-
DRA platform scenario

3.4 CASSANDRA Simulation
The CASSANDRA platform is a combination of event-

based and time-based simulation methods. Algorithm 1 de-
scribes the whole simulation procedure.

First of all because of its stochastic nature, each simu-
lation can be executed numerous times in order to get an
average estimate of its results and provide more robust con-
clusions. For each such run, every tick is considered to be



Algorithm 1 Simulation procedure

initialize_run();

while(tick < endTick)

if(beginningOfDay(tick))

foreach installation

queue.add(installation.getDailySchedule());

// search if an event exists and apply it by

// either switching on or off an appliance

while(queue.peek() &&

queue.peek().getTick() == tick)

event = queue.poll();

event.apply();

// For each installation calculate power,

// energy, costs, kpis

foreach installation

installation.update(tick);

one minute of time. If the current tick is the beginning of
the day, the activity models in each installation create the
events of switching on or off appliances and are then inserted
into a priority queue. If an event or events exist that are
supposed to take place at the current tick, we pop them out
of the queue and apply their action. Then, we update the
consumption profile and KPIs in the current tick for each
installation.

In the end the simulation database contains information
about: 1) Active power per minute, 2) Reactive power per
minute, 3) Energy consumed, 4) Costs incurred and 5) KPIs
(e.g. max active power, average active power, CO2 emis-
sions), for each installation and for the run as a whole.

3.5 CSN Module
CASSANDRA upgrades the role and market power of

small-scale electricity consumers by utilizing the concept
of consumer social networks (CSN). Within this context,
CASSANDRA provides both the essential infrastructure for
the development and transparent operation of CSN, as well
as the theoretical background concerning the utilization of
CSN for the improvement of network reliability and qual-
ity of service. The CASSANDRA CSN module focuses on
the types of CSN graphs to be identified and developed
(real-time interaction social graphs, macro-scale interaction
graphs), as well as on the parameters that comprise the
proximity and analysis metrics of the graphs (e.g. load con-
sumption instance, peak consumption, consumer type, being
some of them). Different metrics and clustering algorithms
are supported. The main focus of this module is to model
and cluster consumers with respect to mutually exploitable
loading levels and interaction with other consumers, rather
than merely classifying them on their consumption habits.
Consumer profiles provide the basis for a number of oper-
ations (personalization, experts finding, etc.). In the CAS-
SANDRA CSN module (Figure 5), we represent consumer
networks as an undirected graph: G = (V,E), where each
node is denoted as a vertex v ∈ V . Two nodes may be
connected or related via common characteristics. This con-
nection is represented as an edge e ∈ E, with E ⊂ V V . We
also define a matrix C = {cij}, where cij = 1 if and only
if nodes ci and cj share the characteristic we defined edges
to represent. A node/vertex v ∈ V in the CASSANDRA
graph represents an installation, thus a person (since every

installation contains one “equivalent” person). The CAS-
SANDRA CSN module may cluster a set of installations
using various clustering methods, such as k-means, hierar-
chical or graph clustering.

Figure 5: The CASSANDRA CSN Interface

The module can load a set of entities from the CAS-
SANDRA Agent module, define connections among entities
based on type, consumption, behaviour, etc., display the re-
sulted network, and cluster them, providing the necessary
information about the attributes of each entity/cluster, as
well as their consumption. The goal is to group similar
(according to selected criteria) consumers and treat them
accordingly. For example, if we group consumers based on
their consumption regarding cooking, a respective targeted
demand response (D/R) program may improve results to-
wards a general Demand Management (D/M) program. We
may also achieve improved results when we cluster con-
sumers based on their profile type by identifying groups sus-
ceptible to environmental, financial or social incentives.

4. VALIDATION
The first step in the platform evaluation process is the

evaluation of the CASSANDRA baseline simulations. In ad-
dition, comparison of the consumption distribution through-
out the day (using the Jensen-Shannon divergence of power
consumption distributions) can be used to compare the real
and simulated consumption measurements. The develop-
ment and verification follows a four-step process:

1. Collection of measurement from real households.

2. CASSANDRA baseline model: The CASSANDRA plat-
form baseline models were created using existing library-
based models, through manually generated models and
through the disaggregation and training modules.

3. Simulate sites: The models are used to simulate base-
line consumption for all three pilot sites

4. Verify simulation against measurement: The CASSAN-
DRA simulated baselines are compared to the pilot
baselines and checked for accuracy.

For validation, we used an estimation of the aggregate
consumption of a household for a specific day (Expected
Power) to compare it with the output of the simulation for
one day using several Monte Carlo runs. Figure 6 and Figure



7 display the two results. Figure 6 depicts the expected ac-
tive power for a group of installations by solving the simula-
tion analytically, while Figure 7 depicts the output produced
from the simulation which matches the one from Figure 6.
It is obvious that the to results are really close.

Figure 6: Expected active power for a group of in-
stallations by solving the simulation analytically

Figure 7: Output produced from the simulation
which matches the one from Figure 6

From a different perspective, we have detailed informa-
tion available for a period of one week. In Figure 8, the
measured consumed energy per activity is presented for the
same household and time period, whereas in Figure 9 the
respective consumed energy per activity is exhibited, as rec-
ognized by the CASSANDRA platform. The two results are
almost identical.

4.1 CSN Evaluation
In order to test on the usefulness of the CSN approach, we

performed the following experiment: we ran a demand-side
management scenario, as a means to quantify the outcome
of the CSN formation. In this scenario, each consumer agent
that has accepted to join the network (his/her willingness to
connect) is given an incentive relative to the preferences of

Figure 8: Measured energy per activity for a house-
hold within a week

Figure 9: Energy per activity for a household within
a week, as recognized in the CASSANDRA platform

the group he/she has been assigned, in order to shift his/her
load curve by a quarter of the hour earlier/later. Each con-
sumer agent, based on the actions executed by neighbouring
agents (links), executes the complementary action so that di-
versity in actions within the clusters is maintained. Agents
that do not participate in the CSN perform as planned ini-
tially. Merely by applying this simple incentive scheme, we
observe a 6% reduction (Figure 10) in the peak of the load
curve (from 2824 MWs to 2652 MWs) plus a reduction in the
standard deviation of the power consumption in the 96 quar-
ters of the day (from 573MWs to 549 MWs). This could lead
to better forecasting of power demand due to less variance in
the resulting curve. In fact, if consumer agents participation
in the network increases (from 50% to 75%), peak reduction
can reach 14%. Thus, appropriate target incentives to re-
spective consumer groups could obviously lead to numerous
benefits related to the energy market and the power system.

5. CONCLUSIONS
In conclusion, CASSANDRA achieved progress in: (i)

defining and evaluating theoretical tools that are used for
bottom-up modelling of small-scale consumers, including the
consumer behaviour modelling methodology, the appliance



Figure 10: Peak reduction in the load curve. With
red bars is the consumption before incentivising the
consumer agents and with green after.

consumption models and load disaggregation methodology,
(ii) developing the CASSANDRA software platform and (iii)
the individual CASSANDRA system components, i.e. the
CASSANDRA server, the CSN module or individual soft-
ware packages/classes.

In addition, CASSANDRA has defined a set of guidelines
of proper platform use for different stakeholders based on
the lessons learned through the project. CASSANDRA fol-
lowed an iterative software development process, consisting
of four phases: Collection of user requirements, definition
of system specifications (including implementation of soft-
ware tests), and software implementation/integration and
software evaluation. This resulted to the development of a
data driven, bottom-up demand-side modelling framework
that describes consumption at the appliance level and scales
up to entire regions of the power system. Combined with
models of consumer behaviour and response, CASSANDRA
allows the mapping of the observed load curve into consumer
activities and the simulation of demand-response scenarios
that take into account consume habits and behaviours and
their changes in response to monetary or environmental in-
centives.

CASSANDRA realization concerns the energy markets
and offers the necessary tools to develop the representa-
tive models for the various involved stakeholders. For this
reason, an expandable, easy-to-use architecture was built,
in order to model the versatility and dynamic nature of
all involved entities in the energy market. CASSANDRA
outcomes can support increased participation in the energy
market, by providing novel business opportunities for ex-
isting stakeholders, and offering incentives to the formerly
inactive customers to guarantee their involvement.

CASSANDRA may provide a new ground for aggrega-
tors and ESCOs, as it offers them the prospect of initiating
and operating CSNs, acting as mediators between them and
the TSO. The CASSANDRA platform is expected to boost
R&D activities concerning the respective software and hard-
ware. The transparent architecture of CASSANDRA can
foster the active participation of small software houses, in-
creasing their efficiency and competitiveness. For SMEs,

CASSANDRA can offer business opportunities to enter the
electric power generation market: with a rising number of
power generating units, there is a rising demand for mainte-
nance and overhaul. Through planning and installing power
generating units, there are several business challenges for
service providers to profit.

Consumers have no means of envisioning themselves as
part of a larger group. Single households and businesses
do not know of the impact they could have joining with
their neighbours, or of the benefit that this could bring to
them. CASSANDRA can help consumer groups to model
and quantify their own options, potential impact and po-
tential benefits. In addition, as of now, most utilities are
in the difficult position of having to guesstimate what ben-
efits a particular program could bring to their customers.
It makes energy efficiency or a demand response program
more difficult to “sell” internally within the utility and ex-
ternally to consumer groups, regulators, policy makers and
the press. CASSANDRA can act as an aid here, providing
data and insight.

Future work for CASSANDRA includes further validation
of the platform, creating a more user-friendly interface and
installation procedure, as well as exploring more activity
models based on personalized data.
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